O. Thomas, J. Deü, and J. Ducarne, Vibrations of an elastic structure with shunted piezoelectric patches: efficient finite element formulation and electromechanical coupling coefficients, International Journal for Numerical Methods in Engineering, vol.265, issue.5, pp.235-268, 2009.
DOI : 10.1007/978-1-4899-6453-3

URL : https://hal.archives-ouvertes.fr/hal-01572491

B. Lossouarn, M. Aucejo, and J. Deü, Multimodal coupling of periodic lattices and application to rod vibration damping with a piezoelectric network, Smart Materials and Structures, vol.24, issue.4, p.45018, 2015.
DOI : 10.1088/0964-1726/24/4/045018

URL : https://hal.archives-ouvertes.fr/hal-01691077

B. Lossouarn, J. Deü, and M. Aucejo, Multimodal vibration damping of a beam with a periodic array of piezoelectric patches connected to a passive electrical network, Smart Materials and Structures, vol.24, issue.11, p.115037, 2015.
DOI : 10.1088/0964-1726/24/11/115037

URL : https://hal.archives-ouvertes.fr/hal-01691081

B. R. Mace, D. Duhamel, M. J. Brennan, and L. Hinke, Finite element prediction of wave motion in structural waveguides, The Journal of the Acoustical Society of America, vol.117, issue.5, pp.2835-2843, 2005.
DOI : 10.1121/1.1887126

J. M. Mencik and D. , A wave-based model reduction technique for the description of the dynamic behavior of periodic structures involving arbitrary-shaped substructures and large-sized finite element models, Finite Elements in Analysis and Design, vol.101, pp.1-14
DOI : 10.1016/j.finel.2015.03.003

URL : https://hal.archives-ouvertes.fr/hal-01188551

P. B. Silva, J. M. Mencik, and J. R. Arruda, Wave finite elementbased superelements for forced response analysis of coupled systems via dynamic substructuring, International Journal for Numerical Methods in Engineering, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01709691

P. G. Domadiya, E. Manconi, M. Vanali, L. V. Andersen, and A. Ricci, Numerical and experimental investigation of stop-bands in finite and infinite periodic one-dimensional structures, Journal of Vibration and Control, vol.22, issue.4, pp.920-931, 2016.
DOI : 10.1063/1.3552920

L. Airoldi and M. Ruzzene, Wave Propagation Control in Beams Through Periodic Multi-Branch Shunts, Journal of Intelligent Material Systems and Structures, vol.11, issue.3, pp.1567-1579, 2011.
DOI : 10.1117/12.239093

Y. Fan, M. Collet, M. Ichchou, L. Li, and O. , A wave-based design of semi-active piezoelectric composites for broadband vibration control, Smart Materials and Structures, vol.25, issue.5, p.55032, 2016.
DOI : 10.1088/0964-1726/25/5/055032

Y. Lu and J. Tang, Electromechanical tailoring of structure with periodic piezoelectric circuitry, Journal of Sound and Vibration, vol.331, issue.14, pp.3371-3385, 2012.
DOI : 10.1016/j.jsv.2012.02.029

T. L. Huang, M. N. Ichchou, O. A. Bareille, M. Collet, and M. Ouisse, Traveling wave control in thin-walled structures through shunted piezoelectric patches, Mechanical Systems and Signal Processing, vol.39, issue.1-2, pp.59-79, 2013.
DOI : 10.1016/j.ymssp.2012.06.014

D. M. Mead, WAVE PROPAGATION IN CONTINUOUS PERIODIC STRUCTURES: RESEARCH CONTRIBUTIONS FROM SOUTHAMPTON, 1964???1995, Journal of Sound and Vibration, vol.190, issue.3, pp.495-524, 1996.
DOI : 10.1006/jsvi.1996.0076

L. Brillouin, Wave propagation in periodic structures, 1946.

A. E. Bergamini, M. Zündel, E. A. Flores-parra, T. Delpero, M. Ruzzene et al., Hybrid dispersive media with controllable wave propagation: A new take on smart materials, Journal of Applied Physics, vol.118, issue.15, p.154310, 2015.
DOI : 10.1088/1367-2630/13/11/113010