O. Alkoby, A. Abu-rmileh, O. Shriki, and D. Todder, Can we predict who will respond to neurofeedback? A review of the inefficacy problem and existing predictors for successful EEG neurofeedback learning, Neuroscience, 2017.
DOI : 10.1016/j.neuroscience.2016.12.050

K. K. Ang, Z. Y. Chin, H. Zhang, and C. Guan, Mutual information-based selection of optimal spatial???temporal patterns for single-trial EEG-based BCIs, Pattern Recognition, vol.45, issue.6, pp.45-2137, 2012.
DOI : 10.1016/j.patcog.2011.04.018

M. Arns and U. Strehl, Evidence for Efficacy of Neurofeedback in ADHD?, American Journal of Psychiatry, vol.170, issue.7, pp.799-800, 2013.
DOI : 10.1176/appi.ajp.2013.13020208

M. Arns, H. Heinrich, and U. Strehl, Evaluation of neurofeedback in ADHD: The long and winding road, Biological Psychology, vol.95, pp.108-115, 2014.
DOI : 10.1016/j.biopsycho.2013.11.013

M. Arns, J. Batail, S. Bioulac, M. Conged, C. Daudet et al., The NExT group. (2017) Neurofeedback: One of today's techniques in psychiatry, pp.135-145

M. Arvaneh, C. Guan, K. K. Ang, and C. Quek, Optimizing the Channel Selection and Classification Accuracy in EEG-Based BCI, IEEE Transactions on Biomedical Engineering, vol.58, issue.6, pp.58-1865, 2011.
DOI : 10.1109/TBME.2011.2131142

A. Barbero and M. Grosse-wentrup, Biased feedback in brain-computer interfaces, Journal of NeuroEngineering and Rehabilitation, vol.7, issue.1, p.34, 2010.
DOI : 10.1186/1743-0003-7-34

URL : https://doi.org/10.1186/1743-0003-7-34

O. M. Bazanova and L. I. Aftanas, Individual EEG Alpha Activity Analysis for Enhancement Neurofeedback Efficiency: Two Case Studies, Journal of Neurotherapy, vol.14, issue.3, pp.244-253, 2010.
DOI : 10.1080/10874208.2010.501517

R. Bauer, M. Fels, V. Royter, V. Raco, and A. Gharabaghi, Closed-loop adaptation of neurofeedback based on mental effort facilitates reinforcement learning of brain self-regulation, Clinical Neurophysiology, vol.127, issue.9, pp.3156-3164, 2016.
DOI : 10.1016/j.clinph.2016.06.020

B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe, and K. R. Muller, Optimizing Spatial filters for Robust EEG Single-Trial Analysis, IEEE Signal Processing Magazine, vol.25, issue.1, pp.41-56, 2008.
DOI : 10.1109/MSP.2008.4408441

URL : http://ida.first.fhg.de/publications/BlaTomLemKawMue08.pdf

B. Blankertz, C. Sannelli, S. Halder, E. M. Hammer, A. Kübler et al., Neurophysiological predictor of SMR-based BCI performance, NeuroImage, vol.51, issue.4, pp.1303-1309, 2010.
DOI : 10.1016/j.neuroimage.2010.03.022

L. Bonnet, F. Lotte, and A. Lécuyer, Two Brains, One Game: Design and Evaluation of a Multiuser BCI Video Game Based on Motor Imagery, IEEE Transactions on Computational Intelligence and AI in Games, vol.5, issue.2, pp.185-198, 2013.
DOI : 10.1109/TCIAIG.2012.2237173

URL : https://hal.archives-ouvertes.fr/hal-00784886

T. Brandmeyer and A. Delorme, Meditation and neurofeedback, Frontiers in Psychology, vol.4, p.688, 2013.
DOI : 10.3389/fpsyg.2013.00688

URL : https://hal.archives-ouvertes.fr/hal-00876261

N. Braun, R. Emkes, J. D. Thorne, and S. Debener, Embodied neurofeedback with an anthropomorphic robotic hand, Scientific Reports, vol.5, issue.1, 2016.
DOI : 10.1080/17588928.2014.905519

URL : http://www.nature.com/articles/srep37696.pdf

A. Chatterjee, V. Aggarwal, A. Ramos, S. Acharya, and N. Thakor, A braincomputer interface with vibrotactile biofeedback for haptic information, ». Journal of NeuroEngineering and Rehabilitation, vol.4, issue.40, 2007.

