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ABSTRACT
We present JSExplain, a reference interpreter for JavaScript that
closely follows the specification and that produces execution traces.
These traces may be interactively investigated in a browser, with
an interface that displays not only the code and the state of the in-
terpreter, but also the code and the state of the interpreted program.
Conditional breakpoints may be expressed with respect to both the
interpreter and the interpreted program. In that respect, JSExplain
is a double-debugger for the specification of JavaScript.
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1 INTRODUCTION
1.1 A reference interpreter for JS
JavaScript (JS) has a complex semantics. As of 2017, its specifica-
tion by ECMA consists of 885 pages of English prose [6] (details
in §1.2). Unsurprisingly, this prose-based presentation of the spec-
ification does not meet the needs of the JavaScript designers and
implementers. In particular, the JavaScript standardization commit-
tee (TC39) has repeatedly expressed the need for better tools for
describing and interacting with the semantics (§1.3).

Priorwork on the formalization of JS semantics, notably JSCert [3]
and KJS [11], has made some progress, yet falls short of delivering
several of the features needed by TC39 (§1.4). In this work, we
aim at addressing these requests: we revisit the JSCert semantics
by giving it a presentation more accessible to the JavaScript com-
munity. Our presentation aims to be well-suited for writing and
reading the specifications, executing test cases, checking coverage,
and interatively debugging the specification (§1.5).

The JS specification is essentially describing a reference inter-
preter. Although it consists of English prose, the ECMA standard
reads almost like pseudo-code. Most ambiguities and unclear para-
graphs that were present in ECMA3 and ECMA5were progressively
resolved in subsequent editions. Thus, turning ECMA pseudo-code
into real code, i.e., code expressed in a real programming language,
is not so hard. Yet, there are two nontrivial aspects: dealing with the
representation of the state, and dealing with abrupt termination,
such as exceptions, return, break, and continue statements.
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Indeed, in JS, the evaluation of any sub-expression, of any type
conversion, and of most internal operations from the specification
may result in the execution of user code, hence the raising of an
exception, interrupting the normal control flow. Throught its suc-
cessive editions, the ECMA standard progressively introduced a
notation akin to an exception monad (§1.2). This notation is natu-
rally translated into real code by a proper monadic bind operator
of the exception monad.

Regarding the state, the standard assumes a global state. A refer-
ence interpreter could either assume a global state, modified with
side-effects, or thread the state explicitly in purely-functional style.
We chose the latter approach for three reasons. First, we already
need a monad for exceptions, so we may easily extend this monad
to also account for the state. Second, starting from code with an
explicit state would make it easier to generate a corresponding
inductive definition in a formal logic (e.g., Coq), which we would
like to investigate in the future. Third, to ease the reading, one may
easily hide a state that is explicitly threaded; the converse, materi-
alizing a state that is implicit, would be much more challenging.

We thus write our reference interpreter in a purely-functional
language extended with syntactic sugar for the monadic notation
to account for the state and the propagation of abrupt termination
(§2). For historical reasons, we chose a subset of OCaml as source
syntax, but other languages could be used. In fact, we implemented
a translator from our subset of OCaml to a subset of JS (a subset
involving no side effects and no type conversions). We thereby
obtain a JS interpreter that is able to execute JS programs inside a
JS virtual machine—JS fans should be delighted. To further improve
accessibility to JS programmers, we also translate the source code
of our interpreter into a human-readable JS-style syntax, which we
call pseudo-JS, and that essentially consists of JS syntax augmented
with a monadic notation and with basic pattern matching.

Our reference semantics for JS is inherently executable. We may
thus execute our interpreter on test suites, either by compiling and
executing the OCaml code, or by executing the JS translation of
that code. It is indeed useful to be able to check that the evaluation
of examples from the JS test suites against our reference semantics
produces the desired output.

Even more interesting is the possibility to investigate, step by
step, the evaluation of the interpreter on a given test case. Such
investigation allows to understand why the evaluation of a partic-
ular test case produces a particular output—given the complexity
of JS, even an expert may easily get puzzled by the output value
of a particular piece of code. Furthermore, interactive execution
makes it easier for the contributor of a new JS feature to add new
test cases and to check that these tests trigger the new features and
correctly interact with existing features.

In this paper, we present a tool, called JSExplain, for investigating
JS executions. This tool can be thought as a double debugger, which
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displays both the state of the interpreted program and that of the
interpreter program. In particular, our tool supports conditional
breakpoints expressed simultaneously on the interpreter program
and the interpreted program. To implement this tool, we generate
a version of our interpreter that is instrumented for producing
execution traces (§3), and we provide a web-based tool to navigate
through such traces (§4). As far as we know, our tool is the first such
double debugger, i.e., debugger with specific additions for dealing
with programs that interpret other programs (§5).

1.2 English Specification of JS
To illustrate the style in which the JavaScript standard (ECMA) [6]
is written, consider the description of addition, which will be our
running example throughout the paper. In JS, the addition operator
casts its arguments to integers and computes their sum, except
if one of the two arguments is a string, in which case the other
argument is cast to a string and the two strings are concatenated.

