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Abstract

Quantifying the catalytic properties of reusable thermal protection system

materials is essential for the design of atmospheric entry vehicles. Their prop-

erties quantify the recombination of oxygen and nitrogen atoms into molecules,

and allow for accurate computation of the heat flux to the spacecraft. Their

rebuilding from ground test data, however, is not straightforward and subject

to uncertainties. We propose a fully Bayesian approach to reconstruct the

catalytic properties of ceramic matrix composites from sparse high-enthalpy

facility experimental data with uncertainty estimates. The results are com-

pared to those obtained by means of an alternative reconstruction procedure,

where the experimental measurements are also treated as random variables

but propagated through a deterministic solver. For the testing conditions

presented in this work, the contribution to the measured heat flux of the molec-

ular recombination is negligible. Therefore, the material catalytic property
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cannot be estimated precisely.Moreover, epistemic uncertainties are rigorously

included, such as the unknown reference calorimeter catalytic property.
Keywords: Uncertainty Quantification, Bayesian Inference, Catalysis,

Thermal Protection Systems

1. Introduction

In the design of thermal protection systems for atmospheric entry vehicles,

the catalytic properties of the heatshield material allow us to quantify the

influence of the highly exothermic molecular recombinations occurring at the

surface. In order to estimate these properties for a given material, ground-

based high-enthalpy facilities are used to simulate flight conditions at the

material surface and to provide relevant experimental data [1]. The plasma

flow can be achieved using different techniques. In inductively-coupled plasma

(ICP) wind tunnels, often referred to as plasmatrons, the plasma is generated

by electromagnetic induction. A strong electromagnetic field ionizes the flow

confined into a cylindrical torch and the plasma jet exits at subsonic speed

into a low pressure test chamber that hosts material probes. The stagnation

point conditions corresponding to a given spacecraft entry are reproduced for

several minutes and the plasma flow carries sufficient energy to reproduce

actual aerothermal loads experienced by a thermal protection system (TPS)

in flight. Thanks to a flow of high chemical purity, plasmatron facilities are

particularly suited to study gas/surface interaction phenomena for reusable

TPS materials [2, 3, 4, 5, 6, 7, 8, 9, 10, 11] or composite ablative material [12]

. High-temperature experiments enable characterizing the catalytic properties

of the tested TPS sample by combining direct measurements using various
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diagnostics and a numerical reconstruction based on computational fluid

dynamics (CFD) simulations.

Even for well-characterized facilities, the determination of catalytic prop-

erties is affected by the noise present in the experimental data. The quan-

tification of uncertainties in high-enthalpy experiments has previously been

studied in the literature [13, 14, 15, 16]. In particular, in our previous work

[16], we evaluated the uncertainties on catalytic properties by coupling a

deterministic catalytic property estimation with a Polynomial Chaos (PC)

expansion method. The probabilistic treatment of the uncertainties helped

mitigating over-conservative uncertainty estimates found in the literature by

computing confidence intervals. The influence of the epistemic uncertainty

on the catalytic property of a reference calorimeter used in the reconstruc-

tion was also investigated in [16]. However, the method developed has two

shortcomings: the number of experiments is limited and statistics about the

measurements distribution are not available, even though they are an essential

input for the PC approach.

Two important aspects are explored in the present work. First, we develop a

robust methodology for quantifying the uncertainties on the catalytic prop-

erty following a Bayesian approach. The Bayesian framework has already

been successfully applied to the study of graphite nitridation [14] and high-

temperature kinetics [17], for model parameter estimation as well as for

experimental design [18], but it is a novel approach for the case of reusable

materials, bringing a new insight on the ceramic matrix composites on which

this paper focuses. In a Bayesian approach, one computes the probability

distribution of the possible values of a quantity of interest compatible with
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the experimental results and with prior information about the system. This is

fundamentally different from the PC approach proposed in [16]. While both

approaches aim at quantifying the uncertainty on the catalytic properties,

the experimental data are direct inputs of the deterministic solver combined

to the PC method, whereas they are observed outputs of a model for the

Bayesian method.

Second, a thorough comparison between the two methods is developed in order

to explain the results obtained in view of their conceptual differences. We

investigate the case of two experiments necessary for the reconstruction of the

flow enthalpy and material catalytic property. The PC approach sequentially

considers the experiments, whereas the Bayesian approach merges them into

a unique simultaneous reconstruction. Additionally, the Bayesian approach

has a major advantage: it allows us to determine the catalytic property of a

reference copper calorimeter used in the reconstruction methodology, along

with the catalytic property of the sample material. The robustness of the

method is also examined for cases where the problem is not well posed, for

instance when there are too many parameters to rebuild, and no sufficient

information from the experiments.

In this contribution, we propose to revisit measurements performed in a

high-enthalpy ICP wind-tunnel (Plasmatron) at the von Karman Institute

for Fluid Dynamics (VKI) to characterize the catalytic response of ceramic

matrix composites. Based on the robust uncertainty quantification methodol-

ogy developed, we will assess whether accurate information on the catalytic

properties of these thermal protection materials can be extracted from the

experimental data. The paper is structured as follows. In section 2, we
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recall the main features of the combined experimental/numerical methodol-

ogy developed at VKI to analyze data obtained in the Plasmatron facility,

and then, present the sources of experimental uncertainties involved in the

process. In section 3, we reformulate the problem of determining the catalytic

properties in a Bayesian framework. In Section 4, we apply this approach to

experimental data presented in [4] and compare our results to the uncertainty

estimate obtained in [16] by means of the PC approach.