S. L. Chua, D. T. Chen, and A. F. Wong, Computer anxiety and its correlates: a meta-analysis, Computers in Human Behavior, vol.15, issue.5, pp.609-623, 1999.
DOI : 10.1016/S0747-5632(99)00039-4

F. Cincotti, Vibrotactile Feedback for Brain-Computer Interface Operation, Computational Intelligence and Neuroscience, vol.51, issue.6, 2007.
DOI : 10.1109/TBME.2004.827072

URL : https://doi.org/10.1155/2007/48937

M. Clerc, L. Bougrain, and F. Lotte, Brain-Computer Interfaces 2: Technology and Applications, 2016.
DOI : 10.1002/9781119332428

URL : https://hal.archives-ouvertes.fr/hal-01408998

A. Cortese, K. Amano, A. Koizumi, M. Kawato, and H. Lau, Multivoxel neurofeedback selectively modulates confidence without changing perceptual performance, Nature Communications, vol.1, p.13669, 2016.
DOI : 10.1038/nn.2303

URL : http://www.nature.com/articles/ncomms13669.pdf

M. Csikszentmihalyi and J. Lefevre, Optimal experience in work and leisure., Journal of Personality and Social Psychology, vol.56, issue.5, pp.815-822, 1989.
DOI : 10.1037/0022-3514.56.5.815

URL : http://biglearningevent.wisc.edu/study-groups/wp-content/blogs.dir/2/files/group-documents/1/1306267704-OptimalExperienceinWorkandLeisure.pdf

N. David, A. Newen, and K. Vogeley, The ???sense of agency??? and its underlying cognitive and neural mechanisms, Consciousness and Cognition, vol.17, issue.2, pp.523-534, 2008.
DOI : 10.1016/j.concog.2008.03.004

J. Dhindsa, Generalized Methods for User-Centered Brain-Computer Interfacing, Canada, 2017.

S. Enriquez-geppert, R. J. Huster, and C. S. Herrmann, EEG-Neurofeedback as a Tool to Modulate Cognition and Behavior: A Review Tutorial, Frontiers in Human Neuroscience, vol.54, p.11, 2017.
DOI : 10.1016/j.neuroimage.2010.08.078

URL : https://www.frontiersin.org/articles/10.3389/fnhum.2017.00051/pdf

J. Fruitet, A. Carpentier, R. Munos, and M. Clerc, Automatic motor task selection via a bandit algorithm for a brain-controlled button, Journal of Neural Engineering, vol.10, issue.1, p.16012, 2013.
DOI : 10.1088/1741-2560/10/1/016012

URL : https://hal.archives-ouvertes.fr/hal-00798561

E. V. Friedrich, R. Scherer, and C. Neuper, The effect of distinct mental strategies on classification performance for brain???computer interfaces, International Journal of Psychophysiology, vol.84, issue.1, pp.86-94, 2012.
DOI : 10.1016/j.ijpsycho.2012.01.014

G. D. Gargiulo, A. Mohamed, A. L. Mcewan, P. Bifulco, M. Cesarelli et al., Investigating the role of combined acoustic-visual feedback in onedimensional synchronous brain computer interfaces, a preliminary study, Medical Devices: Evidence and Research, vol.5, pp.81-88, 2012.

A. Gaume, A. Vialatte, A. Mora-sánchez, C. Ramdani, and F. B. Vialatte, A psychoengineering paradigm for the neurocognitive mechanisms of biofeedback and neurofeedback, Neuroscience & Biobehavioral Reviews, vol.68, pp.891-910, 2016.
DOI : 10.1016/j.neubiorev.2016.06.012

H. Gevensleben, A. Rothenberger, G. Moll, and H. Heinrich, Neurofeedback in children with ADHD: validation and challenges, Expert Review of Neurotherapeutics, vol.12, issue.4, pp.447-460, 2012.
DOI : 10.1109/TNSRE.2004.840492

G. Rodriguez, M. , J. Peters, J. Hill, B. Schölkopf et al., Closing the sensorimotor loop: haptic feedback helps decoding of motor imagery, Journal of Neural Engineering, 2011.