The ECMA5 presentation (prior to June 2016) appears in Fig-
ure 1. First, observe that the presentation describes both the parsing
rule for addition and its evaluation rule. Presumably for improved
accessibility, the JS standard does not make explicit the notion of
an abstract syntax tree (AST). The semantics of addition goes as
follows: first evaluate the left branch to a value, then evaluate the
right branch to a value, then converts both values (which might
be objects) into primitive values (e.g., string, number, ...), then test
whether one of the two arguments is a string. If so, cast both ar-
guments to strings and return their concatenation; otherwise cast
both arguments to numbers and return their sum.

This presentation style used in ECMA5 gives no details about
the propagation of exceptions. While the treatment of exceptions
is explicit for statements, it is left implicit for expressions. For
example, if the evaluation of the left branch raises an exception, the
right branch should not be evaluated. It appeared that leaving the
treatment of exceptions implicit could lead to ambiguities at what
exactly should or should not be evaluated when an exception gets
triggered. The ECMA committee hates such ambiguities, because it
could (and typically does) result in different browsers exhibiting
different behaviors—the nightmare of web-developers.

In ECMA6, such ambiguities were resolved by making the prop-
agation of exceptions explicit. Figure 2 shows the updated specifi-
cation for the addition operator. There are two main changes. First,
each piece of evaluation is described on its own line, thereby mak-
ing the evaluation order crystal clear. Second, the meta-operation
ReturnIfAbrupt is invoked on every intermediate result. This meta-
operation essentially corresponds to an exception monad. The
ECMA6 standards, which aims to be accessible to a large audience,
avoids the introduction of the word “monad”. Instead, it specifies
ReturnIfAbrupt as a “macro”, as shown in Figure 3. Essentially, ev-
ery result consists of a “completion record”, which corresponds to
a sum type distinguishing normal results from exceptions.

In all constructs except try-catch blocks, exceptions interrupt
the normal flow of the evaluation. As a result, ECMA6 specification
is scattered with about 1100 occurences of ReturnIfAbrupt opera-
tions. Realizing the impracticability of that style of specification,
the standardization committee decided to introduce in ECMA7 an
additional layer of syntactic sugar in subsequent versions of the

Evaluation of: AdditiveExpression : AdditiveExpression +
MultiplicativeExpression

1. Let lref be the result of evaluating AdditiveExpression.
2. Let lval be GetValue(lref).
3. Let rref be the result of evaluating MultiplicativeExpression.
4. Let rval be GetValue(rref).
5. Let lprim be ToPrimitive(lval).
6. Let rprim be ToPrimitive(rval).
7. If Type(lprim) is String or Type(rprim) is String, then

– Return the String that is the result of concatenating
ToString(lprim) followed by ToString(rprim).

8. Return the result of applying the addition operation to
ToNumber(lprim) and ToNumber(rprim).

Figure 1: ECMA5 specification of addition.

Evaluation of: AdditiveExpression : AdditiveExpression +
MultiplicativeExpression

1. Let lref be the result of evaluating AdditiveExpression.
2. Let lval be GetValue(lref).
3. ReturnIfAbrupt(lval).
4. Let rref be the result of evaluating MultiplicativeExpression.
5. Let rval be GetValue(rref).
6. ReturnIfAbrupt(rval).
7. Let lprim be ToPrimitive(lval).
8. ReturnIfAbrupt(lprim).
9. Let rprim be ToPrimitive(rval).
10. ReturnIfAbrupt(rprim).
11. If Type(lprim) is String or Type(rprim) is String, then

a. let lstr be ToString(lprim).
b. ReturnIfAbrupt(lstr).
c. let rstr be ToString(rprim).
d. ReturnIfAbrupt(rstr).
e. Return the String that is the result of concatenating lstr

and rstr.
12. let lnum be ToNumber(lprim).
13. ReturnIfAbrupt(lnum).
14. let rnum be ToNumber(rprim).
15. ReturnIfAbrupt(rnum).
16. Return the result of applying the addition operation to lnum

and rnum.

Figure 2: ECMA6 specification of addition.

specification. As detailed in Figure 4, they define the question mark
symbol to be a lightweight shorthand for ReturnIfAbrupt steps. The
specification of addition in that new style is shown in Figure 5.

The presentation of ECMA7 and ECMA8 (Figure 5) is both more
concise than that of ECMA6 (Figure 2) and more formal than that of
ECMA5 (Figure 1). The use of question marks is to be compared in
§2 with the monadic notation that we use for our formal semantics.

1.3 Requests from the JS Committee
The JavaScript standardization body, part of ECMA and known
as TC39, includes representatives from browser vendors, major



Evaluation of: ReturnIfAbrupt

Algorithms steps that say

1. ReturnIfAbrupt(argument).

mean the same thing as:

1. If argument is an abrupt completion, return argument.
2. Else if argument is a Completion Record, let argument be

argument.[[value]].

