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Abstract. On the one hand, a user vocabulary is often used by soft-
computing-based approaches to generate a linguistic and subjective de-
scription of numerical and categorical data. On the other hand, knowl-
edge extraction strategies (as e.g. association rules discovery or cluster-
ing) may be applied to help the user understand the inner structure of
the data. To apply knowledge extraction techniques on subjective and
linguistic rewritings of the data, one first has to address the question of
defining a dedicated distance metric. Many knowledge extraction tech-
niques indeed rely on the use of a distance metric, whose properties have
a strong impact on the relevance of the extracted knowledge. In this pa-
per, we propose a measure that computes the dissimilarity between two
items rewritten according to a user vocabulary.

Keywords: Fuzzy partition, data personalization, dissimilarity measure

1 Introduction

Helping users extract and understand the content of a raw data set is a crucial
task in data mining. Most of the datasets contain the description of items on at-
tributes that are generally of a numerical or a categorical nature. It is cognitively
difficult for an end-user to browse and analyze a large collection of numerical and
categorical data, and it is moreover, technically speaking, almost impossible to
generate an interpretable graphical view of a set of data described on more than
3 dimensions. To overcome these difficulties, soft-computing-based approaches
of data management leverage a user vocabulary to turn numerical and categor-
ical variables (i.e. attributes) into linguistic variables. Once rewritten according
to the user vocabulary, concise and easily interpretable views of the data may
be generated to give the user an insight into the content of the dataset [1]. In
addition, data mining techniques, as clustering algorithms for instance, may be
used to discover the inner structure of the data, whose description also consti-
tutes valuable knowledge [2]. Many data mining techniques rely on a distance
measure to determine the similarity of two items. In this work, we address the
question of computing the distance between two items rewritten according to a
user vocabulary formalized by means of strong fuzzy partitions. This question of
a distance measure at the partition level has been notably studied by Guillaume
et al. [3], but the measure they proposed sometimes leads to questionable results
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as we will see in Section 2.4.

We propose in this paper a new dissimilarity measure at the partition level
that somehow reconsiders the indistinguishability relation introduced by the use
of a fuzzy vocabulary for the sake of a better interpretability of the generated
results. The final objective is to use the proposed dissimilarity measure to build
clusters of data rewritten according to a user vocabulary instead of considering
their numerical and categorical values. Motivation for that are manifold. First,
the indistinguishability area defined by the cores of the fuzzy sets will reduce
the number of distinct rewritings to consider, thus making it possible to handle
larger datasets. Second, translating numerical and categorical values into linguis-
tic terms allows for the conception of graphical views representing the obtained
clusters on many dimensions at the same time [1], which cannot be envisaged on
numerical/categorical data. And third, starting with a rewriting step of the data
is a way to personalize the data-to-knowledge translation process and to make it
more easily interpretable for end-users. But the relevance of the structure built by
a clustering highly depends on the properties of its underlying distance measure.

In this paper, we focus on the definition of dissimilarity measures at the fuzzy
partition level and the study of their properties. Their use by a clustering pro-
cess will be the next step. The rest of the document is structured as follows. In
Section 2, preliminary notions regarding fuzzy-set-based vocabularies and dis-
similarity measures at the partition level are recalled. Sections 3.1 and 3.2 detail
our proposed dissimilarity measures, respectively for numerical and categorical
domains.

Motivating Example

To illustrate the motivation for a new dissimilarity measure, let us consider
the vocabulary, i.e. fuzzy partition, illustrated in Fig. 1 that turns the mileage
of a car into a linguistic variable that may take the values {veryLow, low,
medium, high, veryHigh}. In the situation illustrated by Fig. 1, a dissimilar-
ity measure at the partition level has to be able to capture the fact that t1 is
closer to t3 than to t6 because the linguistic value that describes t1, namely low
mileage, is closer to medium mileage than to veryHigh mileage, this case being
well covered by the measure defined in [3]. However, contrary to [3], we argue
that the indistinguishability relation should be limited to the core of the fuzzy
sets (as e.g. between t3 and t4), and that it appears more natural and inter-
pretable to consider t3 as closer to t2 than to t5 even if these last two points
satisfy the linguistic value medium mileage at the same degree (in this case
µmedium(t2) = µmedium(t5) = 0.7). This expected behavior is all the more im-
portant if the considered task is to build groups of items having close linguistic
rewritings. Using a dissimilarity measure that is more appropriate to compare
rewritten data, we expect that more meaningful groups of items will be obtained
especially by avoiding grouping tuples that are significantly different.
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Fig. 1. Distance computation at the partition level between numerical values

