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Abstract

Motivation: The root mean square deviation (RMSD) is one of the most used similarity criteria in structural
biology and bioinformatics. Standard computation of the RMSD has a linear complexity with respect to the
number of atoms in a molecule, making RMSD calculations time-consuming for the large-scale modeling
applications, such as assessment of molecular docking predictions or clustering of spatially proximate
molecular conformations. Previously we introduced the RigidRMSD algorithm to compute the RMSD
corresponding to the rigid-body motion of a molecule. In this study we go beyond the limits of the rigid-body
approximation by taking into account conformational flexibility of the molecule. We model the flexibility with
a reduced set of collective motions computed with e.g. normal modes or principal component analysis.
Results: The initialization of our algorithm is linear in the number of atoms and all the subsequent
evaluations of RMSD values between flexible molecular conformations depend only on the number of
collective motions that are selected to model the flexibility. Therefore, our algorithm is much faster compared
to the standard RMSD computation for large-scale modeling applications. We demonstrate the efficiency
of our method on several clustering examples, including clustering of flexible docking results and molecular
dynamics (MD) trajectories. We also demonstrate how to use the presented formalism to generate pseudo-
random constant-RMSD structural molecular ensembles and how to use these in cross-docking.
Availability: We provide the algorithm written in C++ as the open-source RapidRMSD library governed
by the BSD-compatible license, which is available at http://team.inria.fr/nano-d/software/
RapidRMSD/. The constant-RMSD structural ensemble application and clustering of MD trajectories is
available at http://team.inria.fr/nano-d/software/nolb-normal-modes/.
Contact: sergei.grudinin@inria.fr
Supplementary information: Supplementary data are available at Bioinformatics

1 Introduction
With the constant growth of computing and experimental resources,
computational biology and bioinformatics face big collections of data, such
as large datasets of conformations of molecules that have been determined
either experimentally or using computer-aided simulations. Dealing with
large lists of molecular conformations requires the development of
numerically efficient algorithms.

One of the most widely accepted characteristics when analyzing
biological structures is the Root Mean Square Deviation (RMSD), a
similarity metric between molecular conformations, or more generally,

two ordered sets of points. RMSD is commonly used for classification
and comparison of multiple structures when searching for similar proteins
in a database (Salem et al., 2010; Ye and Godzik, 2003; Emekli et al.,
2008; Shatsky M, 2002; Shatsky et al., 2004; Magis et al., 2013; Holm
and Sander, 1993), but also when studying computer-simulated structures.
In docking benchmarks and assessment experiments, such as the Critical
Assessment of PRediction of Interactions (Janin, 2005; Méndez et al.,
2003), indicators such as the fraction of native and non-native contacts
estimate the biological quality of the predictions, while RMSD from a
reference solution measures the geometrical quality of a putative binding
pose. Particularly, RMSD computations help to compare molecular
structures and to reduce a large list of predicted molecular conformations to
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a smaller set of clustered solutions. For example, clustering is particularly
useful to identify and characterize binding sites (Kozakov et al., 2005;
Comeau and Camacho, 2005; Popov et al., 2014; Huang, 2014) or to
discover near-native docking poses (Zhang and Skolnick, 2004; Kozakov
et al., 2005; Lorenzen and Zhang, 2007) Another application of the RMSD
computations is a generation of constant-RMSD structural ensembles.
These are increasingly used to build training sets for data-driven bio-
chemical models (Popov and Grudinin, 2015; Rupp et al., 2015; Smith
et al., 2017), and can also be applied to construct near-native structures
for cross-docking (Cavasotto et al., 2005; Mustard and Ritchie, 2005), for
example.

While there has been some progress in effective RMSD computation
by optimal superposition of conformations (Horn, 1987; Diamond, 1988;
Kearsley, 1989; Kneller, 1991; Coutsias et al., 2004; Theobald, 2005)
there has not been so much done for computing RMSDs between molecules
coupled to a fixed reference frame (Popov and Grudinin, 2014; Hildebrandt
et al., 2014), which is very useful, for example, when clustering molecular
docking solutions (Kozakov et al., 2005; Comeau and Camacho, 2005;
Popov et al., 2014). Also, RMSD computation is an essential step in
the analysis of ensembles of molecular conformations (Gil and Guallar,
2014; Hung and Samudrala, 2014), which might require billions of
RMSD computations when doing a pairwise comparison of the predicted
structures. The growing number of required computations led us to develop
an efficient way to compute RMSDs in the specific case of rigid-body
motions (Popov and Grudinin, 2014). Here, we present an extension of
our previous work to flexible molecules, with flexibility being represented
as an affine deformation of the original structure. More technically, we
describe the flexibility with a finite number of linear collective motions
that can be computed, for example, with Normal Mode Analysis (NMA)
(Wilson, 1955) or Principal Component Analysis (PCA). While being
computationally affordable, this type of collective motions also often
captures the unbound to bound protein transitions (Hinsen, 1998; Kovacs
et al., 2004; Dobbins et al., 2008). Thus, this is typically the approach of
choice when dealing with the challenges of flexible protein-protein docking
(Zacharias, 2010). The capability of NMA- and PCA-based principal
motions to model large conformational changes of the protein backbone at a
low computational cost enables their use at all the stages of protein-protein
docking protocols, e.g., in the generation of ensembles for cross-docking
(Cavasotto et al., 2005; Mustard and Ritchie, 2005), in the prediction of
hinge regions (Emekli et al., 2008; Schneidman-Duhovny et al., 2007),
during the conformational sampling (Moal and Bates, 2010; Fiorucci and
Zacharias, 2010; May and Zacharias, 2008), or when refining the solutions
(Maschiach et al., 2010; Venkatraman and Ritchie, 2012; Lindahl and
Delarue, 2005).

