A. Hoffmann and S. Grudinin, NOLB: Nonlinear Rigid Block Normal-Mode Analysis Method, Journal of Chemical Theory and Computation, vol.13, issue.5, pp.2123-2134, 2017.
DOI : 10.1021/acs.jctc.7b00197

URL : https://hal.archives-ouvertes.fr/hal-01505843

P. Durand, G. Trinquier, and Y. H. Sanejouand, A new approach for determining low-frequency normal modes in macromolecules, Biopolymers, vol.81, issue.6, pp.759-771, 1994.
DOI : 10.1299/jsme1958.27.529

F. Tama, F. X. Gadea, O. Marques, and Y. Sanejouand, Building-block approach for determining low-frequency normal modes of macromolecules, Proteins: Structure, Function, and Genetics, vol.77, issue.1, pp.1-7, 2000.
DOI : 10.1016/S0764-4469(97)85008-1

W. David, G. Ritchie, and . Kemp, Protein docking using spherical polar fourier correlations, Proteins: Struct., Funct., Bioinf, vol.39, issue.2, pp.178-194, 2000.

D. W. Ritchie, D. Kozakov, and S. Vajda, Accelerating and focusing protein-protein docking correlations using multi-dimensional rotational FFT generating functions, Bioinformatics, vol.347, issue.5, pp.1865-1873, 2008.
DOI : 10.1016/j.jmb.2005.01.058

URL : https://hal.archives-ouvertes.fr/inria-00434264

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, vol.6, issue.2, pp.182-197, 2002.
DOI : 10.1109/4235.996017

P. Popov and S. Grudinin, Knowledge of Native Protein???Protein Interfaces Is Sufficient To Construct Predictive Models for the Selection of Binding Candidates, Journal of Chemical Information and Modeling, vol.55, issue.10, pp.552242-2255, 2015.
DOI : 10.1021/acs.jcim.5b00372

URL : https://hal.archives-ouvertes.fr/hal-01229886

E. Neveu, D. W. Ritchie, P. Popov, and S. Grudinin, PEPSI-Dock: a detailed data-driven protein???protein interaction potential accelerated by polar Fourier correlation, Bioinformatics, vol.62, issue.17, pp.32-693, 2016.
DOI : 10.1021/ci400120b

URL : https://hal.archives-ouvertes.fr/hal-01358645

. Jmetalcpp, Optimizing molecular docking problems with a C++ metaheuristic framework, Bioinformatics, vol.30, issue.3, pp.437-438, 2014.