Even if meaningful fuzzy partitions may be built on categorical attributes,
using a dedicated graphical interface as ReqFlex for instance [4] (Fig. 2), distance
measures between categories or discrete fuzzy sets are generally reduced to a
Boolean test of equality. A second contribution of this paper is to propose a
measure to compute the dissimilarity between two categorical values that takes
into account the structure of its underlying user vocabulary. The idea is to
consider that discrete fuzzy sets sharing some categories should be considered as
somewhat semantically related. By doing so, one may infer a weak partial order
on discrete fuzzy sets defined on top of a categorical attribute. Thus, categorical
values taken from these two sets should be considered closer to each other than
categorical values taken from two sets having an empty intersection. To illustrate
this proposal, let us consider a possible fuzzy vocabulary describing different car
brands according to their relative reliability reputation (Fig. 2). Then, we argue
that the brand Chrysler, characterized as a fully moderatelyReliable brand, should
be considered as closer to VW, a reliable brand, than Daewoo, that belongs to
the set of poorlyReliable brands, because moderatelyReliable brands and reliable
brands have in this case much more in common than with poorlyReliable brands.
Obviously, the relevance of this interpretation of semantic closeness is context-
dependent, and most of all depends on the point-of-view expressed by the user
through the definition of his/her vocabulary.
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Fig. 2. Example of a subjective vocabulary on a categorical attribute
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2 Preliminary notions

Let D : {t1, t2, . . . , tm} be a set of m items to analyze. Each item is initially
defined by the values it takes on n attributes {A1, A2, . . . , An} that may be of a
numerical or categorical type. More formally, if one denotes by Xi the definition
domain of attribute Ai then t ∈ X1 × X2 × . . . × Xn. One denotes by t.A the
value taken by item t on attribute A.

2.1 Fuzzy-Set-Based User Vocabulary

We consider that a vocabulary composed of Fuzzy Partitions (FP) is defined on
the attributes {A1, A2, . . . , An}. Such a vocabulary, denoted by V = {V1, . . . , Vn},
formally consists of a set of linguistic variables, associated with each attribute:
Vj is a triple 〈Ai, {vi,1, . . . , vi,qi}, {li,1, . . . , li,qi}〉 where qi denotes the number of
modalities associated with attribute Ai, the vi’s denote their respective mem-
bership functions defined on domain Xi and the li’s their respective linguistic
labels, generally adjectives of the natural language. For instance, an attribute Ai

describing prices may be associated with qi = 3 modalities, in turn associated
with the labels li,1 =‘cheap’, li,2 =‘reasonable’ and li,3 =‘expensive’.

It is assumed that for all attributes, each value may be completely rewritten
in terms of V : ∀y ∈ Dj ,

∑qj
s=1 vjs(y) = 1. Moreover, it is assumed that the

partitions defined on numerical attributes form a strong FP [5], which leads
to the constraint that y can partially satisfy up to two adjacent modalities.
Figures 1 and 2 are examples of such partitions defined on a numerical and a
categorical attribute respectively.

2.2 Item Rewriting vector

Initially defined in a numerical and categorical space, an item may be rewritten
using the linguistic terms from the user vocabulary. The result of such a rewriting
step is called an item rewriting vector.

Definition 1. One denotes by Rt the rewriting vector of an item t wrt. a user
vocabulary V, this vector being the concatenation of the satisfaction degrees ob-
tained by t on the different terms that compose V. Such a vector is represented
in the following way:

Rt = 〈µv1,1(t), µv1,2(t), . . . , µv1,q1
(t), . . . , µvn,1(t), µv1,n(t), . . . , µv1,qn

(t)〉.

We also denote by RAi
t the part of the whole rewriting vector Rt that concerns

the attribute Ai, R
Ai
t = 〈µvi,1(t.Ai), µvi,2(t.Ai), . . . , µvi,qi

(t.Ai)〉.