2. Experimental/numerical methodology

The present study uses a set of data measured during an experimental

campaign documented in [4]. The first section briefly recalls the quantities

measured experimentally for each testing conditions and their associated

uncertainties, whereas the next section introduces the numerical simulations

performed to rebuild quantities that cannot be directly measured. The last

section introduces some uncertainty quantification terminology.

Figure 1: ESA standard probes (5 cm diameter) used for the measurements performed in

the Plasmatron facility: (left to right) stagnation-point probe holding a material sample,

copper calorimeter, and water-cooled Pitot probe.
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2.1. Experimental setup

In order to derive the catalytic property γ of a ceramic matrix composite

sample, the reconstruction methodology used in [4] is based on two sequential

experiments. The first step consists in rebuilding the free stream enthalpy he of

the plasma flow, using the cold wall heat flux measurement qcw from a copper

calorimeter (see Fig. 1) of catalytic property γref . The uncertainties on the

heat flux measurements were computed to be ±10%. Note that the quantity

γref is a source of large uncertainties [16]. A commonly adopted assumption is

to consider the surface as fully catalytic [2, 19]. While this is a conservative

practice, there is compelling evidence that the actual surface of copper

calorimeters is not fully catalytic, owing to the rapid oxidation of copper upon

exposure to plasma. Numerous studies have been dedicated to characterize

the catalytic properties of copper and its surface oxides (CuO and Cu2O)

[10, 13, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37].

Together with the heat flux, the total pressure is measured during the

first experiment. A water-cooled Pitot probe is introduced in the Plasmatron

flow in order to measure the dynamic pressure Pd (featuring an uncertainty

of ±6%). The surface temperature of water-cooled probes Tcw is known by

measuring the differential of temperature between the inlet and outlet water

lines. The static pressure Ps of the test chamber is measured with a 2 Pa

accuracy.

In a second step, hot wall measurements are performed on the TPS

material sample in order to determine its catalytic property γ, for a known

test condition determined through the rebuilding of cold-wall measurements.

The emissivity ε of the sample is measured with 10% accuracy. The front
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Figure 2: Flow chart of the deterministic estimation of material catalytic property

Figure 3: Flow chart of the BL solver with its main inputs

surface temperature of the sample Tw is also measured by means of a two-color

pyrometer (affected by a 1% error). The heat flux qw radiated by the TPS is

then computed using the Stefan-Boltzmann law.

It is further assumed that the free stream flow is identical during both

experiments and that local thermodynamic equilibrium (LTE) holds at the

edge of the boundary layer. At steady state, the surface radiated heat flux is

assumed to be equal to the incoming heat flux from the plasma flow.
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2.2. Numerical computations

The Plasmatron flow conditions in front of the TPS test sample are rebuilt

using experimental data and a 1D non-equilibrium Boundary Layer (BL)

solver [38, 39] that propagates the flow field quantities from the outer edge of

the BL to the stagnation point. The rebuilding methodology is sketched in Fig.

2. The BL solver computes the stagnation point heat flux qcw (or qw for the

TPS sample) that, mathematically, is a function of the probe geometry, the

surface temperature Tcw (or Tw for the TPS sample), and the wall catalytic

property of the reference calorimeter γref (or γ for the TPS sample), given the

following set of the plasma flow free stream parameters: enthalpy he, pressure

pe, and velocity ve. The PEGASE library [40], embedded with the boundary

layer solver, provides the physico-chemical properties of the plasma flow.

The BL solver can be called by a rebuilding code using Newton’s method

to determine the quantities he and γ in a two-step strategy involving one

rebuilding per experiment. The static pressure pe is assumed to be equal to

the static pressure Ps measured in the chamber. The enthalpy rebuilding

uses the measured dynamic pressure Pd to compute the free stream velocity

ve using a viscous correction, as well as the heat flux qcw measured at the

surface of the reference calorimeter to reconstruct the free stream enthalpy

he. In a second step, the results from the second experiment and the flow

field parameters computed during the first step are combined to determine

the sample material catalytic property γ.

Despite the fact that a large number of inputs are measured or unknown,

the method is fully deterministic and provides no indication about the out-

puts uncertainty. Our previous work [16] was based on the propagation of
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Table 1: Measured quantities used for the flow and sample material characterization

Symbol Variable Uncertainty

Pd,meas Dynamic pressure 6%

Ps,meas Static pressure 0.3%

qcw,meas Heat flux 10%

Tcw,meas Probe temperature 10%

Tw,meas TPS temperature 1%

ε Emissivity 5%

uncertainties using this inverse deterministic solver.

2.3. Uncertainty characterization in catalytic property reconstruction

The determination of the TPS catalytic property directly depends on

experimental data, and intrinsically carries the uncertainty associated with

actual measurements. Uncertainty Quantification (UQ) tools model and

quantify the error associated to the variables computed using uncertain

inputs. Table 1 reviews the measured quantities and their uncertain. The

uncertainties can be classified into three categories:

• The measured quantities (MQ) come from the two experimental steps

described earlier. The following quantities are measured: Tcw,meas,

qcw,meas, Tw,meas, εmeas, Pd,meas, Ps,meas, namely the calorimeter probe

temperature, the calorimeter probe heat flux, the sample temperature,

the sample emissivity, the plasma jet dynamic pressure and static

pressure. Note that the heat flux from the second experiment (qw,meas)

is not directly measured but derived from quantities Tw,meas and εmeas
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using Stefan-Boltzmann’s law: qw,meas = σεmeasT
4
w,meas. The MQ are

aleatory quantities that are assumed to be noisy versions of their true

values denoted Tcw, qcw, Tw, ε, Pd, Ps. In this study, they are modeled

as realization of a Gaussian distribution. The quantity Tcw,meas denotes

the measurement of the probe temperature, so we have:

Tcw,meas = Tcw + ζ, (1)

where ζ is the realization of a zero mean Gaussian random variable.

