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Abstract: This paper considers state-based opacity in a setting where attackers of a secret
have additional observation capacities allowing them to know which inputs are allowed by a
system. We show that regular opacity is decidable in this setting. We then address the question
of controlling a system so that it becomes opaque, and solve this question by recasting the
problem in a game setting.

1. INTRODUCTION

Language-based security properties, such as non-interference
or opacity, are a way to guarantee that a system fulfills
some privacy requirements. The original work of (Goguen
and Meseguer, 1982) is motivated by security issues: given
a set of confidential actions performed only by users with
high credentials, other users should not be able to infer
from their observation whether a “high” action has oc-
curred or not. The formal definition of non-interference
states that occurrences of high actions should not af-
fect what other users can see or do. Implicitly, this sup-
poses that users have capacities that allow them to check
whether some actions are feasible, and can also be used to
gain information about the current state of the system.

Non-interference is a limited class of properties: it only
addresses questions of leakage from a high to a low level
and, in the case of language-based interference, on the
occurrence of high actions. However, the properties to
protect are not always definable in terms of occurrences of
actions from a given subset. A larger setting called opacity
has been proposed (Bryans et al., 2005) to consider hiding
more general properties of runs. This notion formalizes
the absence of information flow or, more precisely, the
impossibility for an attacker to infer the truth of a pred-
icate φ (it could be the occurrence in the system of some
particular sequences of events, or the fact that the system
is in some particular secret configuration). If the truth of
this predicate can be inferred by an attacker, based on
its knowledge of the system and the information deduced
from its observations, then there is an information flow
and the secret is revealed.

This paper considers state-based opacity in a setting
where attackers partially observe a system and, in addition
to their observations, can query the system to discover
the accepted inputs at the current state. In some sense,
giving this additional power to attackers reintroduces the
notion of capacities from (Goguen and Meseguer, 1982).
We provide several different models of attackers, ranging
from the usual attackers that can only observe a system
and try to determine whether the system is currently in
a sensitive secret state, to very powerful attackers that
know at every instant the possible inputs accepted by
the system. We then show how state-based opacity with
powerful attackers can be checked. Lastly, we consider
opacity enforcement: We bring back this question to the

computation of a controller that forbids some inputs to
the system to prevent an information flow. We show that
opacity enforcement can be modeled as a game in which
the controller tries to prevent an information flow, while
the rest of the system may systematically perform the
worst choices, allowing the attacker to gain information.

This paper is organized as follows: Section 2 introduces
notations used throughout the paper, Section 3 gives
several models of powerful attackers. Section 4 considers
enforcement of opacity for passive attackers, and Section 5
opacity enforcement with active attackers, before conclu-
sion. Proofs of theorems and propositions are provided in
appendix.

2. PRELIMINARIES

Let Σ be an alphabet. A word w = a1 . . . an is an element of
Σ∗. We denote by ε the empty word. Given a subset Σ′ ⊆ Σ
and a word w = a1 . . . an ∈ Σ∗, the projection of w onto Σ′

is the word PΣ′(w) obtained by erasing from w all letters
from Σ \ Σ′. Similarly, we denote by P−1

Σ′ (µ) the inverse

projection of µ, i.e., P−1
Σ′ (µ) = {w ∈ Σ∗ | PΣ′(w) = µ}.

Definition 1. A Labelled Transition System G is a tuple
(Q, qo,Σ, δ) where Q is a set of states with a distinguished
element qo called the initial state, Σ is the set of events of
G, δ ⊆ Q× Σ×Q is the transition relation.

The runs of G are sequences of transitions of the form

ρ = q0
a1−→ q1 . . .

an−→ qn such that (qi, ai+1, qi+1) ∈ δ for
every i ∈ 0 . . . n − 1. The word associated with a run ρ
is the sequence of letters w = a1 . . . an (we also say that
w labels run ρ). We denote by Run(G) the set of runs of
G, and by L(G) the (regular) language of words that label
runs of G. Furthermore, we assume that G is deterministic,
i.e., ∀q ∈ Q,∀a ∈ Σ, |(q, a, q′)| ≤ 1. Note that as G is
deterministic, for every word w ∈ L(G) there is a unique
run ρ labeled by w. Thus, the map l : Run(G) → L(G)
that associates runs with their labelings is a bijection.

We consider systems interacting with their environment,
i.e., performing inputs and outputs. We assume that Σ is
partitioned between the set of input events Σ?, the set of
output events Σ! and the set of internal events ΣI . For
a given state q ∈ Q,Γ(q) = {a ∈ Σ | ∃q′, (q, a, q′) ∈ δ}
denotes the active event set at q. Similarly, Γ?(q) and Γ!(q)
denotes the set of input (respectively output) events that
are admissible at state q. Given a set of states X ⊆ Q



and a set of input events Σ′ ⊆ Σ?, let Γ?(X,Σ′) = {q ∈
X | Γ?(q) = Σ′}, i.e., the states of X that have exactly Σ′

as active input event set.

2.1 General notion of opacity
We consider a setting where a system should not leak
any secret information that might be contained in the
actual run of the system. Such a secret can be depicted
as a predicate φ over runs of the system, as in Bérard
et al. (2015). In this paper, we consider that the secret is
represented as a subset of states S ⊆ Q. States of S can
represent states in which a system is vulnerable to attacks,
or states in which some confidential information is in use,
and is not yet declassified. We denote by RunS(G) the set
of runs of G ending in a state q ∈ S. We consider that
attackers are agents of the system, which are equipped
with observation and capabilities. They collect information
online with executions of the system and try to infer with
certainty whether the system’s current state belongs to S.

Definition 2. (Attackers). An attacker of G is a map A :
Run(G) → ((Σ ∪ {ε})×O)∗, where O is a finite alphabet
of observed facts obtained through the use of capabilities.
We further assume that attackers can be defined induc-
tively, and from their final transitions: for a run ρ =

q0 . . . qn−1
an−→ qn, A(ρ) = A(q0 . . . qn−1).obsA(an, qn−1),

where obsA : Σ×Q→ (Σ×O)∪{ε} defines the observation
obsA(a, q) of the attacker when the system fires a from q.

The definition of attackers above is compositional, i.e., if
ρ = ρ1.ρ2 then A(ρ) = A(ρ1).A(ρ2), and transition-based,
i.e., for a particular transition (q, a, q′), the observation is
of the form (a, o) regardless of its position in a run. Note
that an attacker is not necessarily aware of every move of
the system as obsA(a, q) = ε for some actions and states,
thus |A(ρ)| ≤ |ρ|. Let µ be an observation of the attacker,
then the set of runs compatible with µ w.r.t. A is the set
[µ]A = {ρ ∈ Run(G) | A(ρ) = µ}.
Definition 3. (Opacity). A secret S is opaque w.r.t. A iff
∀ρ ∈ RunS(G) there exists a run ρ′ in [A(ρ)]A such that
ρ′ 6∈ RunS(G).

Intuitively, opacity says that an attacker is not able to
infer that a run is currently in a secret state based on
its observation. Definition 2 allows us to decouple the
information observed from transitions fired during a run,
and information acquired from visited states. Though
this definition is very generic, it encompasses many types
of attackers, starting with the standard ones without
capabilities, and whose observations are limited to a subset
of actions Σo ⊆ Σ. An attacker observes the system, and
builds from its observation a belief, i.e., an estimation of a
set of states in which the system could be.

Upon the arrival of a new observation, this belief can be
updated as follows:

Definition 4. (Belief update). Let G be a system, A be an
attacker, X ⊆ Q be a belief, and (a, o) be an observation.
We denote by δA(X, (a, o)) the set of states X ′ such that
there exists a run ρx,x′ from a state x ∈ X to a state of
x′ ∈ X ′, and A(ρx,x′) = (a, o). Belief updating extends to
words and we can define a function ∆A as: ∆A(X, ε) = X,
∆A(X,w.(a, o)) = δA (∆A(X,w), (a, o)).

Definition 5. (Observers). Let G = (Q, qo,Σ, δ). The ob-
server of an attacker A is the deterministic automaton

DetA(G)=(X , X0,ΣA, δA), with X =2Q, X0 ={q0} 1 and
ΣA=Σo×O.