As we recently demonstrated for the rigid-body motion case, RMSD
computation can be split into two parts, initialization, which is linear
in the number of atoms in the molecule, and the RMSD calculation
itself, which takes only a constant number of arithmetic operations
(Popov and Grudinin, 2014, 2018). This allows a dramatic reduction of
the computational cost. For example, a rigid-body clustering requiring
O(N × D) operations will be solved in O(N + D) operations, with
N being the number of atoms, and D being the number of pairwise
structure comparisons required by the clustering. Having N usually
greater than 1000, the algorithm typically results in at least one order
of magnitude computational speed-up compared to a standard clustering
method. In this study we relax the rigid-body approximation by taking
into account molecular flexibility described with a linear transformation
of the original structure (Brooks and Karplus, 1983). A linear, or, more
generally, affine transformation can be represented as a weighted sum of
orthogonal vectors, computed with, e.g., PCA or NMA methods. Below
we demonstrate that we can cluster putative binding poses produced by
flexible docking algorithms significantly faster than a standard approach,

given that most of the flexible docking methods use only a small number
of collective motions (Emekli et al., 2008; Moal and Bates, 2010; Fiorucci
and Zacharias, 2010; Venkatraman and Ritchie, 2012; May and Zacharias,
2008; Schneidman-Duhovny et al., 2007).

The rest of the article is organized as follows. First, we summarize
our approach and our previous results for fast RMSD computations
in the rigid-body motion case (Popov and Grudinin, 2014). This is
followed by the derivation of equations for an efficient computation of
RMSD between molecular conformations using the corresponding rigid
and flexible transforms. Finally, we demonstrate the superiority of our
algorithm over the standard one with several practical examples.

The algorithm is implemented as an open-source RapidRMSD library,
available athttps://team.inria.fr/nano-d/software/RapidRMSD/.
To guide the users, the library also provides a number of source-code
examples that demonstrate its usage in different scenarios.

2 Approach
Using the rigid-body motion formalism extended with collective motions,
here we present an efficient approach to compute RMSD between flexible
molecular conformations. This approach expresses the RMSD according to
the spatial transformation operators. These are the rotation, translation and
a set of vectors that describe the collective motions, which can be the main
vibrational modes of a molecule, for example. Our method comprises the
initialization step followed by a set of RMSD calculation steps.The former
computes the internal geometric properties of the reference molecule such
as the inertia tensor. Performed only once, it has a linear complexity with
the number of atoms in the molecule and at worst a quadratic complexity
with the number of vectors describing the collective motions. Each of the
latter steps – one per a pair of conformations – takes only constant time with
respect to the number of atoms. Our approach is particularly useful when
applied to a large set of conformations of a flexible molecule, for instance
as it happens in clustering applications or when generating near-native
structural ensembles. In the former case, our algorithm has a linear cost
with the number of collective motion vectors, which makes it extremely
fast, since usually only an order of ten collective motions is sufficient to
accurately describe the global flexibility of a macromolecule - no matter
how big it is.

3 Methods

3.1 Theoretical foundation

3.1.1 Weighted RMSD
Let a molecule be defined by N atoms at positions A = {ai}N with
coordinates ai = {xi, yi, zi}T and associated weights w = {wi}N .
Given two sets of N points, A and A′, of respective coordinates {ai}N
and {a′i}N , describing two conformations of a molecule, we can define
the weighted RMSD between them as

RMSD(A,A′)2 =
1

W

∑
i

wi

∣∣ai − a′i
∣∣2 , (1)

where W =
∑

i wi. Statistical weights {wi}N may emphasize the
importance of a certain part of the structure, for example in case of a
protein, the backbone or the side chains. More commonly, these weights
will be equal to the atomic masses (in this caseW equals to the total mass
of the molecule) or may be set to 1 (in this case W = N ).