Figure 3: ECMA6 interpretation of ReturnIfAbrupt.

Algorithms steps that say or are otherwise equivalent to:

1. ReturnIfAbrupt(AbstractOperation()).

mean the same thing as:

1. Let hygienicTemp be AbstractOperation().
2. If hygienicTemp is an abrupt completion, return hygienicTemp.
3. Else if hygienicTemp is a Completion Record, let

hygienicTemp be hygienicTemp.[[Value]].
Where hygienicTemp is ephemeral and visible only in the steps
pertaining to ReturnIfAbrupt.

Invocations of abstract operations and syntax-directed operations
that are prefixed by ? indicate that ReturnIfAbrupt should be
applied to the resulting Completion Record. For example, the step:

1. ? OperationName().

is equivalent to the following step:

1. ReturnIfAbrupt(OperationName()).

Figure 4: ECMA7 and ECMA8 addition for ReturnIfAbrupt.

actors of the web, and academics. It aims at defining a common
semantics that all browsers should implement. TC39 faces major
challenges. On the one hand, it must ensure full backward com-
patibility, to avoid “breaking the web”. In particular, no feature
used in the wild ever gets removed from the specification. On the
other hand, the committee imposes the rule that no feature may
be added to the standard before it has been implemented, shipped,
and tested at scale in at least two distinct major browsers. Any
member of the committee may propose new features, hence there
are many proposals being actively developed, at different stages of
formalization [14].

The rapid evolution of the standard stresses the need for appro-
priate tools to assist in the rewriting, testing, and debugging of the
semantics. In particular, several members with whom we have had
interactions expressed their need for several basic tools, such as:

• a tool for knowing whether all variables that occur in the
specification are properly defined (bound) somewhere;

• a tool to perform basic type-checking of the meta-functions
and of the variables involved in the specification;

• a tool for checking that effectful operations go on a line of
their own, to avoid ambiguity in the order of evaluation;

• a tool for checking that the behavior is specified in all cases;

Evaluation of: AdditiveExpression : AdditiveExpression +
MultiplicativeExpression

1. Let lref be the result of evaluating AdditiveExpression.
2. Let lval be ? GetValue(lref).
3. Let rref be the result of evaluating MultiplicativeExpression.
4. Let rval be ? GetValue(rref).
5. Let lprim be ? ToPrimitive(lval).
6. Let rprim be ? ToPrimitive(rval).
7. If Type(lprim) is String or Type(rprim) is String, then

a. let lstr be ? ToString(lprim).
b. let rstr be ? ToString(rprim).
c. Return the String that is the result of concatenating lstr

and rstr.
8. let lnum be ? ToNumber(lprim).
9. let rnum be ? ToNumber(rprim).
10. Return the result of applying the addition operation to lnum

and rnum.

Figure 5: ECMA7 and ECMA8 specification of addition.

• a tool able to tell which lines from the specification are not
covered by any test from the main test suite (test262 [15]);

• a tool able to execute step-by-step the specification on con-
crete JS programs, and to inspect the value of the variables.

In particular, step-by-step execution is critically needed to eval-
uate new features. When the committee decides that a feature pro-
posal is worth integrating, it typically does not accept the proposal
as is, but instead modifies the proposal in a way that is amenable
to a simple, clear specification without corner cases, carefully try-
ing to avoid harmful interactions with other existing features (or
planned features). During this process, at some point the commit-
tee members have in their hand a draft of the extended semantics
as well as a collection of test cases illustrating the new behaviors
that should be introduced. Naturally, they would like to check that
their formalization of the extended semantics assigns the expected
behavior to each of the test cases.

One might argue that such a task could be performed by mod-
ifying one of the mainstream browsers. Yet, existing JS runtimes
are built with efficiency in mind, with huge code bases involving
numerous optimizations. As such, modifying the code in any way
is too costly for committee members to investigate variations on a
feature request. Even if they could invest the effort, the distance
between the English prose specification and the implementation
would be too large to have any confidence that the two match, i.e.,
that the behavior implemented in the code matches the behavior
described by the prose.

An alternative approach to testing a new feature is to develop
an elaboration (local translation) of that feature into plain JS. This
can take the form of syntactic sugar adding a missing API, namely
a polyfill, or the form of a source to source translation, namely
a transpiler. For instance, one might translate so-called “template
literals” into simple string concatenation.

/* new feature */ /* plain JavaScript */
var name = "me"; var name = "me";
`hello ${name}`; "hello " + name;



While polyfills and transpilers are a simple approach to testing new
features, they have two major limitations. First, the encoding might
be very invasive. For instance, the 2015 version of ECMAScript
added proxies, and as a consequence significantly changed the inter-
nal methods of the language; the Babel [1] transpiler for proxies [2]
is able to simulate this feature in prior version of JS, but at the cost
of replacing all field access operations with calls to wrapper func-
tions. Second, the interaction of several new features implemented
using these approaches is very difficult to anticipate.