M. Grosse-wentrup, B. Schölkopf, and J. Hill, Causal influence of gamma oscillations on the sensorimotor rhythm, NeuroImage, vol.56, issue.2, pp.837-842, 2011.
DOI : 10.1016/j.neuroimage.2010.04.265

J. H. Gruzelier, EEG-neurofeedback for optimising performance. I: A review of cognitive and affective outcome in healthy participants, Neuroscience & Biobehavioral Reviews, vol.44, pp.124-141, 2014.
DOI : 10.1016/j.neubiorev.2013.09.015

URL : http://research.gold.ac.uk/500/1/PSY_Gruzelier_2006a.pdf

J. Gruzelier, EEG-neurofeedback for optimising performance. III: A review of methodological and theoretical considerations, Neuroscience & Biobehavioral Reviews, vol.44, pp.159-82, 2014.
DOI : 10.1016/j.neubiorev.2014.03.015

URL : http://research.gold.ac.uk/500/1/PSY_Gruzelier_2006a.pdf

B. Hamadicharef, H. Zhang, C. Guan, C. Wang, K. S. Phua et al., Learning EEG-based spectral-spatial patterns for attention level measurement, 2009 IEEE International Symposium on Circuits and Systems, pp.1465-1468, 2009.
DOI : 10.1109/ISCAS.2009.5118043

URL : https://hal.archives-ouvertes.fr/inria-00441412

D. Hammond, Placebos and Neurofeedback: A Case for Facilitating and Maximizing Placebo Response in Neurofeedback Treatments, Journal of Neurotherapy, vol.15, issue.2, pp.94-114, 2011.
DOI : 10.1080/10874208.2011.570694

T. Hinterberger, N. Neumann, M. Pham, A. Kübler, A. Grether et al., A multimodal brain-based feedback and communication system, Experimental Brain Research, vol.154, issue.4, pp.521-526, 2004.
DOI : 10.1007/s00221-003-1690-3

J. Höhne, E. Holz, P. Staiger-sälzer, K. R. Müller, A. Kübler et al., Motor imagery for severely motor-impaired patients: evidence for brain-computer interfacing as superior control solution, PloS one, issue.8, pp.9-104854, 2014.

C. Jeunet, Understanding and improving mental-imagery based brain-computer interface (MI-BCI) user-training: Towards a new generation of efficient, reliable and accessible brain-computer interfaces, 2016.

C. Jeunet, B. N-'kaoua, L. , and F. , Advances in user training for mental-imagerybased BCI control: Psychological and cognitive factors and their neural correlates, Progress in brain research, 2016.

C. Jeunet, C. Vi, D. Spelmezan, B. N-'kaoua, F. Lotte et al., Continuous Tactile Feedback for Motor-Imagery Based Brain-Computer Interaction in a Multitasking Context, Proc. Interact, 2015.
DOI : 10.1007/978-3-319-22701-6_36

URL : https://hal.archives-ouvertes.fr/hal-01159146

C. Jeunet, B. N-'kaoua, S. Subramanian, M. Hachet, and F. Lotte, Predicting Mental Imagery-Based BCI Performance from Personality, Cognitive Profile and Neurophysiological Patterns, PLOS ONE, vol.25, issue.1, pp.10-0143962, 2015.
DOI : 10.1371/journal.pone.0143962.g008

URL : https://hal.archives-ouvertes.fr/hal-01177685

L. Kauhanen, T. Palomäki, P. Jylänki, F. Aloise, M. Nuttin et al., Haptic feedback compared with visual feedback for BCI, Proceedings of the 3rd International Brain-Computer Interface Workshop & Training Course, 2006.