3.1.2 Quaternion arithmetic
A quaternion Q can be represented as a combination of a scalar s with a
3-component vector q = {qx, qy , qz}T , Q = [s,q]. This is a compact
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representation of a spatial transformation operator, particularly suited for
rotations. For example, a rotation operator can be described with a rotation
quaternion Q̂, which has a unit norm. Generally, quaternion algebra defines
multiplication, division, inversion and norm, among other operations. A
short summary of quaternion arithmetics can be found in our previous
paper (Popov and Grudinin, 2014).

3.1.3 The rigid-body motion case
Here we summarize the principal result of our previous work (Popov
and Grudinin, 2014). Let us assume that a molecule A with coordinates
ai = {xi, yi, zi}T is translated and rotated to new positions A′ =

{a′i}N , which are given as a′i = Rai + T. Here R is the 3 × 3

rotation matrix and T is the translation 3-vector. It is convenient to
use the quaternion representation Q = [s,q] of the rotation matrix R.
Then, the weighted RMSD betweenA, the original positions, andA′, the
transformed positions, can be written according to Eq. 4 from (Popov and
Grudinin, 2014) as

RMSD2 = T2 +
4

W
qT Iq+ 2TT (R−E3)C, (2)

with E3 being the 3 × 3 identity matrix, C the center of mass
1
W
{
∑
wixi,

∑
wiyi,

∑
wizi}T and I the inertia tensor:

I =


∑
wi(y

2
i + z2i ) −

∑
wixiyi −

∑
wixizi

−
∑
wixiyi

∑
wi(x

2
i + z2i ) −

∑
wiyizi

−
∑
wixizi −

∑
wiyizi

∑
wi(x

2
i + y2i )

 . (3)

We should mention that it is practical to work in the center-of-mass
reference frame where C = 0.

Thus, in this frame the RMSD can be expressed with fewer arithmetic
operations as

RMSD2 = T2
COM +

4

W
qT ICOMq. (4)

3.1.4 RMSD for flexible molecules modeled with collective motions
We extend our previous work (Popov and Grudinin, 2014) by adding
molecular flexibility via linear collective motions. These can be computed
using, for example, the normal mode analysis or the principal component
analysis techniques. More precisely, let {f ji }

M
N be a set of M vectors

that describe the linear collective motions applied to a molecule, where
f ji = {fjix, f

j
iy , f

j
iz}

T . Let i be the atom index ranging from 1 to N ,
and j be the index of the collective motions ranging from 1 to M . Let
{µj}M be the amplitudes of the collective motions for the reference
conformation of the molecule. Then the reference flexible coordinates
AF = {aF

i }N are given asaF
i = ai+

∑M
j=1 µ

jf ji . Now, to compute the

flexible coordinates of the target conformation A
′F , we first add flexible

displacements to the rigid coordinates of the reference conformation and
then apply to the result the rigid-body transformation. Let {λj}M be
the amplitudes of the collective motions for the target conformation of
the molecule, where the collective motion vectors are the same as in
the reference conformation. Similarly to the rigid-body case, let R and
T be the rotation matrix and the translation vector of the target rigid-
body transformation, respectively, so that the flexible target coordinates
{a′F

i }N are given as a
′F
i = R

(
ai +

∑M
j=1 λ

jf ji

)
+ T. Then, the

weighted RMSD between positions AF and A
′F is given as

RMSD2(AF , A
′F ) =

1

W

∑
i

wi

∣∣∣∣∣∣ai +
∑
j

µjf ji −R

ai +
∑
j

λjf ji

−T

∣∣∣∣∣∣
2

.

(5)
We can rewrite the previous expression using the quaternion representation
of vectors ai, T, and the rotation matrix R as

RMSD2 =
1

W

∑
i

wi

∣∣∣∣∣∣[0,ai +
∑
j

µjf ji ]− Q̂[0,ai +
∑
j

λjf ji ]Q̂
−1 − [0,T]

∣∣∣∣∣∣
2

.

(6)
Here, the unit quaternion Q̂ corresponds to the rotation matrixR. Since the
norm of a quaternion does not change if we multiply it by a unit quaternion,
we may right-multiply the kernel of the previous expression by Q̂ to obtain

RMSD2 =
1

W

∑
i

wi

∣∣∣∣∣∣[0,ai +
∑
j

µjf ji ]Q̂− Q̂[0, ai +
∑
j

λjf ji ]− [0,T]Q̂

∣∣∣∣∣∣
2

.