1.4 Formal Specifications of JS
In recent years, two projects, JSCert [3] and KJS [11] have proposed
a formal specification for a significant subset of JS. JSCert provides
a big-step inductive definition for ECMA5, (technically, a pretty-big-
step specification [5]), formalized in the Coq proof assistant [16].
JSCert comes along with a reference interpreter, called JSRef, that
is proved correct with respect to the inductive definition. JSRef
may be extracted into executable OCaml code for executing tests.
KJS describes a small-step semantics for JS as a set of rewriting
rules, using the K framework [13]. This framework has been used
to formalize the semantics of several other real-world languages. It
provides in particular tool support for executing (syntax-directed)
transition rules on a concrete input program.

At first sight, it might seem that a formal specification addresses
all the requests from the committee. Definitions are thoroughly
type-checked; in particular, all variables must be properly bound.
Definitions, being defined in a formal language, are ambiguity-
free; in particular, the order of evaluation and the propagation of
exceptions is precisely specified. The semantics can be executed on
concrete input programs; moreover, with some extra tooling, one
may execute a set of programs and report on the coverage of the
specification by the tests.

Given all the nice features of formal semantics, why wouldn’t
the standardization committee TC39 consider one of these formal
semantics as the reference for the language? After discussing with
senior members from TC39, we understand that there are (at least)
three main reasons why there is no chance for a formal semantics
such as JSCert or KJS to be adopted as reference semantics.

(1) Formal specifications in Coq or in K use syntax and concepts
that are not easily accessible to JS programmers. Yet, the
specification is meant to be read by a wide audience.

(2) These formal languages have a cost of entry that is too high
for committee members to reach the level of proficiency
required for contributing new definitions all by themselves.

(3) JSCert and KJS comewith specifications that can be executed,
yet provide no debugger-style support for interactively nav-
igating through an execution and for visualizing the state
and the values of the variables, and thus do not help so much
in tuning the description of new features.

In the present work, we temporarily leave aside the motivation
of giving a formal semantics to JS that one could use to formalize
properties of the language (e.g., security properties), and rather
focus on trying to provide a formal semantics that meets better the
day-to-day needs of the TC39 committee.

1.5 Contribution
In this paper, we present a tool, called JSExplain, which aims at
providing a formal semantics for JS that addresses the aforemen-
tioned limitations of prior work. Our contribution is two-fold. First,
we present a specification for JS expressed in a language that, we
argue, JS programmers can easily read and write (§2). Second, we
present an interactive tool that supports step-by-step execution
of the specification on an input JS program (§3 and §4). Our tool
mimics the features of a debugger, such as navigation controls, state
and variable visualization, and conditional breakpoints, but does
so for both the interpreter program and the interpreted program.

The language in which we display the specification consists of
a subset of JS extended with syntactic sugar for monads and basic
pattern matching. This language, which we call pseudo-JS, could
be the source syntax for our specification. However, for historical
and technical reasons, we use as input syntax a subset of OCaml,
which is processed using the OCaml type-checker. Our current tool
automatically converts the OCaml AST into pseudo-JS code. In the
future, we might as well have our reference interpreter be directly
in pseudo-JS syntax, and we could typecheck that code either by
converting it to OCaml or by reimplementing a basic ML type-
checker. A third alternative would be to use the Reason syntax [12],
a JS-like syntax for OCaml programs. The only difference between
the approaches is whether TC39 committee members would prefer
to write OCaml style or JS style code.

2 SPECIFICATION LANGUAGE
2.1 Constructs of the Language
The input syntax in which we write and display the specification is
a purely-functional language that includes the following constructs:
variables, constants, sequence, conditional, let-binding, function
definition, function application (with support for prefix and infix
functions), data constructors, records (including record projections,
and the “record-with” construct to build a copy of a record with
a number of fields updated), tuples (i.e., anonymous records), and
simple pattern matching (only with non-nested patterns, restricted
to data constructors, constants, variables, and wildcards). For con-
venience, let-bindings and functions may bind patterns (as opposed
to only variables).

We purposely aim for a specification language with a limited
number of constructs and a very standard semantics, to minimize
the cost of entry into that language. Note that the input code is type-
checked in ML. (Polymorphism is used mainly for type-checking
options and lists, and operations on them.)

As explained earlier (§1.2), the semantics involves the propa-
gation of exceptions and other abrupt behaviors (break, continue,
and return). Their propagation can be described within our small
language, using functions and pattern matching. Nevertheless, in-
troducing a little bit of syntactic sugar greatly improves read-
ability. For example, we write “let%run x = e1 in e2” to mean
“if_run e1 (fun x -> e2)”, where if_run is a function that imple-
ments our monad.