• The quantities of interest (QoI) are the unknown quantities crucial

to engineering applications. In this study, the sample and the probe

catalytic properties denoted γ and γref , along with the flow enthalpy

he, are the QoIs. The objective is not only to compute the most likely

value of the catalytic property or the one that minimizes the square

error but to compute the full probability distribution of all admissible

values of the QoI given the measurements for a thorough quantification

of uncertainties.

• The Nuisance Parameters (NP) are unknown quantities that must be

estimated along with the QoI in order to estimate the sample catalytic

property. Quantities Tcw, Tw, Pd, Ps, ε are NPs as they have to be

estimated in order to run the BL solver used to derive the sample

catalytic property.

3. Bayesian-based approach

One objective of this work is to make a joint estimation of the catalytic

properties γref and γ of the reference calorimeter and sample material, re-
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spectively, along with the flow enthalpy he, for a given set of experiments.

In [16], a polynomial chaos expansion was built on top of the inverse deter-

ministic solver described earlier. In this section, we detail the derivation of

the probability distribution of these quantities given the experimental results

using a Bayesian approach. This probability distribution of these quantities

is referred to as the posterior distribution. This distribution carries all the

necessary information for the uncertainty quantification analysis. It provides

a robust estimate of the uncertainty through confidence intervals and the

variance.

In section 3.1, the posterior distribution is decomposed into a ratio of

probabilities using Bayes’ rule (Eq. 4) that can be numerically evaluated.

Detailed calculations of each terms of the decomposition are then presented

in section 5. Finally, the posterior distribution is numerically evaluated using

a Markov Chain Monte Carlo (MCMC) algorithm described in appendix.

Figure 4 summarizes the rebuilding methodology from a Bayesian perspective.

Note that, contrary to the deterministic strategy illustrated in Figure 2, the

QoI are rebuilt using both experiments simultaneously. The differences in the

two approaches are further discussed in section 4.

3.1. Bayesian framework

We recall that the heat flux to the sample material wall qw,meas is com-

pletely defined by the material emissivity εmeas and temperature Tw,meas

through Stefan-Boltzmann’s law. Introducing the vector of measured quanti-

ties m = (Tcw,meas, qcw,meas, Tw,meas, εmeas, Pd,meas, Ps,meas), the posterior prob-

ability is then indicated as follows:

P (γref , he, γ|m) . (2)
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Figure 4: Flowchart of the Bayesian-based estimation of material catalytic properties.

Furthermore, the vector of NP is introduced as ωnuis = (Tcw, Tw, ε, Pd, Ps).

The posterior distribution (Eq. 2) can alternatively be computed by integrating

the so-called non-marginalized posterior P (γref , he, γ, ωnuis|m), over all the

NP

P (γref , he, γ, |m) =
∫
ωnuis

P (γref , he, γ, ωnuis|m) dωnuis. (3)

Let us now focus on the non-marginalized posterior from Eq. 3. The

flowchart in Fig. 4 shows the relationships between the unknowns γref , he, γ,

ωnuis and the MQ (i.e., the vector m) and how they interact with each other.

In order to evaluate Eq. 3, Bayes’ rule is applied as follows:

P (γref , he, γ, ωnuis|m) = P (m|γref , he, γ, ωnuis)P (γref , he, γ, ωnuis)
P (m) (4)

where P (m|γref , he, γ, ωnuis) is the likelihood, P (γref , he, γ, ωnuis) the prior,

and P (m) a normalization factor such that the probabilities add up to
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one. The likelihood quantifies the amount of information carried by the

measurements to the QoI and the NP. It is the probability of observing

the measured quantities knowing the QoI and the NP. It measures the

compatibility between the measurements and the value of unknown parameters,

such as the catalytic property of the material sample. When the value of the

catalytic property is compatible with the experimental results, the likelihood

increases. The amount of this increase is directly related to the amount of

information brought by the measurements. If the measurements are very

informative, the increase (or decrease if the catalytic property gets less and

less compatible with the experiments) is very steep. The prior accounts for

the knowledge of the unknown parameters before any experiment. In our case,

as scarce prior information is available for ωnuis and he, uniform priors are

considered. As γ and γref are defined on the interval [0;1], a beta distribution

with parameters α = 1 and β = 1 is chosen with a support of [10−8; 1]. The

next section is devoted to the determination of the likelihood.

4. Results

This section illustrates the results derived from the application of the

Bayesian framework to the problem of interest. The objective is twofold: i)

to compute an estimate of the QoI (flow enthalpy he and catalytic proper-

ties γref and γ of the reference calorimeter and sample material) and ii) to

compare the results with the uncertainty estimates obtained in [16] from a

more standard PCE approach. In order to demonstrate the potential of the

Bayesian approach, two sets of experimental conditions are selected among

the experiments presented in [4]. They are denoted as S1 and S8, as detailed
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in Table 2. For both experiments, we study the following two cases:

a. The calorimeter reference probe catalytic property γref is assumed to

be constant and equal to 0.1 (Section 4.1). The results for the posterior

distribution are presented. Uncertainty estimates are compared with

the ones obtained in [16]. Qualitative and quantitative explanations of

the differences between the results obtained by the two approaches are

given.

b. Secondly, the probe catalytic property is treated as an unknown quantity

determined along with the other NPs and QoIs (section 4.3). Again the

results are compared against the method developed in [16].