(7)
Using the scalar–vector representation of a quaternion, Q̂ = [s,q], we
rewrite the previous RMSD expression as

RMSD2 =
1

W

∑
i

wi

q ·
T+

∑
j

λjf ji −
∑
j

µjf ji


−s

T+
∑
j

λjf ji −
∑
j

µjf ji



+ (2ai − T +
∑
j

µjf ji +
∑
j

λjf ji )× q

2

(8)

Performing scalar and vector products in Eq. (8), then grouping the
terms that depend on atomic positions together, and after introducing the
inertia tensor I, the center of mass vector C and reintroducing the rotation
matrix R, we obtain

RMSD2 =T2 +
4

W
qT Iq+ 2TT (R−E3)C

−2
∑
j

µjTTBj +
∑
jk

µjµkTr
(
Fjk

)
−2
∑
j

µjTr
(
(R−E3)

T Dj
)

+2
∑
j

λjTTRBj +
∑
jk

λjλkTr
(
Fjk

)
−2
∑
j

λjTr
(
(R−E3)D

j
)
− 2

∑
j

∑
k

λjµkTr
(
RFjk

)
.

(9)

RMSD2 = 1
W

∑
i wi

[
q ·
(
T+

∑
j λ

jf ji −
∑

j µ
jf ji

)
− s

(
T+

∑
j λ

jf ji −
∑

j µ
jf ji

)
+ (2ai − T +

∑
j µ

jf ji +
∑

j λ
jf ji )× q

]2 (10)

Here, Tr() is the matrix trace operator, Dj is the set of M 3 × 3

matrices of cross-products

Dj =
1

W


∑
wixif

j
ix

∑
wiyif

j
ix

∑
wizif

j
ix∑

wixif
j
iy

∑
wiyif

j
iy

∑
wizif

j
iy∑

wixif
j
iz

∑
wiyif

j
iz

∑
wizif

j
iz

 , (11)

Fjk is the set of M2 3× 3 matrices of cross-products

Fjk =
1

W


∑
wif

k
ixf

j
ix

∑
wif

k
iyf

j
ix

∑
wif

k
izf

j
ix∑

wif
k
ixf

j
iy

∑
wif

k
iyf

j
iy

∑
wif

k
izf

j
iy∑

wif
k
ixf

j
iz

∑
wif

k
iyf

j
iz

∑
wif

k
izf

j
iz

 , (12)
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and Bj = 1
W

{∑
wif

j
ix,
∑
wif

j
iy ,
∑
wif

j
iz

}T
are the centers of the

collective motions. Again, it is practical to choose the reference frame of
the target molecule such that C = 0. Also, commonly used collective
motions, e.g. those computed using the normal mode analysis or the
principal component analysis, possess the weight-orthonormality property,
i.e., Tr

(
Fjk

)
= δjk/W . From now on, we will consider only this type

of motions. Thus, in this case, the RMSD equation simplifies to

RMSD2 =T2 +
4

W
qT Iq+

1

W

∑
j

(
µj

2
+ λj

2
)

−2
∑
j

µjTTBj − 2
∑
j

µjTr
(
(R−E3)

T Dj
)

+2
∑
j

λjTTRBj − 2
∑
j

λjTr
(
(R−E3)D

j
)

−2
∑
jk

λjµkTr
(
RFjk

)
.

(13)

Equation (13) is our master RMSD equation and the principal result
of this work. It consists of the rigid contribution T2 + 4

W
qT Iq, the

flexible contribution 1
W

∑
j

(
µj

2
+ λj

2
)

, and the cross–terms. Once

the matrices and vectors I, Bj , Dj , and Fjk that depend on the number
of atoms and on the number of collective motions are computed, the
calculation of RMSD takes time independent of the number of atoms and
is at most quadratic with the number of collective motions. Below we will
explicitly consider several special cases of simplified motions that also
simplify the master equation (13) and reduce its computational cost.

3.1.5 RMSD corresponding to a rigid reference conformation
A practical consequence of the master equation (13) is the expression of
RMSD for a flexible target conformation with respect to a rigid reference
conformation. In this case, all the amplitudes of the collective motions for
the reference conformation {µj}M are zero, and the RMSD expression
reduces to

RMSD2 =T2 +
4

W
qT Iq+

1

W

∑
j

λj
2

+2
∑
j

λjTTRBj − 2
∑
j

λjTr
(
(R−E3)D

j
)
.

(14)

In this case, the calculation of one RMSD takes linear time with the number
of collective motions M .

3.1.6 RMSD corresponding to a pure flexible motion
When studying only flexible movements of a molecule, which can be the
case when refining the docking poses or when generating pseudo-random
structural ensembles, the master equation (13) reduces to

RMSD2 =
1

W

∑
j

(
µj − λj

)2
. (15)

Indeed, in this case, the rotation matrix R is identity and the translation
vectorT is zero. Thus, the RMSD expression becomes linear in the number
of collective motions M .

