A. F. Frangi, W. J. Niessen, and M. A. Viergever, Three-dimensional modeling for functional analysis of cardiac images, a review, IEEE Transactions on Medical Imaging, vol.20, issue.1, pp.2-5, 2001.
DOI : 10.1109/42.906421

H. Wang and A. A. Amini, Cardiac Motion and Deformation Recovery From MRI: A Review, IEEE Transactions on Medical Imaging, vol.31, issue.2, pp.487-503, 2012.
DOI : 10.1109/TMI.2011.2171706

A. Suinesiaputra, P. Ablin, and X. Alba, Statistical Shape Modeling of the Left Ventricle: Myocardial Infarct Classification Challenge, IEEE Journal of Biomedical and Health Informatics, vol.22, issue.2, pp.1-1, 2017.
DOI : 10.1109/JBHI.2017.2652449

URL : https://hal.archives-ouvertes.fr/hal-01533805

S. Ardekania, S. Jain, and A. Sanzi, Shape analysis of hypertrophic and hypertensive heart disease using MRI-based 3D surface models of left ventricular geometry, Medical Image Analysis, vol.29, pp.12-23, 2016.
DOI : 10.1016/j.media.2015.11.004

P. Medrano-gracia, B. R. Cowan, A. Suinesiaputra, and A. A. Young, Atlas-based anatomical modeling and analysis of heart disease, Drug Discovery Today: Disease Models, vol.14, pp.33-39, 2014.
DOI : 10.1016/j.ddmod.2014.05.002

URL : http://europepmc.org/articles/pmc4681401?pdf=render

L. Tautz, A. Hennemuth, and H. Peitgen, Motion Analysis with Quadrature Filter Based Registration of Tagged MRI Sequences, Proc. STACOM MICCAI Workshop, ser, 2011.
DOI : 10.1109/TITB.2010.2040114

T. Mansi, X. Pennec, M. Sermesant, H. Delingette, and N. Ayache, iLogDemons: A Demons-Based Registration Algorithm for??Tracking Incompressible Elastic Biological Tissues, International Journal of Computer Vision, vol.28, issue.12, pp.92-111, 2011.
DOI : 10.1109/TMI.2009.2025654

URL : https://hal.archives-ouvertes.fr/inria-00616187

R. Chandrashekara, R. Mohiaddin, and D. Rueckert, Cardiac motion tracking in tagged mr images using a 4D B-spline motion model and nonrigid image registration, 2004 2nd IEEE International Symposium on Biomedical Imaging: Macro to Nano (IEEE Cat No. 04EX821), pp.468-471, 2004.
DOI : 10.1109/ISBI.2004.1398576

W. Shi, X. Zhuang, H. Wang, S. Duckett, D. V. Luong et al., A comprehensive cardiac motion estimation framework using both untagged and 3D tagged MR images based on nonrigid registration, IEEE Trans. Med. Imaging, vol.31, issue.6, pp.1263-1275, 2012.

B. Heyde, D. Barbosa, P. Claus, F. Maes, and J. D-'hooge, Threedimensional cardiac motion estimation based on non-rigid image registration using a novel transformation model adapted to the heart, Proc. STACOM MICCAI Workshop, ser, 2012.
DOI : 10.1007/978-3-642-36961-2_17

M. De-craene, C. Tobon-gomez, C. Butakoff, N. Duchateau, G. Piella et al., Temporal Diffeomorphic Free Form Deformation (TDFFD) Applied to Motion and Deformation Quantification of Tagged MRI Sequences, Proc. STACOM MICCAI Workshop, ser, 2011.
DOI : 10.1112/plms/s3-13.1.743

W. Zhang, J. Noble, and J. Brady, Spatio-temporal registration of real time 3D ultrasound to cardiovascular MR sequences Medical Image Computing and Computer-Assisted Intervention?MICCAI, pp.343-350, 2007.
DOI : 10.1007/978-3-540-75757-3_42

M. S. Hansen, S. S. Thorup, and S. K. Warfield, Polyaffine parametrization of image registration based on geodesic flows, 2012 IEEE Workshop on Mathematical Methods in Biomedical Image Analysis, pp.289-295, 2012.
DOI : 10.1109/MMBIA.2012.6164768