The construction of δA depends on the power given to the
attacker. However, with the restrictions given to attack-
ers, DetA(G) is always a finite-state machine. We denote
by TrA(G) = L(DetA(G)), the language generated by
DetA(G). The classical notion of opacity can be gener-
alized to observers with capabilities as follows:

Proposition 1. Secret S is opaque w.r.t. G and A iff ∀ρ ∈
RunS(G), ∆A(X0,A(ρ)) 6⊆ S.

Proposition 1 says that a system is opaque if an attacker
is not able to infer that a run is currently in a secret
state by computing the beliefs obtained by synchronizing
its observer automaton with the currently observed run.
The verification of opacity is then reduced to the question
of reachability of F = 2S in DetA(G). This verification is
PSPACE-complete (Cassez et al., 2012) in the standard
setting where attackers observe only a subset of the labels
attached to transitions (defined as attacker A1 later in
this section). As G is deterministic, Proposition 1 can be
rephrased as a property of DetA(G). Furthermore, the
PSPACE-completeness proof easily extends to the more
general setting.

Corollary 1. (of Proposition 1). Secret S is opaque w.r.t.
G and A iff ∀µ ∈ TrA(G), ∆A(X0, µ) 6⊆ S.

Corollary 2. Opacity of a system w.r.t. an attacker A is
PSPACE-complete.

2.2 Attacker 1: Standard observer

A standard setting in opacity is to assume that the at-
tacker A1 observes the system through an interface (a sub-
set of its actions). The attacker does not get information
from the current state of the system, but is only aware
of the last observable event triggered by the system. This
can be modeled in our generic setting, by defining a single
observed fact • (i.e., O = {•}) and a function obsA1

:

obsA1
(a, q) =

{
ε if a 6∈ Σo,

(a, •) otherwise.

Given a sequence w of G, the observation of the attacker
A1 is given by the natural projection PΣo(w). We denote
by TrA1(G) = PΣo(L(G)) this set of observations. Given
an observation µ ∈ TrA1(G), we denote by [[µ]]A1 =
P−1

Σo
(µ)∩L(G)∩Σ.Σ∗o the set of sequences compatible with

µ that end with an observable event. Given an observation
µ ∈ TrA1(G), we denote by ∆o(X0, µ) = {δ(q0, [[µ]]A1)},
the set of states in which the system can be after the
observation of the trace µ, with Xo = {q0}. Slightly
abusing our notation, we use [[a]]A1 to denote the words
for which projection on Σo is a and that end with action
a. Similarly, for any subset X ∈ 2Q and any observable
event a ∈ Σo, ∆o(X, a) = {q′ ∈ Q | ∃q ∈ X,w ∈
[[a]]A1

, q′ = δ(q, w)} denotes the set of states in which the
system can be after the observation of a, knowing that the
belief of the set of states was X ∈ 2Q. The secret S is not
opaque w.r.t. A1 whenever there exists µ ∈ TrA1

(G) such
that ∆o(Xo, µ) ⊆ S and the verification is reduced to a
reachability problem as described in Cassez et al. (2012).

1 The approaches in this paper work with sets of possible initial
states, allowing attackers to start from beliefs that are not singletons.



3. ATTACKERS WITH ADDITIONAL CAPABILITIES

The attacker A1 is the standard notion of a passive ob-
server that is only informed of a subset of the system’s
actions. However, this model gives very little discriminat-
ing power to attackers. In this section, we propose several
models of attackers that can collect additional information
along runs of the system.

3.1 Attacker 2: an input-aware attacker

Let us first define an attacker A2 that is aware of all the
input events it might execute at any time during a run of
the system. We assume that the set of inputs that A2 can
observe at any instant is a set Σ? ⊆ Σo, and that this set
of available inputs is returned instantaneously after each
move as an answer γ, with γ ⊆ Σ?. We still consider that
some actions remain invisible to the attacker. Hence, after
the execution of each action a of the system:

• if a ∈ Σo, the attacker receives the pair (a, γ);
• if a ∈ Σuo, the attacker receives the pair (ε, γ).

Note that each time an event is triggered in the system,
A2 is now aware of this occurrence, which can be seen
as a “tick” for the attacker whenever the event is not
observable. Within this setting, O2 = 2Σ? and the function
obsA2 is given by

obsA2
(a, q) =

{
(a,Γ?(δ(q, a))) if a ∈ Σo,

(ε,Γ?(δ(q, a))) otherwise.

The map A2 directly follows from the definition of obsA2
.

Note that even if A2 observes possible inputs in the cur-
rent state, some ambiguity remains on the current state,
and there can be two distinct states q, q′ of the system
such that Γ?(q) = Γ?(q′). Meanwhile, based on this new
notion of an attacker, we redefine the various notions intro-
duced in the previous sections in the classical framework.
An observation of the attacker is now a sequence from(
(Σo ∪ {ε})× 2Σ?

)∗
.

The set of observations of A2 that can appear when
observing runs of G is denoted by TrA2(G). Given an
observable trajectory µ ∈ TrA2(G), the set of compatible
sequences is given by: [[ε]]A2 = {ε} and

[[µ.(a, γ)]]A2 =


{w ∈ [[µ]]A2

.a ∩ L(G) | q0
w→ q ∧ Γ?(q) = γ},

if a ∈ Σo;

{w ∈ [[µ]]A2
.σ ∩ L(G) | σ ∈ Σuo, q0

w→ q ∧
Γ?(q) = γ} if a = ε.

Similar to the case of A1, the computation of the observer,
starting from a subset of states X, can be defined induc-
tively. Upon the arrival of a new observation (a, γ), the
update of beliefX by attackerA2 is defined by the function
δA2(X, (a, γ)):

• δA2
(X, (ε, γ)) = Γ?(X ′, γ), where X ′ = {q′ | ∃q ∈

X, a ∈ Σuo, (q, a, q
′) ∈ δ}

• For every a ∈ Σo, δA2
(X, (a, γ)) = Γ?(X ′, γ), where

X ′ = {q′ | ∃q ∈ X, (q, a, q′) ∈ δ}
Then, for a sequence of observations, we can define:

• ∆A2
(X, ε) = X, and

• ∆A2
(X,µ.(σ, γ)) = δA2

(∆A2
(X,µ), (σ, γ)) for every

µ ∈ TrA2
(G) and observation (σ, γ).

3.2 Attacker 3: input-aware attacker upon observation

We now model a type of attacker A3 who is aware of
all allowed input events that are admissible only after
an observable action a ∈ Σo occurs. We still assume
that inputs belong to Σ? ⊆ Σo, and that the set of
all allowed inputs is revealed after each observed action.
Unlike attacker A2, attacker A3 does not update its belief
when the system performs an unobservable move. Within
this setting, O3 = 2Σ? and the function obsA3

is given by:

obsA3(a, q) =

{
(a,Γ?(δ(q, a))) if a ∈ Σo
ε otherwise.

The set of observations of A3 that can appear during runs
of G is defined as TrA3

(G) ⊆ (Σo×2Σ?)∗. Each observation
in TrA3

(G) is a sequence of the form (a1, γ1)(a2, γ2) . . . ,
where each ai is an observable event and γi ⊆ Σ? cor-
responds to the set of input events that are admissible
after the observation of the event ai in the state of the
system reached after executing ai. Given an observation
µ ∈ TrA3

(G), the set of compatible sequences is given by:

[[ε]]A3 = {ε} and for a ∈ Σo

[[µ.(a, γ)]]A3
= {w ∈ [[µ]]A3

.a∩L(G) | q0
w→ q∧Γ?(q) = γ}.

The refinement of a state estimate X by an observation
(a, γ) is given by δA3

(X, (a, γ)) = Γ?(X ′, γ), where X ′ =
{q′ ∈ Q | ∃q ∈ X,∃ρ = q −→ . . . q′, l(ρ) = a}. The state
estimates of the attacker, starting from a set of states X,
is recursively defined as follows:

• ∆A3
(X, ε) = X, and

• ∆A3
(X,µ.(a, γ)) = δA3

(∆A3
(X,µ), (a, γ)), for µ ∈

TrA3
(G) and (a, γ) ∈ Σo × 2Σ? .

3.3 Attacker 4: an attacker informed of input changes

The last model of a passive attacker is informally defined as
follows: we assume that the attacker A4 can continuously
observe the possible inputs to the system, but is not aware
of state changes. Hence, if two consecutive states q, q′ in
a run have the same inputs, and the move from q to q′

produces no observable events, then A4 is not aware of
any state change.