3.1.7 RMSD corresponding to the relative rigid-body motion
The RMSD master equation (13) can be also adapted for the particularly
useful clustering application case. Here, one compares two possible target
conformations, for which the transformation operators are defined with
respect to the original reference conformation. Let A = {ai}N define
the reference coordinates and A1 = {a(1)

i }N and A2 = {a(2)
i }N be

the two target conformations we want to compare. Let set {λj}M define
the collective motion amplitudes ofA1, and set {µj}M define the ones of
A2. Let also R1 and T1 describe the rigid-body transformation applied to
A to obtainA1, and R2 and T2 be the rigid-body transformation applied
to A to obtain A2. Finally, let a unit quaternion [s12,q12] correspond
to the relative rotation R12 ≡ RT

2 R1 and let the relative translation be
T12 ≡ RT

1 (T2 −T1). Then, the weighted RMSD between A1 andA2

is given by a generalized version of the master equation (13) as

RMSD2 =(T2 −T1)
2 +

4

W
qT
12Iq12 +

1

W

∑
j

(
µj

2
+ λj

2
)

−2
∑
j

µjTT
12B

j − 2
∑
j

µjTr
(
(Rr −E3)

T Dj
)

+2
∑
j

λjTT
12R12B

j − 2
∑
j

λjTr
(
(R12 −E3)D

j
)

−2
∑
jk

λjµkTr
(
R12F

jk
)
.

(16)

3.2 Algorithm Implementation

3.2.1 Computational considerations
In the above equations (9–16) two variables depend solely on the atomic
positions of the reference molecular structure: the inertia tensor I and the
center of mass vector C, whereas matrices Fij and vectors Bj depend
solely on the collective motion vectors, and matrices Dj depend both on
the atomic positions of the reference structure and the motion vectors.
Therefore, given a set ofD spatial transformations, we can compute these
variables only once at the beginning and define this as the initialization
step. The computational complexity of this step is linear inN , the number
of atoms in the molecule, and quadratic in M , the number of collective
motion vectors.

Following this initialization, each RMSD computation takes linear
or quadratic time in the number of collective motions M , depending
on whether the reference molecule is rigid or flexible. The total cost to
computeD RMSD values for a molecule withN atoms andM collective
motion vectors thus will be at mostO(N+DM2), which is typically much
smaller compared to the cost of standard algorithms,O(DN), particularly
at large values of D and N with M2 usually smaller than N .

3.2.2 Numerical tests
The complexity of the different algorithms presented in the paper are based
on the arithmetic operations appearing in the equations. The effective
computational cost will depend on a particular hardware architecture.
However, we can focus on the speed-up ratio, which must be reproducible
on different computers and/or with different compilers. In the following
section, we implemented the tests using the C++ programming language
and compiled them using the clang++ compiler version 6.0. We ran the
tests on a 64-bit MacOs operating system with a 2,6 GHz Intel Core i7
processor.

3.3 Results and Discussion

This section presents numerical tests with several practical applications
of the equations derived above. One of the practical ways to compute
collective motions for molecular systems is the NMA. In all the
demonstrations below we will use the NOLB NMA approach to compute
some number of the lowest-frequency linear normal modes (Hoffmann and
Grudinin, 2017). This is a particularly efficient implementation of NMA,
if only a few normal modes are required. Please see SI for more details.
For the docking test cases we have chosen some examples from the Protein
Docking Benchmark v5 (Vreven et al., 2015). This benchmark lists protein
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Fig. 1. Transitions between the unbound (u) and bound (b) states of proteins from the Protein Docking Benchmark v5 (Vreven et al., 2015). The top x-axis shows Cα RMSD between the
two states. The bottom x-axis lists the corresponding PDB codes of the complexes. The left plot shows the receptors, and the right plot shows the ligands, as labelled by the authors of the
benchmark. Only structures with u-b RMSD≥ 2 Å are shown. The y-axis shows the relative u-b transition that can be predicted using the optimal linear combination of some number of
normal modes. Results for the range between 1 and 20 are shown in different colors (see the colorbar at the right). These computations were done using the NOLB NMA method (Hoffmann
and Grudinin, 2017), please see SI for more details.

complexes in two states, bound (b) and unbound (u). Figure 1 shows how
well lowest-frequency normal modes can predict the u-b transitions. As
we can see, in some cases just a few modes are sufficient to describe more
than 50% of structural transitions. However, on average, the 10 lowest
modes contribute to about 32% of the u-b transitions.

We selected three complexes for our docking experiments, 1ibr (4811
atoms), 1zli (2984 atoms), and 2i9b (2998 atoms). All these are classified
as highly flexible and as difficult targets. To represent the flexibility of the
docking partners, we used 2 normal modes for the ligand in 1ibr, 5 for the
ligand and the receptor in 2i9b, and 6 for the ligand in 1zli. We should
also mention that we constrained the amplitudes of the modes so that the
RMSD induced by the conformational changes of each partner does not
exceed 3 Å for the 1ibr ligand, 2 Å for the 2i9b ligand, 4 Å for the 2i9b
receptor, and 3.9 Å for the 1zli ligand.