URL : http://orbit.dtu.dk/en/publications/polyaffine-parametrization-of-image-registration-based-on-geodesic-flows(7b94947b-b91c-4d31-ac3b-30dde7c2e419).html

K. Mcleod, M. Sermesant, P. Beerbaum, and X. Pennec, Spatiotemporal tensor decomposition of a polyaffine motion model for a better analysis of pathological left ventricular dynamics, IEEE Transactions on Medical Imaging, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01205342

K. Mcleod, M. Sermesant, P. Beerbaum, and X. Pennec, Descriptive and Intuitive Population-Based Cardiac Motion Analysis via Sparsity Constrained Tensor Decomposition, Medical Image Computing and Computer-Assisted Intervention?MICCAI 2015, pp.419-426, 2015.
DOI : 10.1007/978-3-319-24574-4_50

URL : https://hal.archives-ouvertes.fr/hal-01205535

W. Bai, D. Peressutti, O. Oktay, W. Shi, D. P. Oregan et al., Learning a Global Descriptor of Cardiac Motion from a Large Cohort of 1000+ Normal Subjects, International Conference on Functional Imaging and Modeling of the Heart, pp.3-11, 2015.
DOI : 10.1007/978-3-319-20309-6_1

T. Kuznetsova, L. Thijs, J. Knez, N. Cauwenberghs, T. Petit et al., Longitudinal Changes in Left Ventricular Diastolic Function in a General Population, Circulation: Cardiovascular Imaging, vol.8, issue.4, p.2882, 2015.
DOI : 10.1161/CIRCIMAGING.114.002882

URL : http://circimaging.ahajournals.org/content/circcvim/8/4/e002882.full.pdf

O. Savu, R. Jurcut, S. Giusca, T. Van-mieghem, I. Gussi et al., Morphological and Functional Adaptation of the Maternal Heart During Pregnancy, Circulation: Cardiovascular Imaging, vol.5, issue.3, p.111, 2012.
DOI : 10.1161/CIRCIMAGING.111.970012

URL : http://circimaging.ahajournals.org/content/circcvim/5/3/289.full.pdf

A. Hallbergson, K. Gauvreau, A. J. Powell, and T. Geva, Right Ventricular Remodeling After Pulmonary Valve Replacement: Early Gains, Late Losses, The Annals of Thoracic Surgery, vol.99, issue.2, pp.660-666, 2015.
DOI : 10.1016/j.athoracsur.2014.09.015

G. E. Assenza, D. Cassater, M. Landzberg, T. Geva, J. Schreier et al., The effects of pregnancy on right ventricular remodeling in women with repaired tetralogy of Fallot, International Journal of Cardiology, vol.168, issue.3, pp.1847-1852, 2013.
DOI : 10.1016/j.ijcard.2012.12.071

J. A. Cuypers, M. E. Menting, E. E. Konings, P. Opi´copi´c, E. M. Utens et al., Unnatural History of Tetralogy of Fallot: Prospective Follow-Up of 40 Years After Surgical Correction, Circulation, vol.130, issue.22, p.114, 2014.
DOI : 10.1161/CIRCULATIONAHA.114.009454

T. Mansi, I. Voigt, B. Leonardi, X. Pennec, S. Durrleman et al., A Statistical Model for Quantification and Prediction of Cardiac Remodelling: Application to Tetralogy of Fallot, IEEE Transactions on Medical Imaging, vol.30, issue.9, pp.1605-1616, 2011.
DOI : 10.1109/TMI.2011.2135375

URL : https://hal.archives-ouvertes.fr/inria-00616185

K. Mcleod, M. Sermesant, and X. Pennec, Improving Understanding of Long-Term Cardiac Functional Remodelling via Cross-Sectional Analysis of Polyaffine Motion Parameters, International Conference on Functional Imaging and Modeling of the Heart, pp.51-59, 2017.
DOI : 10.1148/radiol.2015150982