For A4, we have O4 = 2Σ? and obsA4
is

obsA4
(a, q) =

{
(ε,Γ?(δ(q, a))) , if a ∈ Σuo ∧ Γ?(q) 6= Γ?(δ(q, a))
ε, if a ∈ Σuo ∧ Γ?(q) = Γ?(δ(q, a))
(a,Γ?(δ(q, a)), if a ∈ Σo.

The observations of A4 look like observations of A2, but
with the difference that A2 obtains one pair (σ, γ) for each
transition in a run. An observer DetA4(G), its transition
relation δA4 and ∆A4 can be built as for our previous
attackers.

• δA4
(X, (ε, γ)) = Γ?(X ′, γ), where X ′ = {q′ | ∃ρ =

q
a1−→ q1 . . .

ak−→ qk
ak+1−→ q′, l(ρ) = ε∧∀i ∈ 1..k,Γ?(q) =

Γ?(qi) ∧ Γ?(q) 6= Γ?(q′)}
• For every a ∈ Σo, δA4

(X, (a, γ)) = Γ?(X ′, γ), where
X ′ = {q′ | ∃q ∈ X, (q, a, q′) ∈ δ}

Then, for a sequence of observations, we can define:

• ∆A4
(X, ε) = X, and

• ∆A4
(X,µ.(σ, γ)) = δA4

(∆A4
(X,µ), (σ, γ)) for every

µ ∈ TrA4
(G) and an observation (σ, γ).



3.4 Attacker 5: an active attacker

We consider a slightly different attacker, namely one that
is active. More precisely, attacker A5 learns whether an
input is active only by trying to play it. This attacker
can observe actions from Σo, and also test whether an
input is allowed at the current state by attempting to
enter this input. If an input a is allowed at a state q, then
the system moves to the next state δ(q, a). If the input is
not allowed, then the system remains in state q and the
attacker gets the information not a, indicating that the
input was ineffective. We also consider that A5 can only
test inputs to the system from the subset Σatt ⊆ Σ? ∩Σo.

To reflect the fact that an input is not fireable in a state
we introduce a new alphabet Σnot? = {not σ|σ ∈ Σ?}. In
this setting, the alphabet of observed facts O5 is given by
O5 = Σo ∪ Σnot? , whereas the function obsA5

is

obsA5
(a, q) =


ε, if a ∈ Σuo
(a, ε), if a ∈ Σo \ Σatt
(a, a), if a ∈ Σatt ∩ Γ?(q)
(a, not a), if a ∈ Σatt ∧ a 6∈ Γ?(q).

The set of observations is then defined as TrA5
(G) ⊆

(Σo × (Σo ∪ Σnot? ∪ ε))∗, while the transition relation of
DetA5(G) is:

δA5
(X, (a, γ)) =



{q′ ∈ Q | ∃ρ = q −→ . . . q′, l(ρ) = a,
if a ∈ Σo\Σatt ∧ γ = ε

{q′ ∈ Q | ∃q ∈ X, (q, a, q′) ∈ δ},
if a ∈ Σatt ∧ γ = a

{q ∈ X | @q′, (q, a, q′) ∈ δ},
if a ∈ Σatt ∧ γ = not a.

As it was for the other attackers, the transition re-
lation of observer DetA5(G) extends to words with
∆A5(X,µ.(a, γ)) = δA5 (∆A5(X,µ), (a, γ)).

3.5 Comparing attackers

We can extend Corollary 1 to all attackers:

Proposition 2. For every Ai, i ≤ 5, S is opaque w.r.t. G
and Ai iff ∀µ ∈ TrAi(G), ∆Ai(X0, µ) 6⊆ S.

Let us now compare the discriminating power of attackers.
We will say that attacker Ai is less discriminating than
attacker Aj , and write Ai v Aj(with fixed alphabets
Σ,Σo,Σatt,Σ?) iff for every automaton G and every set
S of secret states, S is opaque w.r.t Aj implies that S is
opaque w.r.t Ai. Looking at the information collected by
each type of attacker, we can state the following.

Proposition 3. We have the following relationships be-
tween attackers:

• A1 v A2, A1 v A3, A1 v A4, and A1 v A5

• A3 v A2, A4 v A2, and A5 v A2

Obviously, A1 is the weakest attacker, as it only observes
occurrences of actions in Σo, while all other observers have
at least this information when an observable transition is
executed. It might be surprising that A5, which is active,
is less powerful than A2. Indeed, A5 can not always test all
inputs of the system at the current state to get the same
information as A2, since each test may force the system to
move to another state.

4. ENFORCING OPACITY

If a system is not opaque, then one might try to control
the system (or to restrict its behavior) so that the secret

becomes opaque. This is achieved by dynamically forbid-
ding or disabling certain events. Henceforth, we attach a
controller to the system. This controller is in charge of
deciding which inputs are allowed to occur or enabled at
each point of an execution. We assume that the controller
can observe all the events of Σ, but cannot control all of
them. Thus, Σ, the alphabet of the system, is partitioned
into Σc, the set of controllable events, and Σuc, the set
of uncontrollable events. We assume that the controller
has full knowledge of the system. Further, the controller is
belief-based, i.e., it bases its decisions on its state estimate.

Definition 6. A controller is a function C : L(G) → 2Σ

that provides the set of actions that are enabled after
a sequence u ∈ L(G), with the constraint that ∀u ∈
L(G), C(u) ∩ Σuc = Γ(δ(qo, u)) ∩ Σuc (controllers cannot
disable uncontrollable events). Given a state q, let Cv(q)
denote the set of valid control policies in q, i.e., all sets
c ⊆ Γ(q) that respect c ∩ Σuc = Γ(q) ∩ Σuc.

Intuitively, when a sequence u ends in a state q, then
a controller for G can only use a policy in Cv(q). A
controller C can be encoded by an automaton AC =
(QC , q0C , δC ,Σ, λC), where QC is a not-necessarily finite
set of states, δC is a deterministic transition relation, and
λC : QC → 2Σ associates each state with a set of enabled
events.

Definition 7. Let G be an automaton, and let C : L(G)→
2Σ be a controller, described by its automaton AC . Then
G/C = (QG/C , (q0, q0C ),Σ, δG/C) is the automaton ob-
tained by taking the synchronous product of G with AC ,
inductively built as follows.

• The initial state is (q0, q0C )
• If (q, qC)∈QG/C , δ(q, a) = q′, a ∈ λC(qC) and δ(qC , a)

= q′C , then ((q, qC), a, (q′, q′C)) ∈ δG/C , and (q′, q′C)
belongs to QG/C .

One can notice that L(G/C) ⊆ L(G). A question that
immediately arises: how is the knowledge of an attacker
affected by control? We assume that attackers do not know
the control applied to the system. Nevertheless, this does
not mean that control does not affect observations. For
instance, consider a situation where the current state is
q, Γ(q) = {?a, ?b}, but the controller disables ?a at q.
We consider that the attackers get information about the
actual set of available actions, i.e., when some control is
in use. An attacker will receive information of the form
(e, {?b}) when the system enters state q, where e is either
ε or an action name. Let X be the current state estimate
of the attacker. It can be refined by the observation, but
recall that some actions that are not feasible from current
state might actually be forbidden by a controller. Hence we

define Refact(X, γ) = X \ {q ∈ Q | ∃e ∈ γ,@q′, q e−→ q′}.
This refinement of state estimate removes fromX all states
from which actions from γ are not fireable. We can now
define the control and synthesis problem:

Control Problem: Given a system G, a secret S, an
attacker A that observes Σo, and a controllable alphabet
Σc ⊆ Σ, is there a controller C such that S is opaque for
A in G/C ?

Synthesis Problem: Given a system G, an attacker A,
and a secret S such that a controller with controllable



alphabet Σc ⊆ Σ exists to keep S opaque for A, synthesize
a map C : L(G)→ 2Σ such that S is opaque for A in G/C.

In the rest of this section we will show that for pas-
sive attackers A1,A2,A3 and A4, controllers are indeed
strategies in finite co-reachability games. Within these
games, positional strategies are sufficient to win, yielding
finiteness of controllers.