3.3.1 Flexible docking using collective motions
Our first application will be a clustering algorithm that illustrates the
utilization of the derived equations (16). Clustering algorithms are
particularly useful in molecular docking, where similar putative binding
poses are often grouped together. The goal of clustering is to reduce a
large list of possibly redundant docking solutions to a smaller list of
clusters, which can also be used as indicators of binding sites at the
first stage of the docking pipeline. Most of the docking algorithms use
pair-wise RMSD between the docking poses as the similarity metric for
clustering (Kozakov et al., 2005; Ritchie and Kemp, 2000; Chen et al.,
2003). For these types of applications our algorithm proves to be especially
time-efficient since many computations of RMSD are to be performed
on the same set of atoms. In our previous work we demonstrated the
efficiency of the RigidRMSD library for the clustering docking poses
of molecular complexes corresponding to rigid-body transformations.
However, many docking tools, e.g. SwarmDock (Moal and Bates, 2010),
ATTRACT (Fiorucci and Zacharias, 2010), EigenHex (Venkatraman and
Ritchie, 2012) , HingeProt (Emekli et al., 2008), FlexDock (Schneidman-
Duhovny et al., 2007), FiberDock (Maschiach et al., 2010), etc., use
collective motions in order to take into account global flexibility of a
molecule. Generally, computational docking of flexible molecules can
be performed in many different ways. More precisely, flexibility can be
introduced implicitly in soft docking approaches (Palma et al., 2000;

Heifetz and Eisenstein, 2003) or ensemble docking (Grünberg et al.,
2004; Zavodszky et al., 2004), as well as explicitly, by rotating the side
chains, or using the molecular dynamics (Dominguez et al., 2003). More
often, however, large conformational changes are approximated with low-
frequency collective motions (Fiorucci and Zacharias, 2010; Moal and
Bates, 2010; Venkatraman and Ritchie, 2012; May and Zacharias, 2008).
The latter can be computed, e.g., using all-atom force fields (Hinsen, 2000)
or in a simpler way using, e.g., the elastic-network model (Tirion, 1996) or
the Gaussian network model (Bahar et al., 1997), both often combined with
the rotation-translation of blocks method to reduce the dimensionality of
the problem (Tama et al., 2000; Hoffmann and Grudinin, 2017), etc. These
motions describe equilibrium vibrations of a molecule and are selected
using PCA or NMA by the diagonalization of the corresponding covariance
or Hessian interaction matrices, respectively. Below, we demonstrate the
use of our extended RMSD library for clustering of flexible docking poses
using collective motions.

3.3.2 Clustering of randomly generated proteins
To test the efficiency of our algorithm, we first applied it to the clustering
of artificially generated flexible molecular docking poses. The reference
molecule is described with a 3N -vector for the positions of the atoms and
M orthogonal 3N -vectors for the directions of the collective motions.
To construct the rigid-body deformations, we then randomly generatedD
rigid-body transforms with the translation vector ranging from 0 to 100

Å, and randomly chose the rotations with a unit quaternion. To model
molecular flexibility, we also randomly generated D ×M amplitudes of
flexible deformations in the range of {0; 100}.

We implemented the standard RMSD-based clustering algorithm
which consists in the following steps. First, a docking prediction with
the best score (yet unassigned to any cluster) is taken as the seed for the
new cluster. Second, the pair-wise RMSDs between the seed and all other
predictions unassigned to any cluster are measured. Third, predictions with
the RMSD from the seed lower than a certain threshold are assigned to the
current cluster. These steps are repeated until all docking predictions are
assigned to the corresponding clusters.
The worst-case complexity of this algorithm is achieved when all clusters
have unit size, i.e. there are no similar predictions and thus we result inD
clusters. In this case, D2 RMSDs have to be computed. Conversely, the
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Fig. 2. Speed-up of the (i) fast RMSD method compared to the (ii) standard one (given
as time(ii)/time(i)) as a function of the number of collective motion vectors in log-scale.
Different curves correspond to a different number of atoms in the reference molecule.

best-case complexity is achieved when all docking predictions are similar
and form a single cluster, which leads toD computations of RMSD. Thus,
the number of RMSDs that are to be computed ranges from D to D2.
In order to evaluate the efficiency of our fast RMSD calculation method,
we ran clustering tests for D = 103 docking candidates with various
values ofN andM parameters, precisely, N ∈ {103, 5× 103, 104, 2×
104, 5 × 104, 105}, M ∈ {5, 10, 20, 30, 40, 50}. It is worth noting
that, typically, flexible docking methods use very few (e.g. 20) collective
motions to describe molecular flexibility (Moal and Bates, 2010; Fiorucci
and Zacharias, 2010; Schneidman-Duhovny et al., 2007). We adjusted the
threshold RMSD to 120 Å to get a nearly uniform clustering case with
approximately 28 clusters. For each of the randomly generated molecules
we also randomly generated rigid and flexible deformations and grouped
the obtained docking candidates with the described clustering algorithm
using (i) the fast RMSD calculation based on the generalised master
equation (Eq. 16), and (ii) the standard method (Eq. 5).