URL : https://hal.archives-ouvertes.fr/hal-01574837

N. Ablitt, J. Gao, J. Keegan, L. Stegger, D. N. Firmin et al., Predictive Cardiac Motion Modeling and Correction With Partial Least Squares Regression, IEEE Transactions on Medical Imaging, vol.23, issue.10, pp.1315-1324, 2004.
DOI : 10.1109/TMI.2004.834622

K. Lekadir, X. Albà, M. Pereañez, and A. F. Frangi, Statistical Shape Modeling Using Partial Least Squares: Application to the Assessment of Myocardial Infarction, Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges, pp.130-139, 2015.
DOI : 10.1093/bioinformatics/btr360

J. L. Bruse, K. Mcleod, G. Biglino, H. N. Ntsinjana, C. Capelli et al., A Non-parametric Statistical Shape Model for Assessment of the Surgically Repaired Aortic Arch in Coarctation of the Aorta: How Normal is Abnormal?, Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges, pp.21-29, 2015.
DOI : 10.1016/j.media.2014.01.001

URL : https://hal.archives-ouvertes.fr/hal-01205515

Y. Yu, J. Jin, F. Liu, and S. Crozier, Multidimensional Compressed Sensing MRI Using Tensor Decomposition-Based Sparsifying Transform, PLoS ONE, vol.6, issue.6, 2014.
DOI : 10.1371/journal.pone.0098441.g010

URL : https://doi.org/10.1371/journal.pone.0098441

R. Bro, Multiway calibration. Multilinear PLS, Journal of Chemometrics, vol.10, issue.1, pp.47-61, 1996.
DOI : 10.1002/(SICI)1099-128X(199601)10:1<47::AID-CEM400>3.0.CO;2-C

O. Commowick, V. Arsigny, A. Isambert, J. Costa, F. Dhermain et al., An efficient locally affine framework for the smooth registration of anatomical structures, Medical Image Analysis, vol.12, issue.4, pp.427-441, 2008.
DOI : 10.1016/j.media.2008.01.002

URL : https://hal.archives-ouvertes.fr/inria-00616074

V. Arsigny, O. Commowick, N. Ayache, and X. Pennec, A Fast and Log-Euclidean Polyaffine Framework for Locally Linear Registration, Journal of Mathematical Imaging and Vision, vol.8, issue.3, 2009.
DOI : 10.1016/S1361-8415(01)80026-8

URL : https://hal.archives-ouvertes.fr/inria-00616084

C. Seiler, X. Pennec, and M. Reyes, Capturing the multiscale anatomical shape variability with polyaffine transformation trees, Medical Image Analysis, vol.16, issue.7, pp.1371-1384, 2012.
DOI : 10.1016/j.media.2012.05.011

URL : https://hal.archives-ouvertes.fr/hal-00813866

K. Mcleod, C. Seiler, M. Sermesant, and X. Pennec, A nearincompressible poly-affine motion model for cardiac function analysis, Proc. STACOM MICCAI Workshop, ser, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00813852

K. Mcleod, C. Seiler, N. Toussaint, M. Sermesant, and X. Pennec, Regional Analysis of Left Ventricle Function Using a Cardiac-Specific Polyaffine Motion Model, Proc. FIMH'13, pp.483-490, 2013.
DOI : 10.1007/978-3-642-38899-6_57

URL : https://hal.archives-ouvertes.fr/hal-00840042

N. Toussaint, C. T. Stoeck, T. Schaeffter, S. Kozerke, M. Sermesant et al., In vivo human cardiac fibre architecture estimation using shape-based diffusion tensor processing Medical Image Analysis A bi-ventricular cardiac atlas built from 1000+ high resolution mr images of healthy subjects and an analysis of shape and motion, Medical image analysis, vol.26, issue.1, pp.1243-1255, 2013.

M. Lorenzi and X. Pennec, Efficient Parallel Transport of Deformations in Time Series of Images: From Schild???s to Pole Ladder, Journal of Mathematical Imaging and Vision, vol.28, issue.3, pp.5-17, 2014.
DOI : 10.1016/j.neuroimage.2006.01.015

P. Geladi and B. R. Kowalski, Partial least-squares regression: a tutorial, Analytica Chimica Acta, vol.185, pp.1-17, 1986.
DOI : 10.1016/0003-2670(86)80028-9

R. Rosipal and N. Krämer, Overview and recent advances in partial least squares, " in Subspace, latent structure and feature selection, pp.34-51, 2006.
DOI : 10.1007/11752790_2

H. Wold, Estimation of principal components and related models by iterative least squares, Multivariate analysis, vol.1, pp.391-420, 1966.