The monadic operator if_run admits a polymorphic type, hence
functions from the specification may return objects of various types.
Nevertheless, in practice most functions from the ECMA standard



and run_binary_op s c op v1 v2 =
match op with
| C_binary_op_add -> run_binary_op_add s c v1 v2
...

and run_binary_op_add s0 c v1 v2 =
let%prim (s1, w1) = to_primitive_def s0 c v1 in
let%prim (s2, w2) = to_primitive_def s1 c v2 in
if (type_compare (type_of (Coq_value_prim w1)) Coq_type_string)
|| (type_compare (type_of (Coq_value_prim w2)) Coq_type_string)
then

let%string (s3, str1) = to_string s2 c (Coq_value_prim w1) in
let%string (s4, str2) = to_string s3 c (Coq_value_prim w2) in
res_out (Coq_out_ter (s4, (res_val (Coq_value_prim (Coq_prim_string (strappend str1 str2))))))

else
let%number (s3, n1) = to_number s2 c (Coq_value_prim w1) in
let%number (s4, n2) = to_number s3 c (Coq_value_prim w2) in
res_out (Coq_out_ter (s4, (res_val (Coq_value_prim (Coq_prim_number (n1 +. n2))))))

Figure 6: Current input syntax of our specification language: a subset of pure OCaml, extended with monadic notation.

are described as returning a “completion triple”, which either de-
scribe abrupt termination or describe a value. In a number of cases,
the value is in fact constrained to be of a particular type. For exam-
ple, if to_number produces a value, then this value is necessarily a
number. The standard exploits this invariant implicitly in formula-
tion such as “let n be the number produced by calling to_number”.
In constrast, our code needs to explicitly project the number from
the value returned. To that end, we introduce specialized monads
such as if_number, written in practice “let%number n = e1 in e2”.
(An alternative approach would be to assign polymorphic types
to completion triples, however following this route would require
diverging slightly from ECMA’s specification in a number of places.)

Figure 6 shows the specification of addition in our reference
interpreter, in OCaml syntax extended with the monadic notation.
This code implements its informal equivalent from Figure 2. In
that code, s denotes the state, c denotes the environment (variable
and lexical environment, in JS terminology), op corresponds to the
operator (here, the constructor C_binary_op_add corresponds to the
AST token describing the operator +), v1 and v2 corresponds to
the arguments, and w1 and w2 to their primitive values. The func-
tion strappend denote string concatenation, whereas “+.” denotes
addition on floating pointer numbers (i.e., JS’s numbers).

First observe that, as explained earlier (§1.1), the state is threaded
throughout the code. We show in the next section how to hide the
state variables (§2.2). Observe also that the code also relies on a
few auxiliary functions. The function type_compare implements
comparison over JS types—to keep our language small and explicit,
we do not want to assume a generic comparison function with
nontrivial specification. The functions to_primitive_def, to_string,
and to_number are internal functions from the specification that
implement conversions. These operations might end up evaluating
arbitrary user code, and thus could perform side-effects or raise
exceptions, hence the need to wrap them in monadic let-bindings.

One important feature of this source language is that it does
not involve any “implicit” mechanism. All type conversions are
explicit in the code, so it is always perfectly clear what is meant.
In particular, there is no need to type-check the code to figure out
its semantics. In summary, the OCaml code of the interpreter (e.g.,

var run_binary_op = function (op, v1, v2) {
switch (op) {
case C_binary_op_add:

return (run_binary_op_add(v1, v2));
... }

};
var run_binary_op_add = function (v1, v2) {

var%prim w1 = to_primitive_def(v1);
var%prim w2 = to_primitive_def(v2);
if ((type_compare(type_of(w1), Type_string)

|| type_compare(type_of(w2), Type_string))) {
var%string str1 = to_string(w1);
var%string str2 = to_string(w2);
return strappend(str1, str2);

} else {
var%number n1 = to_number(w1);
var%number n2 = to_number(w2);
return (n1 + n2);

}
};

Figure 7: Generated code for the interpreter in pseudo-JS
syntax, with implicit environments, state, and casts.

Figure 6) is well-suited as a non-ambiguous input language. Note
that this code may be compiled using OCaml’s compiler in order to
run test cases; the current version of our interpreter passes more
than 5000 test cases from the official test suite (test262).

2.2 Translation into Pseudo-JS Syntax
Although we believe that it is a desirable feature to have a source

langage fully explicit, there is also virtue in pretty-printing the
source code of our interpreter in a more concise syntax. The “noise”
that appears in the formal specification (e.g. Figure 6) comes from
three main sources:

(1) every function takes as argument the environment;
(2) every function takes as argument and returns a description

of the mutable state (a.k.a. heap);



(3) values are typically built using numerous constructors, e.g.
C_value_prim, which lifts a number (an OCaml value of type
float) into a JS value (an OCaml value of type value).

Fortunately, we can easily eliminate these three sources of noises.
First, the environment is almost always passed unchanged. It

may be modified only during the scope of a function call, a with
construct, or a block. When it is modified, new bindings are simply
pushed into the environment (which behaves like a stack), and
subsequently popped. Thus, we may assume, like the ECMA speci-
fication does, that the environment is stored in a global state. This
saves the need to pass an argument called “c” around.