To analyze the results, we computed the speed-up of the fast method
as a function to the number of collective motion vectors and the number of
atoms in the reference molecule. The speed-up was computed by dividing
the computational time of the standard algorithm by the computational
time of the fast one. Figure 2 shows the speed-up, i.e. time(ii)/time(i) as a
function of the number of collective motion vectors in log-scale. Different
curves correspond to different number of atoms in the reference molecule.
We observe the same general behavior for all the curves, namely, the
speed-up is linear with the number of atoms in the reference molecule.

We should make an important remark regarding the fast algorithm.
It becomes practically useful when N � M2. In our experiments, this
assumption does not hold in a few cases, for example when we have as few
as 1,000 atoms and more than 30 collective motion vectors. However, the
fast algorithm shows a significant speed-up for molecules of ten thousand
of atoms and more. As we have mentioned previously, 20 lowest-frequency
collective motions often provide a rather accurate description of protein
flexibility at equilibrium (Moal and Bates, 2010). In this particular case,
we achieve a speed-up of about 500 for a protein with a hundred thousands
of atoms. For most common protein examples, the expected speed-up will
be in the order of 10 to 100.

3.3.3 Rapid clustering in a flexible docking method
The second clustering experiment is an illustration of the application of
RapidRMSD to a real flexible docking algorithm. We predicted docking
poses using both standard and RapidRMSD clustering methods and
compared the computational cost on a realistic run. We will briefly mention
the quality of the best found conformations and the total timings of
the docking experiments. Details about the flexible docking algorithm
can be found in SI, since it is not the main focus of the current study.

Example Standard time RapidRMSD time L-RMSD I-RMSD
1ibr 393 s 335 s 7.5 Å 3.3 Å
1zli 461 s 117 s 12.1 Å 5.3 Å
2i9b 314 s 184 s 7.9 Å 3.6 Å

Table 1. Flexible docking of three difficult targets. Columns 2 and 3 present
a comparison of two clustering methods, the standard one, and the rapid one.
Timings are given in seconds for a MacBook Pro laptop. Columns 4 and 5
present the best clusters found by flexible docking method.

Briefly, we used an implementation of a genetic algorithm (NSGA-II) (Deb
et al., 2002), designed for a multi-objective optimization. The objective
function was a sum of a knowledge-based interaction energy between the
docking partners (Popov and Grudinin, 2015) and the energy of the flexible
deformation. Starting from a randomly initialized population, we end up
with a final population state, which was a subject to clustering.

Concerning the RapidRMSD library, we first initialize it when reading
the input structures, and we apply it for the clustering at the end of the
genetic search. After 100 iterations of 1000 genetic individuals, for the
1ibr example, 4213 solutions remained and these were grouped into 707
clusters. For the 1zli example, 4161 solutions remained and were grouped
into 1167 clusters. Finally, for the 2i9b example, 4687 solutions were
grouped in 1424 clusters.

Let us first compare the computational cost of the RapidRMSD and
the standard clustering algorithms. Table 1 lists the computational time
required for the fast and the standard clustering (in seconds) for the 3 given
examples. The RapidRMSD cost includes the initialization step plus the
clustering time, whereas the standard cost is given only for the clustering.
RapidRMSD is faster than the standard algorithm while giving exactly the
same results. On the 1zli example, we have gained about 6 minutes. If we
increase the number of iterations or the number of the populations, or if we
make several runs of predictions, the benefit will be even more significant.
As the tested systems are relatively small, the observed clustering speed-up
is lower than in the previous example.

Regarding the accuracy of the predictions, from the list of found
clusters we could select a few ones with a low ligand-RMSD (L-
RMSD) and interface-RMSD (I-RMSD) values to the known solution.
For example, for the 1ibr example, the best cluster has L-RMSD of 7.5 Å
and I-RMSD of 3.3 Å. Table 1 lists results for all the examples. These can
be classified as acceptable-quality predictions, which is a good result for
highly flexible proteins.