Example 1. Tab. 1 shows the data (attribute values and rewriting vectors from
Fig 1) that have to be considered when computing a dissimilarity at the FP
level.
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Table 1. Items from Fig. 1 and their rewriting vector

t t.mileage Rmileage
t t t.mileage Rmileage

t

t1 50K 〈0, 1, 0, 0, 0〉 t2 70K 〈0, 0.3, 0.7, 0, 0〉
t3 74K 〈0, 0, 1, 0, 0〉 t4 80K 〈0, 0, 1, 0, 0〉
t5 90K 〈0, 0, 0.7, 0.3, 0〉 t6 134K 〈0, 0, 0, 0, 1〉

2.3 Properties of a Dissimilarity Measure at the Partition Level

When it comes to defining a dissimilarity that takes into account fuzzy sets,
then three types of comparison may be envisaged [6]: 1) between two points that
belong to a same fuzzy set, 2) between a point and a fuzzy set and, 3) between
two fuzzy sets [7]. As shown in [3], (that is, to the best of our knowledge, the only
existing approach addressing the question of a distance calculation at the fuzzy
partition level) the measure we have to define has, in some sense, to combine
these three types of fuzzy distances.

In fine, we aim at computing the dissimilarity between two items wrt. the
considered vocabulary V. This measure obviously relies on the aggregation of
dissimilarities computed on each considered dimension. On a given dimension
Ai, the dissimilarity at the partition level of two items, say t and t′, has to com-
bine the dissimilarity between the two numerical/categorical values (t.Ai and
t′.Ai) and between their rewriting wrt. V: RAi

t and RAi

t′ . The expected behavior
of the function to build is that the farther t.Ai and t′.Ai, the higher the returned
dissimilarity value. But, this function also has to take into account the indistin-
guishability relation embedded in the definition of a fuzzy subset, which means
that the dissimilarity between RAi

t and RAi

t′ should be 0 if t.Ai and t′.Ai fall in
the core of a same partition element.

On any dimension involved in a rewriting vector, the function to define has
to fulfil the following properties to constitute a dissimilarity:

– positiveness: d(t, t′) ≥ 0,
– identity of indiscernibles: a property that is generally defined in the following

way d(t, t′) = 0 ⇔ t = t′ but extended as follows in our particular context
d(t, t′) = 0⇔ Rt = R′t to capture the indistinguishability relation embedded
in the FP,

– symmetry: d(t, t′) = d(t′, t).

A dissimilarity that also satisfies the triangle inequality: d(t, t′) ≤ d(t, t′′) +
d(t′′, t′), is called a semi-distance.

2.4 Behavior of Existing Approaches

In this subsection, we show that the existing approaches (a dedicated one [3]
and a naive one) to the computation of a dissimilarity degree at the FP level
lead, in some particular cases, to results difficult to understand and interpret.
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A Generic Dissimilarity Measure Whatever the type of the attribute Ai

concerned, numerical or categorical, a way to compute the dissimilarity of two
items t and t′, or more precisely their rewriting vectors RAi

t and RAi

t′ , is to
simply compare one-by-one the respective membership degrees of t and t′ on
the different terms of the vocabulary. Such a dissimilarity measure, denoted by
di1(t, t′) may be formalized as follows:

di1(t, t′) =
1

qi

qi∑
j=1

|µvi,j (t)− µvi,j (t′)|.

The main advantage of this basic strategy is that it can be applied to both
numerical and categorical attributes. However it suffers from the fact that it does
not take into account the structure of the concerned FP. It indeed considers at the
same distance of 1 any pair of values falling in the core of two distinct partition
elements, whatever the position of these elements in the partition. In the example
illustrated in Fig. 1, dmile.

1 (t1, t3) = dmile.
1 (t3, t6) = dmile.

1 (t1, t6) = 1.