Second, the description of the mutable state is threaded through
the code. The “current state” is passed as argument to every function
that might perform side-effects, and, symmetrically, the “updated
state” is returned to the caller, which binds a fresh name for it.
Considering that there is only one version of the state at any given
point of an execution, we may assume, like the ECMA specification
does, that state to be stored in a global variable. This saves the need
to pass values called “s1”, “s2”... around.

Third, the presence of many constructors is due to the need for
casts. Many of these casts could, however, be viewed as “implicit
casts” (or “coercions”, in Coq’s terminology). For a carefully chosen
set of casts, defined once and for all, and for a well-typed program
with implicit casts, there exists a unique (non-ambiguous) way to
insert casts in order to make the program type-check. Although we
have previously argued that explicit casts are useful, as they allow
giving a semantics that does not depend on type-checking, we now
argue that it may also be useful to pretty-print the code assuming
implicit casts, in order to improve readability.

In summary, we propose to the reader of the specification a
version that features implicit state, implicit context, and implicit
casts. Given that we are playing the game of pretty-printing syntax,
we take the opportunity to switch along the way to a JS-friendly
syntax, using brackets and semicolons. This target language, called
pseudo-JS syntax, consists of a subset of the JS syntax, extended
with monadic notation, and an extended switch construct that is
able to bind variables (like OCaml’s pattern matching, but restricted
to non-nested patterns for simplicity).

The pretty-printing of the addition operator in pseudo-JS syntax
appears in Figure 7. To illustrate our extended pattern matching
syntax feature of pseudo-JS, we show below an excerpt from the
main switch that interprets an expression.
switch (t) {
case Coq_expr_identifier(x):

var%run r = identifier_resolution(x); return (r);
case Coq_expr_binary_op(e1, op, e2): ...

3 TRACE-PRODUCING EXECUTIONS
JSExplain is a tool for interactively investigating execution traces
of our JS interpreter executing example JS programs. The interface
consists of a web page [8] that embeds a JS parser and a trace-
producing version of our interpreter implemented in standard JS.

So far, we have shown how to translate the OCaml source into
pseudo-JS syntax (§2.2). In this section, we explain how to translate
the OCaml source into proper JS syntax, and then how to instrument
the JS code in a systematic way for producing execution traces.

Figure 8 illustrates the output of translating from our OCaml
subset towards JS. Note that this code is not meant for human
consumption. We implement monadic operators as function calls,
introduce the return keyword where necessary, encode sum types
as object literals with a tag field, encode tuples as arrays (encoding
tuples as object literals would work too), turn constructor appli-
cations into functions calls, implement pattern matching by first
switching on the tag field then binding fresh variables to denote
the arguments of constructors.

We thus obtain an executable JS interpreter in JS which, like our
JS interpreter in OCaml, may be used for executing test cases. One
interest of the JS version is that it may be easily executed inside
a browser, a set up that might be more convenient for a number
of users. One limitation, however, is that the number of steps that
can be simulated may be limited on JS virtual machines that do
not optimize tail-recursive function calls. Indeed, the execution
of monadic code involves repeated calls to continuations, whose
(tail-call) invocation unnecessarily grows the call stack.

To set up our interactive debugger, we produce, from our OCaml
source code, an instrumented version of the JS translation. This
instrumented code produces execution traces as a result of inter-
preting an input JS program. These traces store information about
all the states that the interpreter goes through. In particular, each
event in the trace provides information about the code pointer and
the instantiations of local variables from the interpreter code.

More precisely, we log events at every entry point of a function,
every exit point, and on every variable binding. Each event captures
the state, the stack, and the values of all local variables in scope of
the interpreter code at the point where the event gets triggered. To
reduce noise in the trace, we only log events in the core code of the
interpreter, and not the code from the auxiliary libraries. Overall, an
execution of the instrumented interpreter on some input JS program
produces an array of events. This array can then be investigated
using our double debugger (§4).

Figure 9 shows an example snippet of code, giving an idea of the
mechanisms at play. Note, again, that this code is not meant for hu-
man consumption. The function log_event augments the trace. Con-
sider for instance log_event("Main.js", 4033, ctx_747, "enter").
The first two arguments identify the position in the source file, as a
file name and a unique token used to recover the line numbers. The
third argument is a context describing values of the local variables,
and the fourth argument describes the type of event.

When investigating the trace, we need to be able to highlight the
corresponding line of the interpreter code. We wish to be able to do
so for the three versions of the interpreter code: the OCaml version,
the pseudo-JS version, and the plain JS version. To implement this
feature, our generator, when processing the OCaml source code,
also produces a table that maps, for each version and for each file
of the interpreter, event tokens to line numbers.