Definition 8. A two-player arena with partial information
is a tuple H = (V, v0,M,−→,O0,O1), where V is a set of
positions, partitioned into V0 ] V1 (depicting player 0 and
player 1’s nodes, respectively); v0 is the initial node of the
arena; −→⊆ V ×M× V depicts moves in the arena; and
Oi : V → Ψi, i ∈ {0, 1} are observation functions, mapping
vertices to a finite arbitrary observation alphabet. This can
be used to model partial knowledge on the current vertex
of the arena. Player i has to choose a move from a node in
Vi. A two-player co-reachability game is given by an arena
and a winning condition Win ⊆ V . Player 0 wins the game
if it can prevent the game from reaching a position in Win.

A play in an arena is either a finite sequence π =
v0.v1.v2 . . . vk or an infinite one π = v0.v1.v2 . . . vk . . . .
We denote by π(j) the jth vertex of play π. A play π
is winning for player 1 (and losing for player 0) with
the co-reachability condition Win if there exists j such
that π(j) ∈ Win. A strategy for player i is a map σi :
V ∗.Vi → 2Acti , where Acti is the set of moves of player i.
In particular, we require that

• for every play π = v0.v1 . . . vk with vk ∈ Vi, σi(π) ⊆
Act(vk), where Act(vk) is the set of legal moves from
node vk in the arena.
• for every pair of plays π, π′ such that Oi(π) = Oi(π′),
σi(π) = σi(π

′) (i.e., strategies are consistent with
observations).

A play is consistent with strategy σi iff for every π(j) ∈ Vi,
π(j + 1) ∈ σi(π(0) . . . π(j)). Player i wins in position v iff
it has a strategy σi such that for every strategy σ1−i of
player 1− i, all plays starting from v and consistent with
strategies σi, σ1−i are winning for player i.

We will say that a two-player game is a game of perfect
information iff ∀v ∈ V,O1(v) = O2(v) = {v}. Other-
wise, the games are called games with partial informa-
tion. It is known that perfect information games with
(co)reachability, Büchi, or parity objectives are deter-
mined : from each vertex, one (and only one) player has a
winning strategy. Further, perfect information games need
only positional strategies (Grädel and Thomas, 1998). It is
known that players have a winning strategy in a partial in-
formation game iff they have a belief-based strategy (Chat-
terjee and Doyen, 2010). Consequently, to decide whether
a game is winning for player i, it is sufficient to build an
arena containing the representation of the knowledge that
each player has of the possible current state of the system.
Then, solving a full-information game on this arena allows
for the computation of belief-based strategies.

We are now ready to define a game that allows us to solve
the opacity control and synthesis problem for each type
of attacker. As attackers can only rely on their beliefs to
reach a state estimate that is contained in S, and do not
know the current state of the system, this will be a partial
information game. We begin with attackers of type A2.

4.1 A controller for attackers of type A2

In this game, the controller is player 0, the rest of the
system is the player 1, and the attacker of the system
is used to determine a winning condition on states. It
might seem strange a priori to consider the system as an
opponent to the controller, and not to the attacker. The
reason for this is that attackers are passive. Hence they
cannot guide the system to play the best actions leading
to information leakage. However, to ensure that a secret
is preserved, one can assume that the system, even if not
malevolent, will always play the worst choice with respect
to secrecy.

Let G be a system over alphabet Σ, S ⊆ Q be a set of
secret states, q0 be an initial state, Σo be the set of events
observed by attacker A2, and Σc be a set of controllable
events. The arena for this opacity control and synthesis
problem is defined as a tuple HG,S,A2 = (V, v0,M,−→H ,
O0,O1) where:

• V = V0∪V1 is a set of nodes. We have V1 = Q×2Q×
2Σ. This set of nodes denotes positions of player 1
(the system). V1 contains nodes of the form (q,X,Σ′),
where q is the current state of G, X is the attacker’s
estimate of the set of possible states according to its
observations, and Σ′ ⊆ Σ is the last choice of the
controller, i.e., a set of actions that the controller
allows from state q. Similarly, V0 = Q × 2Q × Σ is
the set of positions of player 0 (i.e., the controller).
Every node (q,X, a) ∈ V0 represents the next current
state q and the next possible state estimate X after
performing action a. The initial node of the game
is node v0 = (q0, {q0}, ε) ∈ V0, i.e., the system
starts from its initial node, the attacker has perfect
knowledge of it, and it is then up to the controller to
decide which actions are allowed from the initial state.
In this node, ε symbolizes the fact that no action has
yet been performed by the system.
• M = M0 ∪M1 is the alphabet of the game, where
M0 = Σ × 2Σ represents moves of the controller,
which makes a choice between the admissible control
policies, andM1 = Σ represents moves of the system.
• O0(v) = O1(v) = v, i.e., both players have perfect

knowledge of the game’s positions.
• Moves of the arena are a subset →H⊆ (V1 ×M1 ×
V0) ∪ (V0 ×M0 × V1) and are built as follows:
i) For every ci ∈ Cv(qo), (v0, ci, (q0, {q0}, ci)) is a
move of →H . Note that (q0, {q0}), ci) ∈ V1.
ii) If ((q,X), c) is a node of V1, and a ∈ c is an action
allowed by the controller (and, hence, allowed from
q), then ((q,X, c), (δ(q, a), X, a)) ∈→H .
iii) Given a node (q,X, a) ∈ V0, transition
((q,X, a), (a, c), (q,X ′, c)) ∈→H for all c ∈ Cv(q).
Let γ = c ∩ Γ?(δ(q, a)), and XO,a = ∆o(X, a). Then
we have X ′ = Refact(XO,a, γ), i.e., the attacker’s
knowledge is updated, and includes states that are
reachable from X when observing a, and which allow
inputs from γ. Note that as the attacker is not aware
of ci, X

′ is the only deduction that an attacker of
type A2 can do. (See Fig. 1)

Fig. 1 shows several possible types of moves in arena H.
Nodes of the controller (player 0) are represented as circles,
and nodes of player 1 as rectangles. In node (q,X, c), the
system decides to fire action a ∈ Σ∩c. The system then



(q,X, c) δ(q, a), X, a) δ(q, a), X ′1, c1

γ1 = c1 ∩ Γ?(δ(q, a))
X ′1 = Refact(X0,a, γ1)δ(q, a), X ′2, c2

a ∈ Σ ∩ c

(a, c2)

(a, c1)

Fig. 1. A part of the arena for the opacity game

moves to a position (δ(q, a), X, a) meaning that the system
will move to position δ(q, a). From this node, the controller
has to decide which actions will be fireable from the next
state δ(q, a), which will impact what is observable by the
attacker. In Fig. 1, the controller has two possible choices,
namely c1 and c2. After a choice of the controller the move
is performed and the attacker is informed of the move.
Following the definition of an attacker of type A2, the
observation produced is of the form (e, γ), where e = ε
if the action played by the system is unobservable, and
e = a if the performed action is observable. Similarly,
when control ci is chosen, the set of possible inputs that
attacker A2 can observe is γ = Γ?(δ(q, a)) ∩ ci. The
state estimate of the attacker is updated accordingly, i.e.,
upon the choice of control ci the state estimate becomes
X ′ = Refact(∆o(X, a), γ).

The objective of the controller is to avoid states of the form
(q,X, c), where X ⊆ S, i.e., player 1 wins if it can force
the system to one of these states. This is a classic turn-
based co-reachability game, where the controller needs to
choose valid control policies that avoid positions where
the attacker’s knowledge is contained in S. It is well-
known that perfect information (co)-reachability games
are positional and determined, and can be solved in linear
time by computing an attractor for the set of bad states
that player 0 wants to avoid. It remains to show that a
controller for opacity exists iff there is a wining strategy
in this reachability game.

Theorem 1. Let G be an automaton, S be a secret, and
A2 be an attacker. Secret S can be made opaque by
some controller C iff player 0 has a winning strategy in
the co-reachability game over arena HG,S,A2

with winning
condition Win = Q× 2S × 2Σ.