A Pseudo-Metric at the FP-Level In [3], the authors address the question
of distance calculation at the FP level, but for numerical attributes only. They
especially define a pseudo-metric for the case of strong FP. This metric relies
on a strict discretization of the universe of the concerned attribute as shown
in Fig. 3 that form crisp areas denoted {I1, I2, . . . , Iqi}. Then, to compute the
distance between two points on a given attribute Ai, their position within this
discretization is first computed using the following function:

P (t) = I(t)− µvi,I(t)(t),

where I(t) is the index of the area (I(t) ∈ {I1, I2, . . . , Iqi}) in which t is located.
Then, the dissimilarity is quantified by the function di2(t, t′):

di2(t, t′) =
|P (t)− P (t′)|

qi − 1
.

Example 2. To illustre how dissimilarity degrees are computed using the measure
d2, let us consider the points t2, t4 and t5 from Fig. 1. Then, these points are
assigned to the following areas: I(t2) = I(t4) = 3 and I(t5) = 4. Considering that
µvmedium

(t2) = 0.7 and µvhigh
(t5) = 0.3, we thus obtain the following distance

degrees:

– dmile.
2 (t2, t4) = |2.3−2|

4 = 0.075,

– dmile.
2 (t4, t5) = |2−3.7|

4 = 0.425,

– dmile.
2 (t2, t5) = |2.3−3.7|

4 = 0.35.

The metric d2 handles well the distance between the partition elements to
which the two points belong. If one goes back to the situation illustrated in
Fig. 1, then d2(t1, t3) < d2(t1, t6). However, despite the fact that the core of a
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Fig. 3. Discretization of a numerical domain used by the metric d2

partition element introduces an area of indistinguishability, it appears desirable
to take into account the position of the points within the indistinguishability
area when computing a distance with points outside this area. For the sake
of understandability and interpretability, but also to improve the relevance of
the data mining task that relies on a distance calculation, it indeed appears
relevant and desirable to consider t4 (Fig. 1) closer to t5 than to t2. However,
in this particular case, as t2 and t4 fall in the same area according to the crisp
discretization suggested in [3] (I(t2) = I(t4) = 3), then d2(t2, t4) < d2(t4, t5),
which, we think, is highly questionable.

3 A Dissimilarity at the FP Level

In this section, we propose a measure to compute the dissimilarity between two
points that combines their respective position at the partition level as well as
their value dissimilarity. In this sense, the proposed measure is inspired from
works done in the context of distance calculation in image processing, and espe-
cially the fuzzy geodesic distance suggested in [8].

Definition 2. We denote by d∗(t, t′) the global dissimilarity to determine be-
tween t and t′ taking into account the structure of the FPs that form the vocabu-
lary V. d∗(t, t′) relies on the aggregation of dissimilarity degrees on the different
considered dimensions, we thus denote by di∗(t, t

′) the dissimilarity between t and
t′ on attribute Ai:

d∗(t, t
′) =

1

n

n∑
i=1

di∗(t, t
′). (1)

The functions di∗’s are defined in such a way that they return a dissimilarity
degree in the unit interval, hence the co-domain of d∗(t, t′) is also [0, 1]. In the
rest of this section, we provide definitions of di∗(t, t

′), first when the concerned
attribute is of a numerical type associated with strong FPs (Sec. 3.1), then when
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it concerns a categorical attribute associated with a discrete fuzzy partition
(Sec. 3.2).

3.1 For Numerical Attributes

We first address the question of computing the distance at the FP level between
two points t and t′ when the concerned attribute is of a numerical nature. To
compute the distance between two values wrt. a strong FP, we consider the
path formed by the boundaries of the partition elements that are above the line
y = 0.5. As illustrated in Fig. 4, this path corresponds to the union of the convex
hulls of each partition element. We denote by Li this path for the partition Vi and
|Li| its length. A first strategy to define the limits of this path is to consider the
minimum and maximum values present in the data on the concerned attribute.
This strategy being very sensitive to extremum values, we propose a second one
leveraging the fact that all the values inside the core of a partition element are
indistinguishable. We thus consider that all the values fully satisfying the first
(resp. last) element of the partition are at the same distance wrt. a point taken
outside the core of this element. This allows us to consider that the path Li

starts with the right bound of the core of the first partition element and ends
with the left bound of the core of the last element (See. Fig. 4). So every value
inside the core of the first (resp. last) element of the partition is treated as the
right (resp. left) bound of the core of the element in the dissimilarity calculation.