4.1. Constant calorimeter reference probe catalytic property

Quantity γref is assumed to be constant and equal to 0.1, focusing on

the computation of the posterior distribution of the flow enthalpy he and

material catalytic property γ. The statistical moment and the 95% confidence

interval are given in Tables 4 and 3 for quantities he and γ, respectively.

Their mean values are in good agreement with the nominal results obtained

in [4]. Figure 5 shows their distributions for sample S1. It is observed that

the reconstructed quantities he and γ both have symmetrical distributions.

Theses results can be related to the typical S-shape enthalpy versus catalytic

property curve reported in the literature [16, 36]. In this case, most of the

posterior lies within the high gradient zone on the S-shape, meaning that the

small changes in catalytic property induce large variations in the computed

heat flux at the wall as they are related through a one to one mapping in

that region. In other words, if the measured heat flux takes values in that
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region, it is expected that the catalytic property posterior will have limited

variance. The Maximum A Posteriori (MAP) is defined as the maximum of

the posterior density probability. It is an alternative point estimator to the

mean of a QoI. In the special case of a Gaussian posterior, the MAP and

the mean are equals. The analysis of sample S8 yields similar results and

conclusions. The relative error computed as the ratio of the mean and the

95% confidence interval (CI) is one order of magnitude large for the catalytic

property compared to the rebuilt enthalpy.

4.2. Comparison with Polynomial-Chaos approach

This section compares the proposed Bayesian approach to the PC approach

presented in [16]. In the deterministic solver, the two steps of the experiments

are taken sequentially (cf. Figure 2 in [16]): first the flow field is computed

using the results from the first experiment, namely measurements of cold-wall

heat flux, as well as the static and dynamic pressures. Then, the sample

catalytic property is determined using the quantities rebuilt from the first

experiment. In order to propagate uncertainties, a polynomial approximation

of the solver was derived and used to generate the statistical moments of the

sample catalytic property. More precisely, the MQ are the only inputs to the

Sample qcw,meas Ps Pd Tcw,meas he Tw,meas εmeas γ

[kW.m−2] [Pa] [Pa] [K] [MJ.kg−1] [K] [-] [-]

S1 195 1300 75 350 6.0 1200 0.78 7.3e-3

S8 410 3000 64 350 9.7 1400 0.88 3.0e-3

Table 2: Deterministic conditions for material samples S1 and S8. Here, reported values of

he and γ are determined using the standard rebuilding procedure detailed in [4].
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Figure 5: Bayesian reconstruction (γref=0.1) of the material catalytic property on a semi-log

scale (top) and flow enthalpy on a linear scale (bottom) for material sample S1.
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Sample Mean SD MAP 95% CI UQ(95% CI) [%]

S1 6.0 0.43 6.06 [5.06;6.76] 28.3

S8 9.7 0.43 6.66 [8.80;10.51] 17.6

Table 3: Flow enthalpy he [MJ kg−1] statistics obtained by means of the Bayesian approach

(γref =0.1)

Sample Mean SD MAP 95% CI UQ(95% CI) [%]

S1 7.4e-3 4.1e-03 6.2e-3 [2.4e-3;1.7e-2] 197.2

S8 3.7e-3 1.8e-03 2.7e-3 [1.4e-3;8.38e-3] 188.6

Table 4: Material catalytic property γ statistics obtained by means of the Bayesian approach

(γref =0.1)

polynomial approximation in [16], whereas the probe catalytic property γref

is kept constant. In order to include the uncertainty of the probe catalytic

property, several polynomial approximations of the solver are computed in

[16] for different values of γref .

In the following section, we highlight the differences between the PC and

Bayesian methods. Both qualitative (section 4.2.1) and quantitative (section

4.2.2) illustrations are provided. Sample S1 conditions are chosen for this

exercise.

4.2.1. Qualitative differences between the PC and Bayesian methods

The PC and Bayesian approaches tackle the problem from different angles

leading to different results. The main differences between the two methods

can be summarized as follows.
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• The experimental data accumulated during the two reconstructions

are not exploited in the same way. In the Bayesian formulation, the

measurements are treated silmutaneously in order to reconstruct the

catalytic property distribution at once (cf. Fig. 4), whereas the PC

approach coupled with the deterministic inverse problem use sequential

reconstructions of each quantity (see Fig. 2). In particular, the flow en-

thalpy is estimated in the PC approach only using the first experiment,

whereas the Bayesian approach uses information from both experiments

to rebuild the flow enthalpy. As mentioned in [41], in [4, 16] the link

between the two experiments acts like a valve: the information (or uncer-

tainty) only goes one way. The information from the second experiment

does not flow back to the determination of the flow enthalpy. Only

information from the first experiment goes to the second reconstruction

via the boundary layer edge enthalpy he. This method presents some

similarities with the Cut-model used in Bayesian networks [41], but it

generally leads to a wrong posterior distribution.

• Input uncertainties are modeled differently. The PC approach makes

stronger hypothesis about the input distribution by assuming that

its mean is the experimental value. In the Bayesian framework, it is

only assumed that the experimental value obtained is sampled from a

Gaussian distribution with mean function of the NP and QoI. This is a

strong assumption since a single experimental result can be significantly

different from the mean value.