K. Kilteni, R. Groten, and M. Slater, The Sense of Embodiment in Virtual Reality, Presence: Teleoperators and Virtual Environments, vol.21, issue.4, pp.373-387, 2012.
DOI : 10.1016/S0010-0277(02)00100-2

S. Kober, . Witte, C. Ninaus, G. Neuper, and . Wood, Learning to modulate one's own brain activity: the effect of spontaneous mental strategies, » In: Frontiers in human neuroscience 7, 2013.
DOI : 10.3389/fnhum.2013.00695

B. Kort, R. Reilly, and R. W. Picard, An affective model of interplay between emotions and learning: reengineering educational pedagogy-building a learning companion, Proceedings IEEE International Conference on Advanced Learning Technologies, pp.43-46, 2001.
DOI : 10.1109/ICALT.2001.943850

A. Kübler, N. Neumann, J. Kaiser, B. Kotchoubey, T. Hinterberger et al., Brain-computer communication: Self-regulation of slow cortical potentials for verbal communication, Archives of Physical Medicine and Rehabilitation, vol.82, issue.11, pp.82-1533, 2001.
DOI : 10.1053/apmr.2001.26621

A. Kübler, B. Kotchoubey, J. Kaiser, J. R. Wolpaw, and N. Birbaumer, Braincomputer communication: unlocking the locked in, Psychology Bulletin, vol.1273, pp.358-375, 2001.

T. N. Lal, M. Schroder, T. Hinterberger, J. Weston, M. Bogdan et al., Support Vector Channel Selection in BCI, IEEE Transactions on Biomedical Engineering, vol.51, issue.6, pp.51-1003, 2004.
DOI : 10.1109/TBME.2004.827827

URL : http://www.kyb.tuebingen.mpg.de/publications/pdfs/pdf2482.pdf

R. Leeb, K. Gwak, D. Kim, and J. D. Millan, Freeing the visual channel by exploiting vibrotactile BCI feedback, 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp.3093-3096, 2013.
DOI : 10.1109/EMBC.2013.6610195

F. Lotte and C. Guan, Regularizing Common Spatial Patterns to Improve BCI Designs: Unified Theory and New Algorithms, IEEE Transactions on Biomedical Engineering, vol.58, issue.2, pp.355-362, 2011.
DOI : 10.1109/TBME.2010.2082539

URL : https://hal.archives-ouvertes.fr/inria-00476820

F. Lotte, F. Larrue, and C. Mühl, Flaws in current human training protocols for spontaneous Brain-Computer Interfaces: lessons learned from instructional design, Frontiers in Human Neurosciences, 2013.
DOI : 10.3389/fnhum.2013.00568

URL : https://hal.archives-ouvertes.fr/hal-00862716

K. Mayer, S. Wyckoff, A. Fallgatter, A. Ehlis, and U. Strehl, Neurofeedback as a nonpharmacological treatment for adults with attention-deficit/hyperactivity disorder (ADHD): study protocol for a randomized controlled trial, Trials, vol.95, issue.1, p.174, 2015.
DOI : 10.1016/j.biopsycho.2013.11.013

K. A. Mccraedie, D. H. Coyle, and G. Prasad, Is Sensorimotor BCI Performance Influenced Differently by Mono, Stereo, or 3-D Auditory Feedback?, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.22, issue.3, pp.431-471, 2014.
DOI : 10.1109/TNSRE.2014.2312270

D. J. Mcfarland, W. A. Sarnacki, and J. R. Wolpaw, Should the parameters of a BCI translation algorithm be continually adapted?, Journal of Neuroscience Methods, vol.199, issue.1, pp.103-107, 2011.
DOI : 10.1016/j.jneumeth.2011.04.037

J. A. Micoulaud-franchi, P. A. Geoffroy, G. Fond, R. Lopez, S. Bioulac et al., EEG neurofeedback treatments in children with ADHD: an updated meta-analysis of randomized controlled trials, Frontiers in Human Neuroscience, vol.8, p.906, 2014.
DOI : 10.3389/fnhum.2014.00321

J. Micoulaud-franchi, A. Mcgonigal, R. Lopez, C. Daudet, I. Kotwas et al., Electroencephalographic neurofeedback: Level of evidence in mental and brain disorders and suggestions for good clinical practice, Neurophysiologie Clinique/Clinical Neurophysiology, vol.45, issue.6, pp.423-433, 2015.
DOI : 10.1016/j.neucli.2015.10.077

URL : https://hal.archives-ouvertes.fr/hal-01485380

M. Franchi, J. Fovet, and T. , Neurofeedback: time needed for a promising non-pharmacological therapeutic method, The Lancet Psychiatry, vol.3, issue.9, p.16, 2016.
DOI : 10.1016/S2215-0366(16)30189-4

