D. Arthur and S. Vassilvitskii, The advantages of careful seeding, Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms Society for Industrial and Applied Mathematics, pp.1027-1035, 2007.

B. Bahmani, B. Moseley, A. Vattani, R. Kumar, and S. Vassilvitskii, Scalable k-means++, Proceedings of the VLDB Endowment, pp.622-633, 2012.
DOI : 10.14778/2180912.2180915

M. Barbaro, T. Zeller, and S. Hansell, A face is exposed for aol searcher no. 4417749, New York Times, vol.9, p.8, 2006.

Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, HaLoop, Proc. VLDB Endow, pp.1-2, 2010.
DOI : 10.14778/1920841.1920881

J. Cao, P. Karras, C. Ra¨?ssira¨?ssi, and K. Tan, ??-uncertainty, Proceedings of the VLDB Endowment, pp.1-2, 2010.
DOI : 10.14778/1920841.1920971

F. Chierichetti, R. Kumar, and A. Tomkins, Max-cover in map-reduce, Proceedings of the 19th international conference on World wide web, WWW '10, pp.231-240, 2010.
DOI : 10.1145/1772690.1772715

J. Dean, S. Ghemawat, and . Mapreduce, MapReduce, Communications of the ACM, vol.51, issue.1, pp.107-113, 2008.
DOI : 10.14293/S2199-1006.1.SOR-UNCAT.AUNHT8.v1.RBZFIB

J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S. Bae et al., Twister, Proceedings of the 19th ACM International Symposium on High Performance Distributed Computing, HPDC '10, pp.810-818, 2010.
DOI : 10.1145/1851476.1851593

F. Cordeiro, R. L. Traina, C. Junior, A. J. Machado-traina, J. López et al., Clustering very large multi-dimensional datasets with mapreduce, Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.690-698, 2011.

B. C. Fung, K. Wang, R. Chen, Y. , and P. S. , Privacy-preserving data publishing, ACM Computing Surveys, vol.42, issue.4, pp.1-14, 2010.
DOI : 10.14293/S2199-1006.1.SOR-UNCAT.AU286O.v1.RFIGVS

Y. He and J. And-naughton, Anonymization of set-valued data via top-down, local generalization, Proc. VLDB Endow, pp.934-945, 2009.
DOI : 10.14778/1687627.1687733

K. Lee, Y. Lee, H. Choi, Y. D. Chung, M. et al., Parallel data processing with MapReduce, ACM SIGMOD Record, vol.40, issue.4, pp.11-20, 2012.
DOI : 10.1145/2094114.2094118

G. Loukides, A. Gkoulalas-divanis, and J. Shao, Anonymizing Transaction Data to Eliminate Sensitive Inferences, Proceedings of the 21st International Conference on Database and Expert Systems Applications: Part I DEXA'10, pp.400-415, 2010.
DOI : 10.1007/978-3-642-15364-8_34

A. Narayanan and V. Shmatikov, How to break anonymity of the netflix prize dataset, p.610105, 2006.

M. Terrovitis, N. Mamoulis, and P. Kalnis, Privacy-preserving anonymization of set-valued data, Proc. VLDB Endow, pp.115-125, 2008.
DOI : 10.14778/1453856.1453874

M. Terrovitis, N. Mamoulis, and P. Kalnis, Local and global recoding methods for anonymizing set-valued data, The VLDB Journal, vol.16, issue.4, pp.83-106, 2011.
DOI : 10.1142/S0218488502001648

M. Terrovitis, N. Mamoulis, J. Liagouris, and S. Skiadopoulos, Privacy preservation by disassociation, Proc. VLDB Endow, pp.10-944, 2012.
DOI : 10.14778/2336664.2336668

Y. Xu, K. Wang, A. W. Fu, Y. , and P. S. , Anonymizing transaction databases for publication, Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD 08, pp.767-775, 2008.
DOI : 10.1145/1401890.1401982

URL : http://www.cse.cuhk.edu.hk/~adafu/Pub/sigkdd08.pdf

X. Zhang, C. Liu, S. Nepal, C. Yang, W. Dou et al., Combining Top-Down and Bottom-Up: Scalable Sub-tree Anonymization over Big Data Using MapReduce on Cloud, 2013 12th IEEE International Conference on Trust, Security and Privacy in Computing and Communications, pp.501-508, 2013.
DOI : 10.1109/TrustCom.2013.235

X. Zhang, C. Liu, S. Nepal, C. Yang, W. Dou et al., A hybrid approach for scalable sub-tree anonymization over big data using MapReduce on cloud, Special Issue on Dependable and Secure Computing The 9th {IEEE} International Conference on Dependable, Autonomic and Secure Computing, pp.1008-1020, 2014.
DOI : 10.1016/j.jcss.2014.02.007

X. Zhang, L. Yang, C. Liu, C. , and J. , A scalable two-phase top-down specialization approach for data anonymization using mapreduce on cloud. Parallel and Distributed Systems, IEEE Transactions on, vol.25, issue.2, pp.363-373, 2014.

Z. Zheng, R. Kohavi, and L. Mason, Real world performance of association rule algorithms, Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '01, pp.401-406, 2001.
DOI : 10.1145/502512.502572