• Not only the input measurements are not modeled the same way, but
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the way they are propagated is also different. The PC approach, and

the results presented in [16], depend on the deterministic method used

to solve the inverse problem. In fact, the PC approach only provides

the variance of the outputs and higher statistical moments. On the

other hand, the Bayesian method leads to an unbiased asymptotically

efficient estimation of the sample catalytic property [42, 43].

• Finally, the Bayesian approach offers more flexibility in order to add

uncertainties without major issues in the computational time, whereas

the PC approach is limited by the problem of the curse of dimensionality

[44, 45], i.e., the lack of convergence speed of the numerical method

when an increasing number of uncertainties is considered. Moreover,

the Bayesian framework is well-suited for modeling epistemic uncer-

tainty, such as the reference probe catalytic property. In the method

developed in [16], this property is not modeled as a distribution, since

no information is available to characterize it. Therefore, a limited set of

values of γref on an arbitrary interval are tested to provide an envelope

of the uncertainty on the QoI. On the other hand, the Bayesian imple-

mentation can use the information collected during the experiments

to compute a posterior distribution of the reference probe catalytic

property. Using that posterior distribution, the method yields a much

more precise estimation of the uncertainty in the QoI along with an

estimation of γref .
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4.2.2. Quantitative differences between the PC and Bayesian methods

In this section, numerical tests are performed with sample S1 (see Ta-

ble 2). The comparison focuses on the distributions of the material catalytic

properties, as well as on the modeling uncertainties coming from the unknown

catalytic property γref of the reference calorimeter.

The reconstructions of the material catalytic property γ are first compared

using a constant value of γref equal to 0.1. Although this case may be unre-

alistic, since the probe catalytic property is rarely well known, it illustrates

the differences between the two methods in a basic setting. Figure 6 shows

differences in the sample catalytic property distribution obtained with the

PC [16] and Bayesian methods. Note that, in Table 5, the first moment of

the two distributions are very close, however the standard deviations and

the confidence intervals are significantly larger for the distribution obtained

with the Bayesian approach. This explains the much larger magnitude of the

relative error. Moreover, the MAP estimates are substantially different: for

the Bayesian case, the distribution is skewed and the most probable value

and the mean values of the sample catalytic property are different. This is

not observed when using the Polynomial Chaos, since the catalytic property

distribution is Gaussian.

Since γref is rarely known, its variability and influence on the QoI are also

investigated here. In particular, the approach used in [16] for including the

epistemic uncertainty due to γref is compared to the Bayesian implementation.

For the PC method, the uncertainty on the QoI due to the MQs are computed

for discrete values of γref , whereas for the Bayesian method, γref is a priori
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Method Mean SD MAP 95% CI UQ(95% CI) [%]

Polynomial Chaos 0.00747 1.6e-03 0.007 [0.0045 ; 0.0094] 65.6

Bayesian 0.00747 4.1e-03 0.0059 [0.0024 ; 0.017] 195.4

Table 5: Comparison between the statistics of catalytic property γ for material sample S1

obtained by means of the PC and Bayesian approaches (γref =0.1).

unknown. In Figure 7, the cumulative density function (CDF) of the flow

enthalpy derived from the PC approach is plotted for the extreme values of

γref , i.e. 1 and 0.01, as well as derived from the Bayesian approach with an

a priori unknown value of γref . For both values of γref , the CDF obtained

by means of the PC approach exhibits a much steeper increase compared

to the state-of-the-art Bayesian approach, leading to a much more precise

estimate of the uncertainty on the enthalpy. This is due to the different degree

of knowledge of the probe catalytic property for the two methods. Since

the Bayesian implementation uses the measurements to estimate the probe

catalytic property, the uncertainty due to the epistemic quantity decreases.

Conversely, for the PC implementation, no information about the probe

catalytic property is available, leading to an overestimation of the uncertainty

in the enthalpy. In summary, the Bayesian method makes a better use of the

information available from the experiments and provides an optimal, reliable

estimate of the uncertainty. The distributions of the material catalytic

property obtained by means of the Bayesian approach with γref a priori

unknown will be studied in the following section.
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Figure 6: Comparison between the distributions of the material catalytic property for

sample S1 obtained by means of the PC and Bayesian approaches (γref =0.1).

Figure 7: Comparison between the CDF of the flow enthalpy obtained by means of the PC

approach (γref =0.01 and 1) and Bayesian (γref a priori unknown) approach.
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4.3. Case where the reference probe catalytic property is unknown

In contrast to an approach commonly followed in the literature, we consider

here the value of the probe catalytic property to be unknown, instead of

arbitrarily set to a constant value. Therefore, γref is determined along with

the other unknown quantities and the target distribution is the new posterior:

P (γref , he, γ, ωnuis|Tcw,meas, qcw,meas, Tw,meas, εmeas, Pd,meas, Ps,meas). Hence, the

influence of the probe catalytic property on the sample catalytic property

uncertainty can be rigorously quantified. Due to the increase in the number

of unknowns and in order to increase the speed of convergence of the MCMC

algorithm, the Markov Chain is adapted using the Adapted Metropolis (AM)

algorithm presented in [46] with a modification from [47] (see algorithms 4 and

5). This approach is more precise and more flexible than the approach used in

[16] where a robust brute force method is presented to explore the influence

of the probe catalytic property. In this work, the Bayesian approach gives

finer results thanks to a better knowledge of the probe catalytic property.

