M. R. Avendi, A. Kheradvar, and H. Jafarkhani, A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI, Medical Image Analysis, vol.30, pp.108-119, 2016.
DOI : 10.1016/j.media.2016.01.005

M. R. Avendi, A. Kheradvar, and H. Jafarkhani, Automatic segmentation of the right ventricle from cardiac MRI using a learning-based approach, Magnetic Resonance in Medicine, vol.8, issue.6, 2017.
DOI : 10.1016/j.media.2004.06.015

N. Duchateau, M. De-craene, and P. Allain, Infarct Localization From Myocardial Deformation: Prediction and Uncertainty Quantification by Regression From a Low-Dimensional Space, IEEE Transactions on Medical Imaging, vol.35, issue.10, pp.35-2340, 2016.
DOI : 10.1109/TMI.2016.2562181

URL : https://hal.archives-ouvertes.fr/hal-01314767

O. Ecabert, J. Peters, and H. Schramm, Automatic Model-Based Segmentation of the Heart in CT Images, IEEE Transactions on Medical Imaging, vol.27, issue.9, pp.1189-1201, 2008.
DOI : 10.1109/TMI.2008.918330

A. Prakosa, M. Sermesant, and H. Delingette, Generation of Synthetic but Visually Realistic Time Series of Cardiac Images Combining a Biophysical Model and Clinical Images, IEEE Transactions on Medical Imaging, vol.32, issue.1, pp.99-109, 2013.
DOI : 10.1109/TMI.2012.2220375

URL : https://hal.archives-ouvertes.fr/hal-00813861

C. Tobon-gomez, M. De-craene, and K. Mcleod, Benchmarking framework for myocardial tracking and deformation algorithms: An open access database, Medical Image Analysis, vol.17, issue.6, pp.632-680, 2013.
DOI : 10.1016/j.media.2013.03.008

URL : https://hal.archives-ouvertes.fr/hal-00855928

P. V. Tran, A fully convolutional neural network for cardiac segmentation in shortaxis MRI. arXiv preprint, 2016.

Y. Wang, B. Georgescu, and T. Chen, Learning-Based Detection and Tracking in Medical Imaging: A Probabilistic Approach, LNCVB, vol.7, pp.209-235, 2013.
DOI : 10.1007/978-94-007-5446-1_9

Y. Zheng, A. Barbu, and B. Georgescu, Four-Chamber Heart Modeling and Automatic Segmentation for 3-D Cardiac CT Volumes Using Marginal Space Learning and Steerable Features, IEEE Transactions on Medical Imaging, vol.27, issue.11, pp.1668-1681, 2008.
DOI : 10.1109/TMI.2008.2004421

URL : http://www.caip.rutgers.edu/~comanici/Papers/HeartModeling_TMI08.pdf

K. Zhou, H. Greenspan, and D. Shen, Deep learning for medical im- age analysis