The contexts stored in events are extended each time a function is
entered, a new variable is declared, or the function returns (so as to
capture the returned value). Contexts are represented as a purely-
functional linked list of mappings between variable names and
values. This representation maximizes sharing and thus minimize
the memory footprint of the generated trace. The length of the trace
grows linearly with the number of execution steps performed. For
example, the simple program “var i = 0; while (i < N) { i++ }”



var run_binary_op_add = function (s0, c, v1, v2) {
return (if_prim(to_primitive_def(s0, c, v1), function(s1, w1) {

return (if_prim(to_primitive_def(s1, c, v2), function(s2, w2) {
if ((type_compare(type_of(Coq_value_prim(w1)), Coq_type_string())

|| type_compare(type_of(Coq_value_prim(w2)), Coq_type_string()))) {
return (if_string(to_string(s2, c, Coq_value_prim(w1)), function(s3, str1) {

return (if_string(to_string(s3, c, Coq_value_prim(w2)), function(s4, str2) {
return (res_out(Coq_out_ter(s4, res_val(

Coq_value_prim(Coq_prim_string(strappend(str1, str2))))))); }));}));
} else { ... }})); }));

};

Figure 8: Snippet of generated code for the interpreter in standard JS syntax, without trace instrumentation.

var run_binary_op_add = function (s0, c, v1, v2) {
var ctx_747 = ctx_push(ctx_empty, [{key: "s0", val: s0}, {key: "c", val: c}, {key: "v1", val: v1}, {key: "v2", val: v2}]);
log_event("JsInterpreter.js", 4033, ctx_747, "enter");
var _return_1719 = if_prim((function () {

log_event("JsInterpreter.js", 3985, ctx_747, "call");
var _return_1700 = to_primitive_def(s0, c, v1);
log_event("JsInterpreter.js", 3984, ctx_push(ctx_747, [{key: "#RETURN_VALUE#", val: _return_1700}]), "return");
return (_return_1700); }()),

function(s1, w1) { ... });
log_event("JsInterpreter.js", 4028, ctx_push(ctx_748, [{key: "#RETURN_VALUE#", val: _return_1718}]), "return");
return (_return_1718);
});
log_event("JsInterpreter.js", 4032, ctx_push(ctx_747, [{key: "#RETURN_VALUE#", val: _return_1719}]), "return");
return (_return_1719);

};

Figure 9: Snippet of generated code for the interpreter in standard JS syntax, with trace instrumentation.

Interpreter
and libraries
(OCaml)

Libraries
(JS)

Interpreter
with

traces (JS)

AST of
interpreted
program

interpreted
program

web page

trace

compiler

tracing
compiler

Esprima

Figure 10: Architecture of JSExplain.

generates a trace of size 2 990 for N = 1, of size 14 166 for N = 10,
of size 126 126 for N = 100, and of size 1 245 726 for N = 1000.

The fact that these numbers are large reflects the fact that the
reference interpreter is inherently vastly inefficient, as it follows
the specification faithfully, without any optimization. Due to our
use of functional data structures, the memory footprint of the trace
should be linear in the length of the trace. We have not observed
the memory footprint to be a limit, but if it were we could more
carefully select which events should be stored.

4 JSEXPLAIN: A DOUBLE DEBUGGER FOR JS
The global architecture of JSExplain is depicted in Figure 10. Starting
from our JS interpreter in OCaml, we generate a JS interpreter in

JS. We instrument the JS code to produce a trace of events. This
compilation is done ahead of time and depicted by solid arrows.

When hitting the run button, the flow depicted by the dotted
arrows occurs. The web page parses the code from the text area,
using the Esprima library [7]. This parser produces an AST, with
nodes annotated with locations. This AST is then provided as input
to the instrumented interpreter, which generates a trace of events.
This trace may then be inspected and navigated interactively.

For a given event from the execution trace, our interface high-
lights the corresponding piece of code from the interpreter, and
shows the values of the local variables, as illustrated in Figure 11. It
also highlights the corresponding piece of code in the interpreted
program, as illustrated at the top of Figure 13, and displays the state
and the environment of the program at that point of the execution,
as illustrated in Figure 12.

Recovering the information about the interpreted code is not
completely straightforward. For example, to recover the fragment
of code to highlight, we find in the trace the closest previous event
that contains a call to function with an argument named _term_.
This argument corresponds to the AST of a subexpression, and
this AST is decorated (by the parser) with locations. Note that, for
efficiency reasons, we associate to each event from the trace its
corresponding _term_ argument during a single pass, performed
immediately after the trace is produced.

Similarly, we are able to recover the state and environment asso-
ciated with the event. The state of the interpreted program consists
of four fields: the strictness flag, the value of the this keyword,



Figure 11: Display of the variables from the interpreter code

Figure 12: Display of the state and environment of the inter-
preted code. The environment includes the local variables.

the lexical environment, and the variable environment. We imple-
mented a custom display for these elements, and also for values of
the languages, in particular for objects: one may click on an object
to reveal its contents and recursively explore it.

We provide several ways to navigate the trace. First, we provide
buttons for reaching the beginning or end of the execution, and but-
tons for stepping one event at a time. Second, we provide, similarly
to debuggers, next and previous buttons for skipping function calls,
as well as a finish button to reach the end of the current function.
These features are implemented by navigating the trace, keeping
track of the number of enter and return events. Third, we provide
buttons for navigation based not on steps related to the interpreter
program but instead based on steps of the interpreted program:
source previous and source next find the closest event which induces

Figure 13: Example of a conditional breakpoint, constrain-
ing the state of both the interpreter and the interpreted code.

a change in the location on the subexpression evaluated in the
interpreted code, and source cursor finds the last event in the trace
for which the associated subexpression contains the active cursor
in the “source program” text area.