Note that belief-based controllers are not the only possible
controllers. Consider the automaton of Fig. 2, where
Σ = {a, u, c} and Σo = {a, c}. To avoid reaching secret
state S, a controller can forbid action a when the difference
between the number of as and cs is equal to k. Such
a controller never computes the state estimate of an
attacker, but yet is sufficient to guarantee opacity.

q0

qf

q1,1

q2,1

q1,1

q2,1

q1,k

q2,k

S
a

u

a c

c

uu

a

c

u u u

a a a

a

Fig. 2. An automaton G that admits simple controllers

Corollary 3. For an alphabet of fixed size, enforcement of
opacity for an attacker of type A2 is in EXPTIME.

As already mentioned, positional strategies for two-player
games with perfect information are sufficient. It is hence
sufficient to design strategies that associate a decision to
each node of the arena. Recall, however, that our games

are played on an arena that represents the attacker’s
knowledge. This gives us the following corollary.

Corollary 4. Finite state (belief-based) controllers are suf-
ficient to ensure opacity. Opacity controllers are of size in
O(|G|.2|G|). There exist automata of size in O(n) in which
opacity is ensured only by controllers of size in O(n.2n).

4.2 A controller for attackers of type A3 and type A4

The technique used in Theorem 1 for attackers of type
A2 can be easily adapted for attackers of type A3 and
A4, and the opacity enforcement game remains a perfect
information reachability game. The construction of the
arena is very similar: the major difference resides in how
the attacker’s state estimate is updated. With attacker
A3, for instance, a move from node ((q,X), c) ∈ V1 with
action a leads to a node ((δ(q, a), X, a), as was the case for
attacker A2. Moves from nodes of the controller (nodes
of V0) of the form (q,X, a) lead to nodes of the form
(q,X, c) if a is unobservable, and otherwise to nodes of
the form (q,X ′, c), where X ′ =Refact(Xo, c∩Γ?(δ(q, a)) is
an update of the knowledge of A3, with Xo = ∆o(X, a).

q1, X, c q2, X, a1 q2, X, c1 q3, X, a2

qn−1, X, c
′ qn, X, an

qn, X1, c1 qn, X2, c2

q2, X, c2

a1 ∈ Σuo (a1, c1) a2 ∈ Σuo

(an, c1)
(an, cn)

an ∈ Σo

(a1, c2)

Fig. 3. Part of the arena for attacker A3

For attacker A4, the knowledge update is performed as
soon at the input set changes. From a node of the form
(q,X, c) ∈ V1 the system can choose an action a allowed by
the control c, and move to a state (δ(q, a), X, a, q). Notice
that the state that is left is remembered. From a node
(q′, X, a, q) ∈ V0 when choosing a control c, one moves to
node (q′, X, c) if Γ(q) = Γ(q′) and a is unobservable, and
to node (q′, X ′, c) otherwise, where X ′ is computed as for
attackers of type A2 and A3. Opacity enforcement games
remain unchanged on this slightly-modified arena.

5. ENFORCEMENT WITH ACTIVE ATTACKERS

With an active attacker A5, the game setting changes.
Since attackers are active, they can have a strategy to
drive the system into configurations leaking the secret S.
In the previous games designed to solve opacity for passive
attackers, the partial observation of such an attacker is
only used to designate which nodes of the arena are losing
states for the controller. Observation functions for this
kind of game are perfect information functions. Active
attacker A5, on the other hand, can take decisions, and is
now one of the players in the arena, although it has only
a partial information on the actual state of G. We assume
that the attacker is one of the processes of the system,
and owns a subset of actions Σatt ⊆ Σo that are performed
only by him. These inputs can be performed/tested by the
attacker immediately after each observable action. Yet, in
this setting, the rest of the system can still perform actions
that help A5 acquire further information. We will hence
distinguish nodes where the system plays, and nodes where
the attacker chooses to input something to the system.
This setting forces us to consider a new type of game,



namely, three-player games, as introduced in (Chatterjee
and Doyen, 2014).

Definition 9. A three-player game is a tuple
H = (Q, q0, δ, Oi,i∈1..3, obsi,i∈1..3), where Q is a set of
nodes, q0 an initial node, and δ : Q× A1 × A2 × A3 → Q
is a deterministic function that gives the successor state
δ(q, a1, a2, a3) of q when players 1, 2, 3 concurrently play
actions a1, a2, a3. The game is turn-based if for every state
q and every triple in A1×A2×A3 the next state depends
only on the action chosen by one of the players. For every
player, Oi ⊆ 2Q is a partition of the set of states, and
obsi : Q → Oi is the function that assigns to q the
unique observation of player i that contains q. A winning
reachability condition is a subset of states Win ⊆ Q. An
observation-based strategy for player i is a map σi : Q ×
O∗i → Q. Given a game arena H and a winning condition
Win, the three-player reachability problem is to decide if
∃σ1,∀σ2,∃σ3 such that the play that satisfies strategies
σ1, σ2, σ3 visits Win at least once.

We define an arena HactiveG = (V, v0, δ, Oi, obsi) as follows.
The set of nodes V is partitioned into V = V1 ∪ V2 ∪ V3,
where V1 represents positions of the attacker A5, V2 are
positions of the controller, and V3 are positions of the
system.

V1 = {(q,X, c, att) | X ∈ 2Q, C ∈ 2Σ}
V2 = {(q,X, a, q′) | q, q′ ∈ Q,X ∈ 2Q, a ∈ Σ}
V3 = {(q,X, c, sys) | X ∈ 2Q, C ∈ 2Σ}

We set v0 = (q0, {q0}, ε, q0) ∈ V2, i.e., the controller starts
(as no action is played yet, the third component of the node
is simply ε). The transition relation δ is then computed as
follows: the game allows only moves from V1 to V2, from
V3 to V2 and V1 and from V2 to V3. It is turn based, i.e.,
for every node n ∈ Vi, δ(n, a1, a2, a3) only depends on ai.

There exists a move from (q,X, c, sys) ∈ V3 to (q,X, c, att)
∈ V1 if Γ?(q) ∩ c 6= ∅ (if we consider that Γ?(q) ⊆ Σo)

2 .
This move models the situation where the system does not
perform an action, some inputs are feasible, and the system
lets the attacker test them. There exists a move from
(q,X, c, sys) ∈ V3 to (q,X, a, δ(q, a)) ∈ V2 if a ∈ c. This
move models the system’s decision to perform an action.
Right after this decision, upon reaching the destination
state, the controller has to take a control decision for
inputs in Σc. As with games that have attackers of type
A2 and A3, knowledge of A5 is not updated by this move,
which allows the controller to choose the next control
decision.

A move from (q,X, c, att) ∈ V1 to (q,X, a, δ(q, a)) ∈ V2

exists if a ∈ c ∩ Γ?(q). This move models input to the
system performed by the attacker, and the consequences of
this input (i.e., a state change). There exists a move from
(q,X, c, att) ∈ V1 to (q,X ′, c, sys) ∈ V2 if a 6∈ c ∩ Γ?(q),
with X ′ = X \ {q ∈ X | a ∈ Γ?(q)} if a ∈ Σuc, and
X ′ = X, otherwise. Let us detail the computation of X ′.
Node (q,X, c, att) is an attacker node, i.e., from this node,
an attacker may want to test an input to the system to
refine its estimate of the system’s state. If this input ?a
fails, then it is either because this input is not feasible
from the current state, or because it was disabled by the

2 Otherwise, we should write Γ?(q) ∩ c ∩ Σo 6= ∅

controller. If the input is controllable, an attacker cannot
distinguish between a state qf such that ?a 6∈ Γ?(qf ) and
a state qa such that ?a ∈ Γ(qa) but ?a 6∈ c. If the attacker
estimates that the system can be in state X before testing
?a, and subsequently learns that this input is not feasible,
then its knowledge remains unchanged. On the other hand,
if the input does not succeed, and ?a is not controllable,
then X can be refined, since the current state of the system
is necessarily a state q with ?a 6∈ Γ(q).

The controller allows initial moves from node v0 to every
node of the form (q0, c, sys) where Γ(q0) ∩ Σuc ⊆ c ⊆
Γ(q0). All moves from a control node of the form n =
(q,X, a, q′) ∈ V2, with a 6∈ Σo, are moves to nodes of
the system of the form (q′, X, c, sys) ∈ V3, with c ∈ 2Σ.
Notice that the knowledge of the attacker is not updated.
This models the fact that unobservable moves do not bring
information to the attacker. All moves from a control node
of the form n = (q,X, a, q′), with a ∈ Σo are moves of the
form (q′, X ′, c, sys) ∈ S3, with c ∈ 2Σ, and X ′ = ∆o(X, a).
The knowledge of the attacker is updated only according
to the observation of action a, whereas for attacker A5, the
observation of allowed inputs is performed actively, i.e., via
a test made by the attacker.