S. Jong, Simpls: an alternative approach to partial least squares regression Chemometrics and intelligent laboratory systems, pp.251-263, 1993.

R. Bro and A. K. Smilde, Centering and scaling in component analysis, Journal of Chemometrics, vol.40, issue.1, pp.16-33, 2003.
DOI : 10.1557/PROC-28-75

S. Durrleman, X. Pennec, A. Trouvé, and N. Ayache, Statistical models of sets of curves and surfaces based on currents, Medical Image Analysis, vol.13, issue.5, pp.793-808, 2009.
DOI : 10.1016/j.media.2009.07.007

URL : https://hal.archives-ouvertes.fr/hal-00816051

C. A. Andersson and R. Bro, The N-way Toolbox for MATLAB, Chemometrics and Intelligent Laboratory Systems, vol.52, issue.1, pp.1-4, 2000.
DOI : 10.1016/S0169-7439(00)00071-X

T. Hastie, R. Tibshirani, J. Friedman, and J. Franklin, The elements of statistical learning: data mining, inference and prediction, The Mathematical Intelligencer, vol.27, issue.2, pp.83-85, 2005.

M. Cerqueira, N. Weissman, V. Dilsizian, A. Jacobs, S. Kaul et al., Standardized Myocardial Segmentation and Nomenclature for Tomographic Imaging of the Heart, Journal of Cardiovascular Magnetic Resonance, vol.4, issue.2, 2002.
DOI : 10.1081/JCMR-120003946

K. Mcleod, C. Seiler, M. Sermesant, and X. Pennec, Spatio-temporal dimension reduction of cardiac motion for group-wise analysis and statistical testing, " in MICCAI -Medical Image Computing and Computer Assisted Intervention -2013, ser. Lecture Notes in Computer Science, 2013.

S. J. Qin and T. J. Mcavoy, Nonlinear PLS modeling using neural networks, Computers & Chemical Engineering, vol.16, issue.4, pp.379-391, 1992.
DOI : 10.1016/0098-1354(92)80055-E

Y. H. Bang, C. K. Yoo, and I. Lee, Nonlinear pls modeling with fuzzy inference system Chemometrics and intelligent laboratory systems, pp.137-155, 2002.
DOI : 10.1016/s0169-7439(02)00084-9

I. E. Frank, A nonlinear pls model Chemometrics and intelligent laboratory systems, pp.109-119, 1990.

S. Wold, Nonlinear partial least squares modelling II. Spline inner relation, Chemometrics and Intelligent Laboratory Systems, vol.14, issue.1-3, pp.71-84, 1992.
DOI : 10.1016/0169-7439(92)80093-J

K. Tøndel, U. G. Indahl, A. B. Gjuvsland, J. O. Vik, P. Hunter et al., Hierarchical Cluster-based Partial Least Squares Regression (HC-PLSR) is an efficient tool for metamodelling of nonlinear dynamic models, BMC Systems Biology, vol.5, issue.1, p.90, 2011.
DOI : 10.1109/34.765656

K. Tøndel, U. G. Indahl, A. B. Gjuvsland, S. W. Omholt, and H. Martens, Multi-way metamodelling facilitates insight into the complex input-output maps of nonlinear dynamic models, BMC Systems Biology, vol.6, issue.1, p.88, 2012.
DOI : 10.1016/S0169-7439(97)00032-4

J. Eng, R. L. Mcclelland, and A. S. Gomes, Adverse Left Ventricular Remodeling and Age Assessed with Cardiac MR Imaging: The Multi-Ethnic Study of Atherosclerosis, Radiology, vol.278, issue.3, p.714722, 2016.
DOI : 10.1148/radiol.2015150982

URL : http://europepmc.org/articles/pmc4770941?pdf=render