Results obtained for the estimation of the material catalytic property γ,

flow enthalpy he, and reference calorimeter catalytic property γref for the

two samples S1 ans S8 are presented. Figure 8 shows the distribution of

γref and Table 6 summarizes their statistics. Means and variances results

should be used with care as the computed distributions are extremely far

from Gaussian. Based on the experimental data of sample S1, the computed

value for the reference probe catalytic property is 0.018, as shown in table

6. This result indicates that the assumption of γref = 0.1 utilized in [4]

is over-conservative. The results obtained for γref for the two conditions

(S1 and S8) are rather different but not contradictory. The relative error
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is extremely large. Note that with sample S1, γref can be estimated with

slightly more accuracy than with sample S8. This observation shows that

the precision of the determination of the estimation of γref depends on the

experimental conditions and not only on the accuracy on the measurements.

The addition of an extra NP increases the uncertainty on the QoI and other

NP. Figure 9 shows the distribution of he for sample S1 that can be compared

to earlier results presented in Figure 5 for the case with a constant γref . The

distribution support is significantly increased and shifted toward higher values.

This change can be explained by a simple physical reasoning: for the same

value of the experimental heat flux measurement, the reference probe catalytic

property has been estimated by means of the Bayesian approach to a value

of 0.018 much lower than 0.1. Consequently, the contribution to the heat flux

due to catalytic recombination is lower than in the γref = 0.1 case and the

contribution from the convective heat flux therefore becomes larger and the

flow enthalpy is estimated as well to a higher value than in the γref = 0.1 case.

Figure 10 shows the distribution of the material catalytic property for samples

S1 and S8. For both samples, the material catalytic property uncertainty is

much more widespread with respect to the previous case where quantity γref

was assumed to be constant. In particular, the support of the distribution

covers eight orders of magnitudes and does not present a clear maximum

for a precise a posteriori estimation. In the case of an unknown quantity

γref , the experiments do not contain sufficient information. Indeed, one can

notice that the posterior distribution is similar to the beta prior distribution,

meaning that the likelihood is not informative in this case. The reason for this

loss of information is investigated in the following paragraph. Nevertheless,
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Sample Mean Standard deviation MAP 95% Confidence interval UQ(95% CI) [%]

S1 0.042 0.095 0.018 [0.0075 ; 0.29] 672.6

S8 0.091 0.17 0.0009 [1.3e-07 ; 0.71] 780.2

Table 6: Reference probe catalytic property γref statistics obtained by means of the Bayesian

approach.

even though the support of the distribution is extremely large and seems non

informative, some remarks can be made about the CDF. Figure 11 compares

the CDF of γ based on the sample S1 in the two cases where γref is either

constant (equal to 0.1) or unknown. The constant γref case is actually a worst

case scenario that overestimates the molecular recombination rate at the

surface of the sample. The unknown γref case shows that the actual material

sample catalytic property is certainly lower. Its distribution is hardly usable

as it is, especially for the low values of γ since for those the posterior is

very similar to the arbitrary prior chosen for this study. However, the CDF

remains useful to estimate probabilities and confidence intervals.

Now, we investigate reasons for the large increase in the γ uncertainty for

an unknown γref quantity compared to the constant case. It is partially due

to the addition of γref as NP but also to the lower estimation of γref=0.018

leading to an increase in the estimated flow enthalpy. The dependence of

material catalytic property versus the flow enthalpy is weak. By inspecting

the distributions of γ in Figure 10, one notices that these are flat in particular

for sample S8. In other words, the sample catalytic property does not

influence the measured heat flux for the tested conditions. It follows that

scarce information from the measured heat flux can be used to estimate γ.
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Figure 8: Distribution of the reference probe catalytic property γref for samples S1 and S8

on a semi-log scale, obtained by means of the Bayesian approach.

Figure 9: Distribution of the flow enthalpy he for sample S1 obtained by means of the

Bayesian approach (γref a priori unknown).
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Figure 10: Distribution of the material catalytic property γ for samples S1 and S8 on a

semi-log scale, obtained by means of the Bayesian approach (γref a priori unknown).

Figure 11: CDF of the material catalytic property γ for sample S1 on semi-log scale,

obtained by means of the Bayesian approach (γref = 0.1 and γref a priori unknown).

27



In particular even the slight uncertainty on the determination of the flow

enthalpy is associated with large uncertainty on the catalytic property of the

material. This means that for the range of enthalpy between 4 MJ/kg and 8

MJ/kg (see Fig. 9) it is challenging to precisely estimate the sample catalytic

property for those testing conditions. To illustrate the problem, Figure 12

shows the Bayesian reconstruction of the sample catalytic property for a case

where the probe catalytic property γref is set to a constant value of 0.02. The

sample material experiment considered here is S1. The bivariate distribution

of the flow enthalpy he and material catalytic property γ show that, for a

given flow enthalpy, the curve of enthalpy versus catalytic property has a

very low gradient. Even though the probe catalytic property is known and

constant, the uncertainty is comparable to the case where the probe catalytic

property has to be computed. Therefore the increase of uncertainty in the

sample catalytic property is due to the experimental conditions rather than

to the precision of the measurements. This remark shows that while the

specific experimental condition had been selected based on a relevant flight

environment, it is not optimal for accurately estimating the TPS material

catalytic property. A similar conclusion can be made for sample S8.
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Figure 12: Bivariate distribution of the flow enthalpy he and material catalytic property γ

for sample S1 on semi-log scale obtained by means of the Bayesian approach (γref=0.02).