J. Micoulaud-franchi, F. Salvo, S. Bioulac, and T. Fovet, Neurofeedback in Attention-Deficit/Hyperactivity Disorder: Efficacy, Journal of the American Academy of Child & Adolescent Psychiatry, vol.55, issue.12, pp.1091-1092, 2016.
DOI : 10.1016/j.jaac.2016.09.493

J. Mladenovic, J. Mattout, and F. Lotte, A generic framework for adaptive EEGbased BCI training and operation, Handbook of Brain-Computer Interfaces, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01542504

J. Mladenovic, J. Frey, M. Bonnet-save, J. Mattout, and F. Lotte, The Impact of Flow in an EEG-based Brain Computer Interface, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01527748

K. R. Müller, M. Tangermann, G. Dornhege, M. Krauledat, G. Curio et al., Machine learning for real-time single-trial EEG-analysis: From brain???computer interfacing to mental state monitoring, Journal of Neuroscience Methods, vol.167, issue.1, pp.82-90, 2008.
DOI : 10.1016/j.jneumeth.2007.09.022

C. S. Nam, A. Nijholt, and F. Lotte, Brain?Computer Interfaces Handbook: Technological and Theoretical Advances, 2018.
DOI : 10.1080/2326263x.2016.1168204

C. Neuper, R. Scherer, M. Reiner, and G. Pfurtscheller, Imagery of motor actions: Differential effects of kinesthetic and visual???motor mode of imagery in single-trial EEG, Cognitive Brain Research, vol.25, issue.3, pp.668-677, 2005.
DOI : 10.1016/j.cogbrainres.2005.08.014

C. Neuper and G. Pfurtscheller, Neurofeedback Training for BCI Control, Brain- Computer Interfaces, pp.65-78, 2009.
DOI : 10.1007/978-3-642-02091-9_4

F. Nijboer, . Furdea, . Gunst, D. Mellinger, . Macfarland et al., An auditory brain???computer interface (BCI), Journal of Neuroscience Methods, vol.167, issue.1, pp.43-50, 2008.
DOI : 10.1016/j.jneumeth.2007.02.009

A. Nijholt, Competing and Collaborating Brains: Multi-brain Computer Interfacing, Brain-Computer Interfaces, pp.313-335, 2015.
DOI : 10.1007/978-3-319-10978-7_12

M. Pregenzer and G. Pfurtscheller, Frequency component selection for an EEG-based brain to computer interface, IEEE Transactions on Rehabilitation Engineering, vol.7, issue.4, pp.413-419, 1999.
DOI : 10.1109/86.808944

G. Pfurtscheller and C. Neuper, Motor imagery and direct brain-computer communication, Proceedings of the IEEE, pp.1123-1134, 2001.
DOI : 10.1109/5.939829

A. Raz and R. Michels, Contextualizing Specificity: Specific and Non-Specific Effects of Treatment, American Journal of Clinical Hypnosis, vol.181, issue.2, pp.177-82, 2007.
DOI : 10.1126/science.1093065

A. Rémond and A. Rémond, Biofeedback : principes et applications, 1997.

T. Ros, B. Jb, R. Lanius, and P. Vuilleumier, Tuning pathological brain oscillations with neurofeedback: a systems neuroscience framework, Frontiers in Human Neuroscience, vol.33, p.1008, 2014.
DOI : 10.1523/jneurosci.3680-12.2013

URL : http://journal.frontiersin.org/article/10.3389/fnhum.2014.01008/pdf

W. Samek, M. Kawanabe, and K. R. Muller, Divergence-Based Framework for Common Spatial Patterns Algorithms, IEEE Reviews in Biomedical Engineering, vol.7, pp.50-72, 2014.
DOI : 10.1109/RBME.2013.2290621

M. S. Sanders and E. J. Mccormick, Human factors in engineering and design, 1993.

L. Sherlin, M. Arns, J. Lubar, H. Heinrich, C. Kerson et al., Neurofeedback and Basic Learning Theory: Implications for Research and Practice, Journal of Neurotherapy, vol.15, issue.4, pp.292-304, 2011.
DOI : 10.1080/10874208.2011.623089