We can now define the observation functions. The con-
troller (player 2) has perfect knowledge of the system’s
state, so we define O2(n) = n for every node of the system.
The system (player 3) also has perfect information on the
current node of the system, so O3(n) = n. The attacker
only has partial information, i.e., if n = (q,X, x, sys), then
O2(n) = X. Thus, the attacker cannot differentiate states
containing the same state estimate. Lastly, the winning
condition is WinS = {n | O2(n) ⊆ S}.

q,X, c, sys

q,X, a, δ(q, a) q′, X ′1, c1, sys q′, X ′1, c1, att

q′, X ′2, c2, sys

a ∈ Σo

(a, c2)

(a, c1) ε

Fig. 4. An arena for the opacity game with an active
attacker A5. States of the attacker are represented
as red rectangles, states of the controller are green
circles, and states of the system are blue rectangles.

Theorem 2. Let G be an automaton and S be a secret. The
opacity of S w.r.t. an active attacker A5 can be enforced
by a belief-based controller iff player 2 has a winning
strategy σ2 against all strategies σ1, σ3 of players 1 and
3 in the three-player reachability game over arena Hactive

G
with winning condition WinS .

In their most general form, three-player games of partial
information are undecidable (Reif, 1979), but Chatterjee
and Doyen (2014) showed that three-player games are
decidable when player 1 is less informed than player 2.
This is the case in our setting, as the attacker only has
partial information on the current location in the arena,
while players 2 and 3 have perfect knowledge of it. More
precisely, Chatterjee and Doyen (2014) show that three-
player games are 2-EXPTIME complete, in general. The
main idea of their proof is to show a reduction from
a three-player game to an exponentially larger partial
information two-player game with the same objective.



Since partial information two-player games can be solved
in EXPTIME, this yields the 2-EXPTIME upper bound
for complexity of three-player games in general. A remark
in Chatterjee and Doyen (2014) is particularly interesting:
if player 2 has perfect information on the game, then the
decision procedure is only in EXPTIME. We can even
avoid an additional exponential blowup, as explained in
the following corollary.

Corollary 5. Given an automaton G, a set of secret states
S and an active attacker A5, deciding existence of a
controller ensuring opacity of G wrt active attacker A5

can be solved in EXPTIME.

6. CONCLUSION

We have proposed a unified setting for opacity with passive
and active attackers. For all attackers, opacity enforcement
can be brought back to a partial-information game.

Related work : Opacity can be seen as the opposite of
diagnosis problems. In diagnosis (Sampath et al., 1995),
the question of interest is whether fault occurrences can
be detected with partial observation of a running system.
This question boils down to checking that there exists
no pair of observationally-equivalent runs, one of which is
faulty, the other one that is not. Ensuring diagnosability
is a desirable property of a system. The goal of opacity,
on the other hand, is to prevent an attacker from gaining
certainty about properties of executed runs by making
such runs observationally equivalent to a run that does
not possess the property of interest. From an algorithmic
point of view, techniques to ensure diagnosability consist of
verifying the absence of pairs of runs, which can be done in
polynomial time on the self-product of the specification. A
contrario, to verify opacity we need to check properties of
a whole equivalence class for traces, and not only a pair of
runs. This requires modeling the complete knowledge of an
attacker, and immediately yields an exponential blowup.

Opacity has been addressed in several settings since the
work of Bryans et al. (2005) and Badouel et al. (2007).
Our approach does not only consist of checking whether
opacity holds, but also provides the means to control a
system in such a way that observed traces are not sufficient
to decide whether the current state of the system is a
secret one. Another enforcement technique was proposed
by Cassez et al. (2012). This approach consists of dy-
namically changing the observation of an attacker using
masks that hide a subset of transition labels that would
otherwise be seen by the attacker. In this setting, the
behavior of the system remains unchanged, but the control
dynamically changes the way the system is observed. Our
approach differs, as we forbid some behaviors. In fact, the
approaches are orthogonal: one can easily design a system
that is opaque with the help of masks, and not with control
(e.g., when all events are uncontrollable). Conversely, one
can easily design a system where masks are useless but
where control can make a system opaque (for instance,
when masks cannot reduce the set of observable events).
Another technique to guarantee opacity is to allow systems
to produce fictitious events as in Wu and S. Lafortune
(2014). This technique is orthogonal to our setting but it
should possible to model games where an “active” systems
that can insert dummy observations.

Future work: This work can be extended in several
ways. First of all, it should be straightforward to consider
enforcement of opacity for regular properties. Indeed, as
soon as runs satisfying a property P are recognized by an
automaton AP , enforcing opacity of runs of G satisfying
P simply means enforcing state-based opacity in G×AP .
Other open questions deal with the power of attackers.
So far, we have considered that the attacker is alone, and
can observe and interact with the system. An interest-
ing question is whether this setting can be extended to
a coalition of players that run distributed attacks. We
assumed that controllers of the system had full knowledge
of the current state of the system. This allowed us to recast
opacity control in a game setting with perfect observation
for the controller. Now, if the controller is a particular
component of the system, and observes only a subset of
actions performed and has only partial information on
the current global state of the system, the setting for
enforcement questions changes. For passive attackers, the
enforcement games become two-player games with partial
information, which are exponentially harder to solve than
perfect information games. In an active setting, opacity
enforcement becomes a three-player game with partial
information. Such games are usually undecidable Peterson
and Reif (1979), but there is still a chance that opacity
enforcement problems can be recast in a decidable setting
of (Chatterjee and Doyen, 2014).
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(2005). Opacity generalised to transition systems. In
Formal Aspects in Security and Trust, 81–95.

Cassez, F., Dubreil, J., and Marchand, H. (2012). Synthe-
sis of opaque systems with static and dynamic masks.
Formal Methods in System Design, 40(1), 88–115.

Chatterjee, K. and Doyen, L. (2010). The complexity of
partial-observation parity games. In Proc. of LPAR’17,
volume 6397 of LNCS, 1–14.

Chatterjee, K. and Doyen, L. (2014). Games with a weak
adversary. In Proc. of ICALP 2014, Part II, volume
8573 of LNCS, 110–121.

Goguen, J. and Meseguer, J. (1982). Security policies
and security models. In Proc of IEEE Symposium on
Security and Privacy, 11–20.
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APPENDIX

6.1 Construction of an attractor

We want to avoid leaking nodes of the arena, i.e., the
nodes in which the belief of the attacker is contained in
S. Initially, Bad0 = Win = {(q,X, c) ∈ V1 | X ⊆ S} and
Badc0 = ∅. We then iterate the following two fix-points up
to stabilization:

Badci+1 = Badci ∪{((q,X), a) ∈ V0 |a ∈ Σ ∪ ε,
∀c ∈ CV (q), ∃((q′, X ′), c) ∈ Badi and
(((q,X), a), (a, c), ((q′, X ′), c)) ∈→H}

Badi+1 = Badi ∪{((q,X), c) ∈ V1 |∃a ∈ Σ,
(((q,X), c), a, (δ(q, a), X), a) ∈→H

with (δ(q, a), X), a) ∈ Badci}

We denote by Bad and Badc the results of these fix-point
computations. If v0 ∈ Badc, then there exists a path from
v0 to Bad0. In particular, let π = n0..nk be one of the
longest acyclic paths from v0 to Bad0. One can remark
that k is smaller than the number of steps needed to
achieve a fix-point, and that v0 ∈ Badk but v0 ∈ Badk−1.
This means, that every choice from v0 leads to a node in
BadCk−1∪Badk−1. Thus, no strategy of player 0 can avoid

reaching BadCk−1 ∪Badk−1, i.e., there is no control policy
that avoids getting closer to Bad0. One can extend this
reasoning to the next k steps (at most), showing that if
v0 ∈ Badc there is no winning strategy for the controller
to avoid Win.

Let us now suppose that v0 /∈ Bad0. Then we can allow,
in all nodes of the controller, any control that leads to a
node of the system in V \ Bad, i.e., there exists at least
one positional strategy to avoid leakage.