µ

0

1

A

Fig. 4. Hull of a strong FP

To compute the dissimilarity between two points wrt. a strong FP, we then
distinguish between two cases. When the two values to compare fall in the core
of a same modality, then we assume their distance to be equal to 0 so as to
satisfy the indistinguishability relation introduced by the different fuzzy sets. In
all other cases, the distance between two values corresponds to the length of the
path following Li between these two values. Such a path between two values,
say t and t′1, is denoted by Li(t, t

′) as illustrated in Fig. 5.

1 For the sake of simplicity, t and t′ are used instead of t.Ai and t′.Ai respectively to
lighten the notation.
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Fig. 5. Path between two values t and t′

Definition 3. Let Ai be a numerical attribute, Vi its FP and Li its upper de-
limiting path. Then di∗1(t, t′) is defined as follows:

di∗1(t, t′) =

{
0 if ∃v ∈ Vi, st. µv(t) = µv(t′) = 1,
|Li(t,t

′)|
|Li| otherwise.

(2)

Proposition 1. The proposed definition of di∗ when Ai is numerical is a dis-
similarity.

Proof. The dissimilarity between two values t and t′ wrt. a strong FP being com-
puted as the ratio between two path lengths, then the obtained dissimilarity de-
gree is obviously positive and symmetrical. About the identity of indiscernibles,
that should be interpreted in our case as the identity of indistinguishables, the
conditional definition of di∗(t, t

′) is used to guarantee such an indistinguishability
relation between values inside the core of a fuzzy set. If µv(t) = µv(t′) = 1 and
due to the structural properties of the strong FP used on numerical attributes
then di∗(t, t

′) = 0⇔ RAi
t = RAi

t′ .

Remark 1. The satisfaction of the identity of indistinguishables is in opposition
with the triangle inequality. Indeed, considering a partition element v and three
points t, t′ and t′′ such that µv(t) = µv(t′) = 1, µv(t′′) < 1 and t ≤ t′ < t′′

(resp. t′′ < t ≤ t′), then di∗(t, t
′) = 0 and di∗(t, t

′′) ≥ di∗(t
′, t′′) (resp. di∗(t, t

′′) ≤
di∗(t

′, t′′)). Thus, one observes that di∗(t, t
′′) > di∗(t, t

′) + di∗(t
′, t′′) which violates

the triangle inequality property. The triangle inequality is however satisfied if
there is no situation of indistinguishability between the three values considered.

Example 3. If one goes back to the situation depicted in Fig. 1 and Tab. 1, then
the proposed definition of di∗(t, t

′) leads to the expected behavior as shown by
the dissimilarity matrix Tab 2.

3.2 For Categorical Attributes

Contrary to numerical attributes, categorical ones are generally defined on non-
ordered domains. Hence, no explicit distance can be directly defined for a cate-
gorical attribute.
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Table 2. Distance matrix between the items detailed in Tab. 1

t1 t2 t3 t4 t5 t6
t1 0 0.18 0.22 0.27 0.36 0.76
t2 0.18 0 0.04 0.09 0.18 0.58
t3 0.22 0.04 0 0 0.15 0.55
t4 0.27 0.09 0 0 0.09 0.5
t5 0.36 0.18 0.15 0.1 0 0.4
t6 0.76 0.58 0.55 0.49 0.4 0

The question of computing a distance between categorical values has already
largely been addressed, especially by the data mining community [9, 10]. Most
of the proposed measures rely on contextual information, structural properties
(considering clusters of data for instance) or correlations with other dimensions
than the concerned categorical one [11, 12]. The seldom measures that only make
use of the concerned categorical attribute deduce links between categorical values
if their frequency of appearing is close [13, 14]. So, to the best of our knowledge,
the dissimilarity defined in this section is the first one that addresses the ques-
tion of comparing categorical values according to a discrete FP.

