Storyboard-Based Empirical Modeling of Touch Interface Performance

Abstract : Touch interactions are now ubiquitous, but few tools are available to help designers quickly prototype touch interfaces and predict their performance. For rapid prototyping, most applications only support visual design. For predictive modelling, tools such as CogTool generate performance predictions but do not represent touch actions natively and do not allow exploration of different usage contexts. To combine the benefits of rapid visual design tools with underlying predictive models, we developed the Storyboard Empirical Modelling tool (StEM) for exploring and predicting user performance with touch interfaces. StEM provides performance models for mainstream touch actions, based on a large corpus of realistic data. Our tool provides new capabilities for exploring and predicting touch performance, even in the early stages of design. This is the demonstration of our accompanying paper.
Type de document :
Communication dans un congrès
CHI 2018 - ACM Conference on Human Factors in Computing Systems, Adjunct Proceedings, Apr 2018, Montreal, Canada. 2018, 〈https://chi2018.acm.org/〉. 〈10.1145/3170427.3186479〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01736699
Contributeur : Géry Casiez <>
Soumis le : lundi 19 mars 2018 - 11:45:27
Dernière modification le : mardi 3 juillet 2018 - 11:38:33

Fichier

demoStemCHI18.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Alix Goguey, Géry Casiez, Andy Cockburn, Carl Gutwin. Storyboard-Based Empirical Modeling of Touch Interface Performance. CHI 2018 - ACM Conference on Human Factors in Computing Systems, Adjunct Proceedings, Apr 2018, Montreal, Canada. 2018, 〈https://chi2018.acm.org/〉. 〈10.1145/3170427.3186479〉. 〈hal-01736699〉

Partager

Métriques

Consultations de la notice

110

Téléchargements de fichiers

19