5. Conclusion

In this study, a rigorous method for estimating the catalytic property of

a material and the associated uncertainties is presented. By comparing a

Bayesian approach with an alternative uncertainty quantification method pre-

sented in [16], we showed that the two methods do not yield the same results.

By construction, the Bayesian approach is more adapted to cases where a

limited number of experiments are available while the approach presented in

[16] makes stronger assumptions on the measurement distribution that are

only valid when a large number of experiments is available. Moreover, we

found that the Bayesian approach is also more flexible as it can naturally in-

clude epistemic variables such as the unknown reference calorimeter catalytic

property uncertainty.

The uncertainty analysis carried out in the case of the unknown reference

calorimeter catalytic property showed that the experimental set up is not

adequate to precisely estimate the catalytic property of a given material.
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For the testing conditions presented in this work, the contribution to the

measured heat flux of the molecular recombination is negligible. Therefore,

the material catalytic property cannot be estimated precisely. Conversely, in

this study, we were able to have some estimation of the reference calorimeter

catalytic property. We have found that the assumption of constant value

γref = 0.1 is wrong and introduces a bias in the estimation of the material

catalytic property.

As future work, we propose to identify experimental conditions that are

optimal for accurately estimating the TPS material catalytic properties.
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Appendix A: Determination of the likelihood

The likelihood represents the link between the MQ, the QoI and NP and

is directly related to the experiments. The two experiments from the first

and second steps are independent, so that the likelihood can be rewritten as:

P (m|γref , he, γ, ωnuis) =P (Tcw,meas, qcw,meas, Pd,meas, Ps,meas|γref , he, ωnuis)

× P (Tw,meas, εmeas|γ, he, ωnuis) , (5)

where P (Tcw,meas, qcw,meas, Pd,meas, Ps,meas|γref , he, ωnuis) is the likelihood of the

measurements obtained during the enthalpy reconstruction and P (Tw,meas,
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εmeas|γ, he, ωnuis) is the likelihood of the measurements obtained during the

catalytic property reconstruction. Note that quantity γref is solely involved

in the first experiment, whereas quantity γ in the second one. However,

both experiments are still connected through the free stream conditions (such

as the enthalpy he) that are assumed to be constant for both probes that

are injected sequentially in the plasma jet. The two likelihoods can still be

computed in two different steps, as shown in the following sections.

5.1. Derivation of the first experiment likelihood

The enthalpy rebuilding step does not involve εmeas and Tw,meas. The

expression becomes:

P (Tcw,meas, qcw,meas, Pd,meas, Ps,meas|γref , he, ωnuis) = P (Tcw,meas|γref , he, ωnuis)

×P (qcw,meas|γref , he, ωnuis) P (Pd,meas|γref , he, ωnuis)

× P (Ps,meas|γref , he, ωnuis) ,

(6)

since the measurements are considered independent.

Each term from the right hand side of Eq. 1 has to be evaluated individually.

For instance, for the cold wall surface temperature, one has that:

P (Tcw,meas |γref , he, ωnuis) = P (Tcw,meas = Tcw + ζ|γref , he, ωnuis)

= 1√
2πσ2

Tcw,meas

exp
(
−(Tcw,meas − Tcw)2

2σ2
Tcw,meas

)
. (7)

The last equality comes from the fact that ζ is a zero mean Gaussian random
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variable. Very similarly, one has

P (qcw,meas|γref , he, ωnuis) = P (qcw,meas = qcw + ζ|γref , he, ωnuis)

= 1√
2πσ2

qcw,meas

exp
(
−(qcw,meas − qcw)2

2σ2
qcw,meas

)
, (8)

P (Pd,meas|γref , he, ωnuis) = P (Pd,meas = Pd + ζ|γref , he, ωnuis)

= 1√
2πσ2

Pd,meas

exp
−(Pd,meas − Pd)2

2σ2
Pd,meas

 , (9)

P (Ps,meas|γref , he, ωnuis) = P (Ps,meas = Ps + ζ|γref , he, ωnuis)

= 1√
2πσ2

Ps,meas

exp
(
−(Ps,meas − Ps)2

2σ2
Ps,meas

)
. (10)

Note that qcw can be computed using the BL solver as it is a function of

γref , he, and ωnuis. Finally Eq. 6 becomes:

P (Tcw,meas, qcw,meas, Pd,meas, Ps,meas|γref , he, ωnuis) = (11)

1
(2π)2σPs,measσPd,measσTcw,measσqcw,meas

exp
(
−(Ps,meas − Ps)2

2σ2
ps

)

× exp
−(Pd,meas − Pd)2

2σ2
Pd,meas

− (Tcw,meas − Tcw)2

2σ2
Tcw,meas

− (qcw,meas − qcw)2

2σ2
qcw,meas

 . (12)

5.2. Derivation of the second experiment likelihood

For the second set of experiments the material sample is tested in order to

measure its catalytic property γ. The catalytic property rebuilding step con-

sists in computing P (Tw,meas, εmeas|γ, he, ωnuis). In the rebuilding procedure,

the heat flux radiated by the TPS is assumed to be equal to the heatflux
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qw from the flow to the TPS, which is computed by means of the BL solver.

