G. Smits, O. Pivert, and R. R. Yager, A soft computing approach to agile business intelligence, 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp.1850-1857, 2016.
DOI : 10.1109/FUZZ-IEEE.2016.7737915

URL : https://hal.archives-ouvertes.fr/hal-01416973

G. Smits and O. Pivert, Linguistic and Graphical Explanation of a Cluster-Based Data Structure, pp.186-200, 2015.
DOI : 10.1007/978-3-319-23540-0_13

URL : https://hal.archives-ouvertes.fr/hal-01186582

S. Guillaume, B. Charnomordic, and P. Loisel, Fuzzy partitions: A way to integrate expert knowledge into distance calculations, Information Sciences, vol.245, pp.76-95, 2013.
DOI : 10.1016/j.ins.2012.07.045

URL : https://hal.archives-ouvertes.fr/hal-00857362

G. Smits, O. Pivert, and T. Girault, ReqFlex, Proceedings of the VLDB Endowment, pp.1206-1209, 2013.
DOI : 10.14778/2536274.2536277

URL : https://hal.archives-ouvertes.fr/hal-00906973

E. H. Ruspini, A new approach to clustering, Information and Control, vol.15, issue.1, pp.22-32, 1969.
DOI : 10.1016/S0019-9958(69)90591-9

I. Bloch, On fuzzy distances and their use in image processing under imprecision, Pattern Recognition, vol.32, issue.11, pp.1873-1895, 1999.
DOI : 10.1016/S0031-3203(99)00011-4

S. Montes, I. Couso, P. Gil, and C. Bertoluzza, Divergence measure between fuzzy sets, International Journal of Approximate Reasoning, vol.30, issue.2, pp.91-105, 2002.
DOI : 10.1016/S0888-613X(02)00063-4

URL : https://doi.org/10.1016/s0888-613x(02)00063-4

I. Bloch, Fuzzy geodesic distance in images, In: International Workshop on Fuzzy Logic in Artificial Intelligence, pp.153-166, 1995.
DOI : 10.1007/3-540-62474-0_12

S. Boriah, V. Chandola, and V. Kumar, Similarity Measures for Categorical Data: A Comparative Evaluation, Proceedings of the 2008 SIAM International Conference on Data Mining, pp.243-254, 2008.
DOI : 10.1137/1.9781611972788.22

URL : http://epubs.siam.org/doi/pdf/10.1137/1.9781611972788.22

M. Alamuri, B. R. Surampudi, and A. Negi, A survey of distance/similarity measures for categorical data, 2014 International Joint Conference on Neural Networks (IJCNN), pp.1907-1914, 2014.
DOI : 10.1109/IJCNN.2014.6889941

D. Gibson, J. Kleinberg, and P. Raghavan, Clustering categorical data: an approach based on dynamical systems, The VLDB Journal The International Journal on Very Large Data Bases, vol.8, issue.3-4, p.75, 1998.
DOI : 10.1007/s007780050005

URL : http://www.cse.iitb.ac.in/banks/Private/RelatedPapers/p311.pdf

S. Guha, R. Rastogi, and K. Shim, Rock: A robust clustering algorithm for categorical attributes, Information Systems, vol.25, issue.5, pp.345-366, 2000.
DOI : 10.1016/S0306-4379(00)00022-3

URL : http://cs.kaist.ac.kr/~shim/is-rock.pdf

D. W. Goodall, A New Similarity Index Based on Probability, Biometrics, vol.22, issue.4, pp.882-907, 1966.
DOI : 10.2307/2528080

D. Lin, An information-theoretic definition of similarity, pp.296-304, 1998.