3.3.4 Clustering of MD trajectories
Finally, using Equation 15 we constructed a fast clustering method for
the analysis of MD trajectories. More precisely, we aligned the trajectory
frames and projected them into the firstM principal components extracted
from the covariance matrix of the trajectory. Then, we implemented the
clustering method described above. We tested its performance on an MD
trajectory of lysozyme (1960 atoms) consisting of 10,000 frames andM =

10 PCA components. When the number of clusters was small compared
to the length of the trajectory, the speed-up of the fast clustering method
compared to the standard one was about 40. It would have been even more
significant for larger proteins. However, when the number of clusters was
about the length of the trajectory, the fast clustering method performed
slower compared to the naive clustering method because of additional
computations of the covariance matrix and the principal components. We
added the fast clustering method into the NOLB NMA package (Hoffmann
and Grudinin, 2017). Please see SI for more information.
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3.3.5 Generation of pseudo-random structural ensembles
Another application of our method is the generation of pseudo-random
structural ensembles along a few lowest vibration modes. These structural
ensembles can be useful to describe molecular fluctuations at a constant
temperature (Dobbins et al., 2008; Kovacs et al., 2004), to create inputs
for cross-docking algorithms (Cavasotto et al., 2005; Mustard and Ritchie,
2005) or be used in machine-learning applications to mimic non-native
docking poses (Popov and Grudinin, 2015; Rupp et al., 2015; Smith et al.,
2017). In this case, Equation 15 provides a straightforward way to adjust
the amplitudes of a flexible deformation that would result in a given RMSD
value. More precisely, in this application the amplitudes for the reference
conformation {µj}M are set to zero, and one only randomly selects a
set of target deformation amplitudes {λj}M . Then, these are scaled with
a factor s to produce the desired value of RMSD d, where the scaling

factor is adjusted according to Eq. 15 as s = d
√
W/
√∑

j (λ
j)2. An

implementation of this approach can be found inside the NOLB NMA
method (Hoffmann and Grudinin, 2017).

3.3.6 Cross-docking with pseudo-random structural ensembles
To further demonstrate the practical applications of the pseudo-random
structural ensembles, we have performed cross-docking studies of the
selected protein complexes. First, we have generated random constant-
RMSD docking partners, as it is described in SI. Then, we used Hex 8
rigid-body docking package (Ritchie and Kemp, 2000) to exhaustively
dock all the generated docking partners. For the 1ibr example, Hex did
not find acceptable docking solutions (with the ligand-RMSD< 10 Å) for
the initial docking setup of the bound receptor and the unbound ligand.
However, among all the cross-docking experiments (100 in total), Hex
could find acceptable solutions in 43 runs with the best solution rank of 10,
and the total number of 603 hits. Moreover, in 3 runs it could find average-
quality solutions (with the ligand-RMSD< 5 Å) with the best solution rank
of 56, and the total number of 48 hits. For the 1zli example, Hex found
17 acceptable docking solutions for the initial docking setup of the bound
receptor and the unbound ligand. The best rank of the hit was 23. Among
all the cross-docking experiments (100 in total), Hex could find acceptable
solutions in 66 runs. Multiple runs had the best solution rank of 1, and the
total number of hits was 1635. Also, in 4 runs it could find average-quality
solutions with the best solution rank of 40, and the total number of 17
hits. Finally, for the 2i9b example, Hex did not find acceptable docking
solutions for the initial docking setup of the unbound receptor and ligand.
However, among all the cross-docking runs (2400 in total), Hex could find
acceptable solutions in 36 runs with the best solution rank of 7, and the
total number of 211 hits. Moreover, in 2 runs it could find average-quality
solutions (with the ligand-RMSD < 5 Å) with the best solution rank of
243, and the total number of 4 hits. This example clearly demonstrates that
it is possible to enrich the number of hits for the subsequent rescoring even
for very challenging flexible docking cases. However, a more sophisticated
scoring function should be used when selecting hits during the rescoring
stage.

4 Conclusion
We presented a fast and efficient algorithm that computes the RMSD
between flexible molecules with the flexibility modeled by means of
collective motions. These motions can be computed with the normal
mode or principal component analyses and only a few lowest-frequency
components are very often sufficient to describe the global flexibility of
a molecule. Given this, our algorithm is much faster compared to the
standard RMSD computation for the large-scale modeling applications.
We implemented the algorithm as an open-source C++ library, called
RapidRMSD, which now includes both rigid-body and flexible cases. We

demonstrated the superiority of RapidRMSD compared to the standard
RMSD computation on several clustering examples. We also proved that
the analytical equations derived in this work can be used for the generation
of a set of pseudo-random molecular structures with a constant RMSD
from a reference molecule and that these sets can be used in cross-docking
calculations. RapidRMSD is available at https://team.inria.fr/
nano-d/software/RapidRMSD/ or by request from the authors and
the constant-RMSD structural ensemble application is available as a part
of the NOLB NMA approach athttp://team.inria.fr/nano-d/
software/nolb-normal-modes/.
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