The aforementioned tools are sufficient for simple explorations
of the trace, yet we have found that it is sometimes useful to reach
events at which specific conditions occur, such as being at a specific
line in the interpreter, in the interpreted code, with variables from
the interpreter or interpreted code having specific values. We thus
provide a text box to enter arbitrary breakpoint conditions to be
evaluated on events from the trace. For example, the condition in
Figure 13 reaches the next occurrence of a call to run_binary_op_add

in a context where the source variable j has value 1. The break
point condition may be any JS expression using the following API:
I_line() returns the current line of the interpreter, S_line() returns
the current line of the source, I('x') returns the value of x in the
interpreter, S_raw('x') returns the value of x in the source (e.g. the
JS object {tag: "value_number", arg: 5}), and S('x') returns the
JS interpretation of the value of x in the source (e.g. the JS value 5).

5 RELATEDWORK
There are many formal semantics of JavaScript, from pen-and-paper
ones [10], to the aforementioned JSCert [3] and KJS [11]. As de-
scribed in §1.4, these semantics are admirable but lack crucial fea-
tures to be actively used in the standardization effort.

To our knowledge, the closest work to the double-debugger
approach is the multi-level debugging approach of Kruck et al. [9].
They present a debugger for an interpreter for domain-specific
languages that lets developers choose the level of abstraction at
which they debug their program. An abstraction is a way to display
some values (encoded in the host language, or as present in the DSL)
as well as showing only stack frames that represent computation



at the DSL level. Our technique is more general as it does not focus
on domain-specific languages.

In fact, our double-debugger approach could be easily adapted
to interpreter for other languages than JS. To that end, it suffices to
implemented an interpreter for the desired language in the subset
of OCaml that we support, and to provide code for extracting and
displaying the term and state associated with a given event. We
have recently followed that approach and adapted our framework
to derive a double-debugger for (a significant subset of) the OCaml
programming language.

Regarding the translation from OCaml to JS that we imple-
ment, one might consider using an existing, general-purpose tool.
Js_of_ocaml [17] converts OCaml bytecode into efficient JS code.
Presumably, we could implement the logging instrumentation as an
OCaml source-to-source translation and then invoke Js_of_ocaml.
Yet, with that approach, we would need to convert the representa-
tion of trace events from the encoding of these values performed
by Js_of_ocaml into proper JS objects that we can display in the
interactive interface. This conversion is nontrivial, as some infor-
mation, such as the name of constructors, is lost in the process. As
we already implemented a translator from OCaml to pseudo-JS, it
was simpler to implement a translator from OCaml to plain JS.

Another translator from OCaml to JS is Bucklescript [4], which
was released after we started our work. Similarly to our transla-
tor, Bucklescript converts OCaml code into JS code advertised as
readable. Bucklescript also has the limitation that the names of con-
structors are lost, although presumably this could be easily fixed.
Besides, if we wanted to revisit our implementation to base it on
Bucklescript, for trace generation we would need to either modify
Bucklescript, which is quite complex as it covers the full OCaml
language, or to reimplement trace instrumentation at the OCaml
level, which should be doable yet would involve a bit more work
than at the level of untyped JS code.

6 CONCLUSION AND FUTUREWORK
We presented JSExplain to TC391 and the committee expressed
strong interest. They would like us to extend our specification to
cover all of the specification. We have almost finished the formaliza-
tion of proxies, which are a challenging addition to the language as
they change many internal methods. Although all members seem
to agree that the current toolset for developing the specification is
inappropriate, it requires a strong leadership and a consensus to
commit to a new toolchain. Our goal is to cover the current version
of ECMAScript, we currently cover ECMAScript 5, and to help
committee members use it to formalize new additions to JavaScript.

There are numerous directions for future work. (1) We plan to set
up a modular mechanism for describing unspecified behaviors (e.g.
“for-in” enumeration order) as well as browser-specific behaviors
(sometimes browsers deviate from the specification, for historical
reasons). (2) We could investigate the possibility of extending the
formalization of the standard by also covering the parsing rules of
JS; currently, our semantics is expressed with respect to the AST of
the input program. (3) To re-establish a link with the original JSCert
inductive definition, which is useful for conducting formal proofs
about the metatheory of the langage, we would like to investigate

1https://tc39.github.io/tc39-notes/2016-05_may-25.html#jsexplain-as--tw

the possibility of automatically generating pretty-big-step [5] defini-
tions from the reference semantics expressed in our small language,
possibly using some amount of annotation to guide the process.
(4) To close even further the gap between a formal language and
the English prose, we could also investigate the possibility of auto-
matically generating English sentences from the code. Indeed, the
prose from the ECMAScript standard is written in such a systematic
manner that this should be doable, at least to some extent.
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