By defining a fuzzy-set-based vocabulary on a categorical attribute, the user
expresses a subjective point-of-view about the way the categories have to be
interpreted. A discrete fuzzy set gathers categories that define, combined all to-
gether, a “semantic concept”. Categories regrouped in a same fuzzy partition
element can be discriminated according to their respective membership degree
within the set. When the user gradually assigns a categorical value to two differ-
ent partition elements, we consider that he/she creates a semantic link between
the two fuzzy-sets concerned. The idea behind the dissimilarity we propose for
categorical attributes is to deduce, not an order, but semantical links between
partition elements based on their intersections. These links are used in the pro-
posed dissimilarity measure to compute a distance between two categorical values
that belong to two different partition elements. The relevance of the links de-
duced between fuzzy sets based on their intersections obviously depends on the
concerned applicative context and the semantics of point-of-view expressed by
the user in his/her vocabulary.

Principles and Properties of the Proposed Dissimilarity Let t and t′ be
two categorical values satisfying the fuzzy terms v and v′ respectively (v and v′

may be identical) from an FP Vj . The principle of the dissimilarity measure is to
combine the membership of t and t′ to their respective partition elements (i.e. v
and v′) and the semantic closeness of v and v′. In other words, the more t and
t′ belong to a “semantically” close partition elements, the closer they are.

This semantic closeness between two elements from an FP is denoted by
CJ(v, v′) and may be defined by means of the Jaccard index that quantifies the
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proportion of elements v and v′ share.

CJ(v, v′) =

∑
x∈Dmin(µv(x), µv′(x))∑
x∈Dmax(µv(x), µv′(x))

.

Definition 4. For a categorical attribute Ai, the measure di∗ is defined as fol-
lows:

di∗(t, t
′) = 1− max

j,k=1..qi
>(µvi,j (t), µvi,k(t′), CJ(vi,j , vi,k)), (3)

where the product t-norm > is used in our case for aggregating µvi,j (t), µvi,k(t′)
and CJ(vi,j , vi,k) to introduce compensation between the aggregated criteria.

Proposition 2. di∗ as defined in Eq. 3 is a dissimilarity.

Proof. The definition of di∗ when the concerned attribute Ai is categorical is
obviously positive as both µvi,j (t), µvi,k

(t′) and CJ(v, v′) are defined in the
unit interval.The Jaccard index and the product t-norm being symmetric, their
combination in di∗ is so as well. di∗(t, t

′) = 0 iff. µvi,j (t) = 1, µvi,k
(t′) = 1

and CJ(v, v′) = 1. Due to the constraints imposed on the FP (Sec. 2.1) and
especially the fact that each item is completely rewritten by V then µvi,j (t) = 1
(resp.µvi,k(t′) = 1) and CJ(v, v′) = 1 implies v = v′ and Ri

t = Ri
t′ .

Remark 2. We consider that it would be artificial and senseless to introduce a
notion of transitivity in the definition of di∗. It would indeed be debatable to
consider that a value belonging to a partition element vi is somewhat similar to
a value belonging to an element vj because vi has a non-empty intersection with
vk that itself has a non-empty intersection with vj , especially if vi and vj have
an empty intersection.

Example 4. Tab 3 gives some dissimilarities computed between different car
brands wrt. the FP illustrated in Fig. 2.

Table 3. Dissimilarity matrix for some car brands according to the FP Fig. 2

VW Mercedes AUDI Ford Peugeot Daewoo

VW 0 0 0.2 0.4 0.8 1
Mercedes 0 0 0.2 0.4 0.8 1
AUDI 0.2 0.2 0 0.4 0.8 1
Ford 0.4 0.4 0.4 0 0.8 1

Peugeot 0.8 0.8 0.8 0.8 0 0.75
Daewoo 1 1 1 1 0.75 0

4 Conclusion and Perspectives

The rewriting of data according to a fuzzy user vocabulary makes it possible
to personalize a data-to-knowledge process. In order to be able to apply data
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mining tools on linguistic and subjective representations of the data, it is first
necessary to address the question of quantifying the dissimilarity between two
such representations. We thus provide in this paper a dissimilarity measure that
takes into account the structure of the fuzzy partitions that form the user vo-
cabulary. We show on some examples that the proposed dissimilarities return
relevant results and better discriminate the compared values without sacrificing
the indistinguishability relation introduced by the use of fuzzy partition ele-
ments.

The next step is obviously to show that the use of this dissimilarity by a
clustering algorithm leads to more meaningful and relevant results thanks to a
better discrimination of the compared items.
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