6.2 Proofs of theorems, propositions and corollaries

Proof of Proposition 1

Proof : To find witnesses of non-opacity, one can ran-
domly select a run ρ of G. Every time ρ reaches a secret
state, verify that the set of runs of G that are compatible
with A(ρ) contain at least one run that does not end in a
secret state. Obviously, this algorithm does not terminate.
However, note that to check if a run meets the opacity
condition, then it is sufficient to consider only its last state
q, and the set X of last states of runs in [A(ρ)]. Opacity
is violated if [A(ρ)] ⊆ S. Then, when a new transition
(q, a, q′) is chosen, it sufficient to compare q′ (if q′ ∈ S
and δA(X,A(a, q′)). Note that states of DetA(G) maintain
[A(ρ)], which completes the proof. �

Proof of Corollary 2

Proof : As the opacity problem has been recast as a
reachability question for an automaton of size in 2|G|,

one can perform a non-deterministic exploration of this
automaton with memory linear in |G|, hence PSPACE
membership. For the hardness, one can reuse the results of
(Cassez et al., 2012), showing that opacity with observers
that simply read projections of runs on Σo is PSPACE-
complete. �

Proof of Theorem 1

Proof : Assume that player 0 has a strategy σ0 in arena
HG,S,A2

that forbids reaching Win. All runs of the arena
following strategy σ0 avoid nodes leaking the secret S, i.e.,.
nodes of the form (q,X, c) where X ⊆ S.

Let Cσ0
be the following controller: we have q0Cσ0

= n0,

QCσ0
= (Q× 2Q × 2Σ) \Bad and

δCσ0
= {((q,X, c), a, (q′, X ′, c′)) | q′ = δ(q, a)∧

(q′, X ′, c′) ∈ σ0(q,X, a)},

λCσ(n) = c for every node of the form n = (q,X, c).
Now suppose G/C is not opaque, i.e.,. there exists a run

ρ = (q0, X0)
a1−→ (q1, X1) . . .

ak−→ (qk, Xk) of G/C such
that qk ∈ S (ρ ends in a secret state), and every equivalent
run ρ′ ends in a state of S too. Then there exists a play
πρ = v0.v0,c0 . . . vk−1,c.vk−1 of the arena such that every
vi,ci = (qi−1, Xi−1, ci) is a node of player 1, every vi is a
node of player 0 of the form (qi, Xi, ai). Notice that Xk is
contained in S. As ρ is a run of G/Cσ0

, every transition

(qi−1, Xi−1)
ai−→ (qi, Xi) satisfies ai ∈ λ(qi, Xi). However,

as Xk ⊆ S, there exist an index j ∈ 1..k such that for any
set of controls cj , . . . ck, (qj , Xj , cj) . . . (qk, Xk, ck) ⊆ Bad.
In particular the control cj−1 = λ(qj−1, Xj−1) used at step
j − 1 does not prevent leaking of the secret. This means
that strategy σ0 from a predecessor of node (q,X, cj−1)
fails to avoid Bad and is hence not a winning strategy
(contradiction).

Let us now suppose that there exists a belief-based con-
troller C = (QC , qo,C ,Σ, δC , λC), whose transitions are con-
sistent with the state estimation of an attacker, such that
G/C is opaque. Recall that the allowed inputs are pub-
lished in every state reached after an observable event. We
can design a strategy σC for player 0: we set σC(q,X, a) =
(q′, X ′, c′), where q′ = δ(q, a) and (q′, X ′) = δC((q,X), a),
and c = λ(q′, X ′). Note that as we require beliefs of the
controller to be consistent with the attacker’s knowledge,
we have X ′ = Refact(∆o(X, a), λ(q′, X ′) ∩ Γ?(q′)).

As G/C is opaque, for every run ρ of G/C ending in a secret
state s ∈ S, the observation of run ρ does not allow the
attacker to build an estimation that contains only states
in S and no state s′ 6∈ S reachable after an equivalent run
ρ′ of G/C.

Every run of G/C is of the form ρ = (q0, {q0})
a1−→

(q1, X1)
a2−→ . . . , and is such that ∀i, ai ∈ λ(qi−1, Xi−1),

and for every Xi, S ∩Xi 6= ∅ ⇒ Xi \ S 6= ∅
Now, consider any run of the arena π = (q0, {q0}, ε) −→
(q0, {q0}, c) −→ (q1, X0, b1) −→ (q1, X1, c1) . . . (qk, Xk, ck),
that conforms to σC . Since C is belief-based, for ev-
ery (qi, Xi, ci) in run π, ci = λ(qi, Xi). We have
σC(q0, {q0}, ε) = λ(q0, {q0}, and (q0, {q0}, ε) 6∈ Bad0. We
can prove that for any length n, (qn, Xn, cn) 6∈ Badc:
indeed, for all (qi, Xi), if a ∈ λ(qi, Xi) then δ((qi, Xi), a) 6∈



Badc0 as this move is allowed in the controller. By induction
on the length of π, we can show that δ((qi, Xi), ai) 6∈ Bad0.

So, for every n = (q′, Xi, ai) ∈ σC(qi, Xi, ci) and n′ =
(q′, Xi+1, ci+1) that are reachable after an action ai al-
lowed by ci, n

′ 6∈ Bad0. Hence, σC is a strategy to avoid
Bad0, i.e., a winning strategy for player 0. �

Proof of Corollary 3

Proof : The arena built is of size in O(|Q|.2|Q|×2|Σ|), i.e.,.
exponential in the size of the original automaton. As co-
reachability games with perfect information can be solved
in linear time (in the size of the arena), this immediately
gives us an exponential algorithm to check whether opacity
can be enforced. �

Proof of Corollary 4

Proof : In the arena built in Theorem 1, all possible
sets of state estimations of the attacker are built. There
are at most 2|Q| such estimations. It is well-known that
for perfect information games with reachability, Büchi or
parity winning conditions, if a strategy exists, then a
positional strategy exists. Hence, positional strategies in
HG,S,A2

are sufficient to take the correct decisions that
avoid positions in which an attacker has a state estimation
fully contained in S. We have shown in Theorem 1 how
to build a controller Cσ from a strategy σ. The states of
these controllers contain the state estimation built by the
attackers. So, belief-based controllers are sufficient to avoid
secret leakage. Furthermore, these controllers need at most
|G|.2G states to avoid secret leakage. Let us now show that
some automata and secrets need controllers of exponential
size.

q0 q1 q2 qn−1 qn qn+1

u0 u1 u2 un−1 un un+1

l0 l1 l2 ln−1 ln ln+1

a, b

a, b

a, b

c, d

b a, b a, b d

a

a, b

a, b c

u
u u u

u
u u u

d

c
a, b

a

a

b

Fig. 5. An automaton for which attackers and controllers
are of exponential sizes

The example of Fig. 5 is an automaton of size 3.n+6. This
example is borrowed from Haar et al. (2017), where it is
used to demonstrate that active diagnosis has solutions
that require observers of exponential sizes. Observable
actions in this example are a, b, action u is unobservable,
and only action c, d are controllable. The secret state is
qn+1. Let us consider how state estimation of an attacker
evolves. The initial belief is B0 = {q0}. If an a is observed,
then the belief can be updated to B1,a = {q1, u1}, and if
b is observed, then the belief is updated to B1,b = {q1, l1}.
Beliefs grow in this way. After n observations, beliefs are
of the form Bn,w = {qn, x1 . . . xn}, where xi = ui if
the n − i + 1th letter was an a and xi = li otherwise.
Now, from a belief Bn,w, if an a or a b is observed,
the belief becomes Bn,w.a = Bn,w.b = {qn, x′2 . . . x′n}
where x′i = ui if xi = ui−1 and li otherwise. That
is, beliefs encode the sequence of observations. Hence,

after n observations, beliefs decrease and are updated
accordingly with occurrences of as and bs. After n − 1
additional observations of a, b starting from belief Bn,w,
the remaining belief is of the form B2n−1,w.w′ = {qn, un}
(from which letting action c occur represents no danger)
or B2n−1,w.w′ = {qn, ln} (from which letting action d
occur represents no danger). One additional observation
of a brings the belief in B2n = {qn}. From any belief
of the form Bn+k,w.w′ = {qn, . . . xn} the observation of
c discards the possibility of being in any state other that
qn, un or ln, and hence gives to the attacker the knowledge
Bn+k,w.w′.c = {qn+1, xn+1}, where xn+1 = un+1 if xn =
un in Bn+k,w.w′ and ln+1 otherwise. From this example,
one can easily verify that the set of beliefs that can be
computed in our example is of size 2.2n + 3. Note that the
arena and the controllers computed from strategies in this
arena have to correctly maintain all beliefs of attackers,
as otherwise strategies can take the wrong decision. As a
conclusion, for some automata whose size is in O(n), the
arena and the associated controller can be in O(2n). �

Proof of Theorem 2

Proof :

We need to consider the additional observation capacities
of active attackers when composing a controller with an
automaton. Given a deterministic automaton G and a
(belief-based) controller C, we define the active product
as the automaton G/Cactive = (Q/C , δ/C , ...) where

• (q0, q0C) ∈ Q/C
• for every a ∈ Σ \ΣAtt (Actions without attacker’s in-

puts), for every state (q, qc) ∈ Q/C where qc = (q,X),
if q′ = δ(q, a) and a ∈ λC(qc), then (q′, (q′,∆(X, a)) ∈
QC and ((q, qc), a, (q

′, q′c)) ∈ δ/C Make sure correct
Delta is used.
• for every state (q, qc) ∈ Q/C where qc = (q,X), for

every attacker input ?x that is not in Γ(q) ∩ λ(qc),
(q, q′C) ∈ Q/C , with q′C = (q,RefAct(X, {?x}) and
((q, qc), ε, (q

′, q′c)) ∈ δ/C .

As in the proof of theorem 1, for a given strategy
σ2, we will design a controller Cσ2

as an automaton(
QCσ2 , q0Cσ2 , λCσ2

)
. States of Cσ2

are of the form (q,X, c)
where q is a state of G, X is a belief of the attacker, and
c ⊆ 2Σ a control. We define δCσ2 as the set of transitions

of the form ((q,X, c), a, (q′, X ′, c′)), such that there exists
a path in HGactive that complies with σ2 from a node
n = (q,X, c, p) to another node n′ = (q′, X ′, c′, p′), in
which a is the only observable action appearing along
this path, and p, p′ ∈ {Att, sys}. Note that as this path
contains a single observable action, it necessarily includes
a decision of the controller in the arena. Such paths can
be for instance of the form π1.πc.π2 where:

π1 = (q,X, c, sys)
ε−→ (q,X, c, att)

u1−→
(q,X1, c, sys)

ε−→ . . . (q,X, c, att)
uk
( q,Xk, c, sys)

πC = −→ (q,Xk, c, sys)
a−→ (q,Xk, a, δ(q, a))

(a,c′)−→ (q′, Xk+1, c
′, sys′)

π2 = (q′, Xk+1, c
′, sys′)

ε−→ (q′, Xk+1, c
′, att)

uk+1−→
. . . (q′, Xk+2, c

′, att)
uk′−→ (q,Xk′ , c, sys)



with (q′, Xk, c
′, sys) ∈ σ2(q,Xk, a, δ(q, a)), and each ui is

an attacker’s input that is not feasible in current state
or due to control. Similarly, path starting or ending on
attacker nodes follow the same scheme, and one also
has to consider path in which an input of the attacker

results in state change, i.e.,. where πC = (q,Xk, c, att)
?x−→

(q,Xk, ?x, δ(q, ?x))
(?x,c′)−→ (q′, Xk+1, c

′, sys′). We obviously
set q0Cσ2 = (q0, {q0}, σ′2(q, {q0}), and λCσ2 (q,X, c) = c.
Notice that this controller is non-deterministic, but that
the control affected to every state depends only on the
position reached immediately after an observable action.

Let us now show that if a strategy σ2 is a winning strategy,
then no state that leaks secret S is reachable in G/Cσ2

.

Suppose that there exists a path ρ = (q0, q0Cσ2 )
a1−→

. . .
ak−→ (qk, qck) in G/Cσ2

where qck = (qk, Xk, c) with

Xk ⊆ S. Every step (qi, qci)
ak−→ (qi+1, qci+1

) can be
mapped to a path ρ1,i.ρC,i.ρ2,i that contains a single
action that is an observable action or an allowed input
of the attacker in the arena. Notice also that this path
conforms to strategy σ2. As such steps are allowed for
every i ∈ 1..k, this means that there exists a path in the
arena that is compatible with σ2 and nevertheless reaches
a node (q,Xk, c, p) where p ∈ {sys,Att}. To win, players
1 And 3 simply have to remember a prefix of path ρbad,
and play their next transition in this path. Hence, there
exists strategies σ1, σ3 that allow reaching a position where
state estimates are contained in S. So, σ2 is not a winning
strategy for the controller (contradiction). So, if σ2 is a
winning strategy for player 2 in HGactive, then Cσ2

is a
controller guaranteeing opacity of S in G.

Let us now assume that there exists a non-deterministic
controller C = (QC , δC , q0C , λC) for G. For every word
w in L(G/C), there exists several paths from (q0, q0C) to
states from set Rw = {(qi, qc,i)}i∈1..k. All states in Rw are
labeled by the same control λ(Rw). Let us assume that
C is a controller that enforces opacity of S w.r.t. attacker
A5, i.e.,. for every run ρ of G/C, ∆A5

({q0},A5(ρ)) * S.

Let us define the positional strategy σC for player 2 in the

three-player arena as follows: For every run π = v0 . . .
a1−→

. . .
ak−→ vk in the arena ending on a node (q,X, ak, q

′), and
labeled by a sequence of actions a1 . . . ak, we let σC(π) =

λ(QC,π), where QC,π = {(q,X) | (q0, q0C)
a1...ak−→ (q,X) is

the set of states reached in C after reading labels in π. Let
us now assume that there exists a run π in the arena that
is compatible with σC but allows to reach WinS . π is of
the form

π = (q0, {q, 0}, ε)
c0−→ (q0, c0, {q0}, sys) . . .

a−→ (qi, Xi, a, q
′
i)

ci−→ (q′i, X
′
i, ci, sys) . . .

· · · −→ (qk, Xk, ck, p)

where p is either the system or the active attacker. One can
show by induction that for every node (qi, Xi, ai, q

′
i) there

exists a path in G/C from its initial node to (qi, Xi, a, q
′
i)

labeled by the sequence of actions a1 . . . ai appearing in
π[0..i] (the restriction of π to its first i steps). This is
in particular true for the first control node before nk =
(qk, Xk, ck, p). Let us call nj = (qj , Xj , aj , q

′
j) this node. As

there is no control node between nj and nk, then all moves

between nj and nk either give control to the attacker or
refine the attacker’s knowledge by playing refused inputs.
Hence there exists a sequence of ε moves from (qj , (qj , Xj))
to (qk, (qk, Xk)) in G/C. (Contradiction). So, σC is a
strategy for the three-player game. �

Proof of Corollary 5

Proof : We can reuse the complexity results from Chat-
terjee and Doyen (2014): A three-player game with partial
information where player 1 is less informed than player 2 is
usually in 2−EXPTIME. It is solved by first collapsing
players 1 and 3 to obtain an exponentially larger game with
two players and partial information. Two-player games
of partial information are usually solved in exponential
time by computing an exponentially larger arena that
represents beliefs of players, and on which reachability
games can be solved in linear time. This yields the dou-
bly exponential complexity of reachability questions in
three-player games. One can however notice an interesting
property of models mentioned in Chatterjee and Doyen
(2014): if player 2 has perfect information, then there is
no exponential blowup when collapsing players 1 and 3.
From a three-player reachability game over arenaHGactive,
one can hence compute a partial observation two-player

game on an arena H′G
active

of size in O(|HGactive|). Every

strategy on H′G
active

has a counterpart in HGactive. Last,
to solve this game, one just have to compute beliefs of
players. As player two has perfect information, it remains
to consider beliefs of player 1 when visiting nodes of the
arena. One can immediately notice that the belief of player
1 is exactly the state estimation contained in positions
of HGactive. This situation was already noticed for active
diagnosis questions in Bertrand et al. (2014). Hence no
additional exponential blowup is needed to solve the two-

player partial information reachability game over H′G
active

and we obtain that checking existence of a controller for
opacity of S in G can be done in EXPTIME. �


