U. Bauer and M. Lesnick, Persistence diagrams as diagrams: A categorification of the stability theorem, 2016.

M. Botnan and G. Spreemann, Approximating persistent homology in Euclidean space through collapses, Applicable Algebra in Engineering, Communication and Computing, vol.49, issue.4, pp.73-101, 2015.
DOI : 10.1007/s00454-013-9513-1

URL : http://arxiv.org/pdf/1403.0533

P. Bubenik, J. Scott, and V. Silva, Metrics for Generalized Persistence Modules, Foundations of Computational Mathematics, vol.33, issue.2, p.31, 2014.
DOI : 10.1007/s00454-004-1146-y

URL : http://arxiv.org/pdf/1312.3829.pdf

P. Bubenik and J. A. Scott, Categorification of Persistent Homology, Discrete & Computational Geometry, vol.33, issue.2, pp.600-627, 2014.
DOI : 10.1007/s00454-004-1146-y

M. Buchet, F. Chazal, S. Y. Oudot, and D. R. Sheehy, Efficient and robust persistent homology for measures, Computational Geometry, vol.58, pp.70-96, 2016.
DOI : 10.1016/j.comgeo.2016.07.001

URL : https://hal.archives-ouvertes.fr/hal-01342385

F. Chazal, D. Cohen-steiner, M. Glisse, L. J. Guibas, and S. Y. Oudot, Proximity of persistence modules and their diagrams, Proceedings of the 25th annual symposium on Computational geometry, SCG '09, pp.237-246, 2009.
DOI : 10.1145/1542362.1542407

URL : https://hal.archives-ouvertes.fr/inria-00292566

F. Chazal, M. Vin-de-silva, S. Glisse, and . Oudot, The Structure and Stability of Persistence Modules, 2016.
DOI : 10.1007/978-3-319-42545-0

URL : https://hal.archives-ouvertes.fr/hal-01330678

D. Cohen-steiner, H. Edelsbrunner, and J. Harer, Stability of Persistence Diagrams, Discrete & Computational Geometry, vol.37, issue.1, pp.103-120, 2007.
DOI : 10.1007/s00454-006-1276-5

W. Crawley-boevey, Decomposition of pointwise finite-dimensional persistence modules, Journal of Algebra and Its Applications, vol.14, issue.05, p.1550066, 2015.
DOI : 10.1007/s00454-004-1146-y

B. Davey and H. A. Priestley, Introduction to lattices and order, p.298, 2002.
DOI : 10.1017/CBO9780511809088

K. Tamal, F. Dey, Y. Fan, and . Wang, Computing topological persistence for simplicial maps, Proceedings of the Thirtieth Annual Symposium on Computational Geometry, pp.345-345, 2014.

F. Tamal-krishna-dey, Y. Fan, and . Wang, Graph induced complex on point data, Proceedings of the Twenty-ninth Annual Symposium on Computational Geometry, SoCG '13, pp.107-116, 2013.

H. Edelsbrunner and J. L. Harer, Computational topology : an introduction, 2010.
DOI : 10.1090/mbk/069

G. Friedman, Survey Article: An elementary illustrated introduction to simplicial sets, Rocky Mountain Journal of Mathematics, vol.42, issue.2, pp.353-423
DOI : 10.1216/RMJ-2012-42-2-353

URL : http://doi.org/10.1216/rmj-2012-42-2-353

M. Kramár, R. Levanger, J. Tithof, B. Suri, M. Xu et al., Analysis of Kolmogorov flow and Rayleigh???B??nard convection using persistent homology, Physica D: Nonlinear Phenomena, vol.334, pp.82-98, 2016.
DOI : 10.1016/j.physd.2016.02.003

S. Y. Oudot, Persistence theory: from quiver representations to data analysis, Mathematical Surveys and Monographs, vol.209, 2015.
DOI : 10.1090/surv/209

URL : https://hal.archives-ouvertes.fr/hal-01247501

R. Donald and . Sheehy, Linear-size approximations to the vietoris-rips filtration, Discrete and Computational Geometry, vol.49, issue.4, pp.778-796, 2013.

A. Zomorodian and G. Carlsson, Computing Persistent Homology, Discrete & Computational Geometry, vol.33, issue.2, pp.249-274, 2004.
DOI : 10.1007/s00454-004-1146-y

URL : http://graphics.stanford.edu/~afra/papers/socg04/persistence.ps.gz