Mathematically we have:

qw(γ, he, ωnuis) = σεT 4
w. (13)

Following the same procedure as for the enthalpy rebuilding, the likelihood

for the catalytic property rebuilding has the following form:

P (Tw,meas, εmeas|γ, he, ωnuis) = P (Tw,meas|γ, he, ωnuis)P (εmeas|γ, he, ωnuis) ,

(14)

and the following expression can be computed:

P (Tw,meas|γ, he, ωnuis) = 1√
2πσ2

Tw,meas

exp
(
−(Tw,meas − Tw)2

2σ2
Tw,meas

)
. (15)

Similarly, it follows that:

P (εmeas|γ, he, ωnuis) = 1√
2πσ2

εmeas

exp

−
(
εmeas − qw

σT 4
w

)2

2σ2
εmeas

 . (16)

Therefore, the catalytic property likelihood becomes:

P (Tw,meas, εmeas|γ, he, ωnuis) = 1√
2πσ2

Tw,meas

exp
(
−(Tw,meas − Tw)2

2σ2
Tw,meas

)

1√
2πσ2

εmeas

exp

−
(
εmeas − qw

σT 4
w

)2

2σ2
εmeas

 · (17)

Injecting Eqs. 12 and 17 in Eq. 5 provides an explicit way to numerically

evaluate the likelihood. Unfortunately, even though there are analytical

solutions for the likelihood and the prior distribution, in order to compute the

posterior, it is necessary to compute the normalization factor in Eq. 4. In this

study, this is computationally intractable. To bypass that issue, a classical
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Markov Chain Monte Carlo method is used to directly compute the posterior

without having to evaluate the normalization factor. In fact, the Metropolis

algorithm enables to sample from the posterior distribution [42, 48, 49, 50].

Details of the implementation are given in appendix B.

Appendix B: Monte Carlo Markov Chain and Metropolis Algo-

rithm

The Metropolis algorithm builds a Markov Chain which is asymptotically

distributed as the posterior distribution γ|m. It is an acceptance-rejection

method where the acceptance criteria assures the convergence of the Markov

Chain toward the desired distribution [50]. Complete proof of the convergence

of the Algorithm can be found in [42, 48]. In this section, the basics of the

algorithm and the specificity of the implementation are presented.

Consider a random walk Markov Chain Xn on state space S. In the

case studied, S contains all the admissible values of the NPs and QoIs.

Consider two states x and y ∈ S, the probability to go from x to y is P(x,y)

referred as the transition probability. Let π(x) be the distribution of Xn, if∑
x∈S π(x)P (x, y) = π(y). Then, the distribution π is said to be invariant or

stationary. In the special case of random walks, the invariant distribution is

unique and the random walk converges to π asymptotically (see [49] or [48]).

In other words, no matter where the Markov Chain started, we have,

lim
n−→∞

Xn ∼ π (18)

The Metropolis algorithm uses the right transition probability P (x, y) such

as π is the distribution of interest (the QoI distribution). It uses this results
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from Markov Chain theory cf. [42] or [49] for more further details) :

If π(x)P (x, y) = π(y)P (y, x) then π is the limiting distribution for Xn

π(x)P (x, y) = π(y)P (y, x) is called the detailed balanced equation. In short,

the algorithm models a random walk but between each step it adapts the next

random step so that the detailed balanced equation is verified. Asymptotically,

the MC behaves like the stationary distribution and using Monte Carlo method

one can compute the distribution after convergence of the Markov Chain. In

our case the state space has 6 or 7 dimensions and the Markov Chain we aim

to build is Xn = (γsmpl,n, he,n, ωn) and since we are interested in the posterior

distribution, in our case we choose:

π(γ, he, ω) = P (Tcw,meas, qcw,meas, Tw,meas, εmeas, Pd,meas, Ps,meas|γ, ω, he)
P (Tcw,meas, qcw,meas, Tw,meas, εmeas, Pd, Ps)

×P (γ, ω, he), (19)

that can be computed up to a normalization factor. The advantage of the

Metropolis Hasting (MH) algorithm is that it only uses the ratio

R = π(γn, he,n, ωn)P (γn, he,n, ωn|γn−1, he,n−1, ωn−1)
π(γn−1, he,n−1, ωn−1)P (γn−1, he,n−1, ωn−1|γn, he,n, ωn) . (20)

Since the priors for he,n, ωn are uniform and γ follows a beta distribution, the

ratio simplifies into:

R = P (Tcw,meas, qcw,meas, Tw,meas, εmeas, Pd,meas, Ps,meas|γn, he,nωn)
P (Tcw,meas, qcw,meas, Tw,meas, εmeas, Pd,meas, Ps,i|γsmpl,n, he,nωn)

× (γn − γmax)2(γn − γmin)2P (n− 1→ n)
(γn−1 − γmax)2(γn−1 − γmin)2P (n→ n− 1) , (21)

where P (n − 1 → n) is the probability to go from state n − 1 to n. If the

random walk is symmetrical P (n− 1→ n) = P (n→ n− 1) and the ratio is
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1. In our case for an efficient exploration of the distribution of γ it is natural

to choose the random walk as

he,n =he,n−1 + ξ1

ωn =ωn−1 + ξ2

log(γn) = log(γn−1) + ξ3 (22)

Therefore the random walk is not symmetrical for γ and the ratio becomes:

R =P (Tcw,meas, qcw,meas, Tw,meas, εmeas, Pd,meas, Ps,meas|γn, he,nωn)
P (Tcw,meas, qcw,meas, Tw,meas, εmeas, Pd,meas, ps,meas|γn, he,nωn)

× (γn − γmax)2(γn − γmin)2γn−1

(γn−1 − γmax)2(γn−1 − γmin)2γn
(23)

The rest of the algorithm of the implementation follows the MH algorithm

described in [42].
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