K. Shibata, T. Watanabe, Y. Sasaki, and M. Kawato, Perceptual learning incepted by decoded fMRI neurofeedback without stimulus presentation, science, issue.6061, pp.334-1413, 2011.
DOI : 10.1167/12.9.282

URL : https://doi.org/10.1167/12.9.282

R. Sitaram, T. Ros, L. Stoeckel, S. Haller, F. Scharnowski et al., Closed-loop brain training: the science of neurofeedback, Nature Reviews Neuroscience, vol.95, issue.2, 2016.
DOI : 10.1152/jn.00166.2006

E. Smith and M. Delargy, Locked-in syndrome, BMJ, vol.330, issue.7488, pp.406-415, 2005.
DOI : 10.1136/bmj.330.7488.406

U. Strehl, What learning theories can teach us in designing neurofeedback treatments, Frontiers in Human Neuroscience, vol.3, p.894, 2014.
DOI : 10.1016/0031-9384(68)90139-x

URL : https://www.frontiersin.org/articles/10.3389/fnhum.2014.00894/pdf

L. F. Tan, Z. Dienes, A. Jansari, and S. Y. Goh, Effect of mindfulness meditation on brain???computer interface performance, Consciousness and Cognition, vol.23, pp.12-21, 2014.
DOI : 10.1016/j.concog.2013.10.010

R. Thibault and A. Raz, When can neurofeedback join the clinical armamentarium?, The Lancet Psychiatry, vol.3, issue.6, pp.497-498, 2016.
DOI : 10.1016/S2215-0366(16)30040-2

URL : http://digitool.Library.McGill.CA:80/webclient/DeliveryManager?pid=144813&custom_att_2=direct

R. T. Thibault, M. Lifshitz, and A. Raz, Neurofeedback or neuroplacebo? Brain, pp.862-864, 2017.
DOI : 10.1093/brain/awx033

URL : http://digitool.Library.McGill.CA:80/webclient/DeliveryManager?pid=144815&custom_att_2=direct

M. E. Thurlings, J. B. Van-erp, A. Brouwer, B. Blankertz, and P. Werkhoven, Control-display mapping in brain???computer interfaces, Ergonomics, vol.15, issue.18, pp.564-580, 2012.
DOI : 10.1518/001872007X215700

V. Venkatesh and F. D. Davis, A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies, Management Science, vol.46, issue.2, pp.186-204, 2000.
DOI : 10.1287/mnsc.

R. Vlek, J. Van-acken, E. Beursken, L. Roijendijk, and P. Haselager, BCI and a User???s Judgment of Agency, pp.193-202, 2014.
DOI : 10.1007/978-94-017-8996-7_16

C. Vidaurre, C. Sannelli, K. R. Müller, and B. Blankertz, Machine-Learning-Based Coadaptive Calibration for Brain-Computer Interfaces, Neural Computation, vol.8, issue.3, pp.791-816, 2011.
DOI : 10.1016/S1388-2457(02)00057-3

M. Vollebregt, M. Van-dongen-boomsma, D. Slaats-willemse, and J. Buitelaar, What future research should bring to help resolving the debate about the efficacy of EEGneurofeedback in children with ADHD, Front Hum Neurosci, vol.8, p.321, 2014.

J. Wolpaw and E. W. Wolpaw, Brain-computer interfaces: principles and practice, 2012.

H. Yuan and B. He, Brain?computer interfaces using sensorimotor rhythms: current state and future perspectives, IEEE Transactions on Biomedical Engineering, issue.5, pp.61-1425, 2014.

T. O. Zander, B. Battes, B. Schoelkopf, and M. Grosse-wentrup, Towards neurofeedback for improving visual attention, Proceedings of the Fifth International Brain-Computer Interface Meeting: Defining the Future, p.page Article ID, 2013.

A. Zuberer, D. Drandeis, and R. Drechsler, Are treatment effects of neurofeedback training in children with ADHD related to the successful regulation of brain activity? A review on the learning of regulation of brain activity and a contribution to the discussion on specificity, Frontiers in Human Neuroscience, vol.54, 2015.
DOI : 10.1016/j.neuroimage.2010.08.078