
HAL Id: hal-01757559
https://inria.hal.science/hal-01757559

Submitted on 3 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Modelling and Analysing Cloud Application
Management

Antonio Brogi, Andrea Canciani, Jacopo Soldani

To cite this version:
Antonio Brogi, Andrea Canciani, Jacopo Soldani. Modelling and Analysing Cloud Application Man-
agement. 4th European Conference on Service-Oriented and Cloud Computing (ESOCC), Sep 2015,
Taormina, Italy. pp.19-33, �10.1007/978-3-319-24072-5_2�. �hal-01757559�

https://inria.hal.science/hal-01757559
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Modelling and analysing
cloud application management?

Antonio Brogi, Andrea Canciani, and Jacopo Soldani

Department of Computer Science, University of Pisa, Italy

Abstract. Managing complex applications over heterogeneous clouds
is one of the emerging problems in the cloud era. The OASIS Topology
and Orchestration Specification for Cloud Applications (TOSCA) aims
at solving this problem by providing a language to describe and man-
age complex cloud applications in a portable and vendor-agnostic way.
TOSCA permits to define an application as an orchestration of com-
ponents, whose types can specify states, requirements, capabilities and
management operations — but not how they interact with each other.

In this paper we propose a simple extension of TOSCA that permits to
specify the behaviour of management operations and their relations with
states, requirements, and capabilities. We show how such an extension
permits to automate various useful analyses, like determining the validity
of a management plan, which are its effects, or which plans reach certain
system configurations. Finally, we illustrate a proof-of-concept graphi-
cal interface that permits to edit and analyse management protocols in
TOSCA applications.

1 Introduction

Cloud computing has revolutionized IT, by allowing to run on-demand dis-
tributed software systems at a fraction of the cost of just a few years ago.
However, due to the lack of standardization, how to flexibly manage applica-
tions over heterogeneous clouds is still an open issue.

In this scenario, OASIS released TOSCA (Topology and Orchestration Spec-
ification for Cloud Applications [15,17]), a standard to support the automated
management of complex cloud-based applications. TOSCA provides a modelling
language to describe, in a portable and vendor-agnostic way, a cloud application
and its management. An application is defined by instantiating component types,
and by connecting a component’s requirements to the capabilities of other com-
ponents. Its management can then be described by orchestrating the operations
of its components (like configure, install, start, etc.) into workflow plans.

Unfortunately, the current version of TOSCA [15] does not permit to specify
the behaviour of a cloud application’s management operations. More precisely,
it is not possible to describe the order in which the management operations
of a component must be invoked, nor how those operations depend on the re-
quirements or how they affect the capabilities of that component (and hence

? Work partly supported by the European project SeaClouds (EU-FP7-ICT-610531).

the requirements of other components they are connected to). This implies that
the verification of whether a management plan is valid can only be performed
manually, with a time-consuming and error-prone process.

In this paper we first propose a simple extension of TOSCA that permits to
specify the behaviour of management operations and their relations with states,
requirements, and capabilities. We define how to describe the management pro-
tocols of TOSCA components by means of finite state machines whose states
and transitions are associated with conditions on the component’s requirements
and capabilities. Intuitively speaking, the objective of those conditions is to de-
fine the consistency of component’s states and to constrain the executability of
component’s operations to the satisfaction of their requirements.

We then show how to the proposed extension of TOSCA permits to auto-
mate various analyses of management protocols, like determining whether man-
agement plans are valid, which are their effects, or which plans permit to reach
certain system configurations.

Finally, we illustrate the feasibility of our approach by describing a proof-of-
concept web-based application that permits to edit the management protocols
of TOSCA application components, and to analyse plans describing the man-
agement of a whole application.

The rest of the paper is organized as follows. Sect. 2 introduces TOSCA,
while Sect. 3 illustrates a scenario motivating the need for an explicit, machine-
readable representation of management protocols. Sect. 4 describes how TOSCA
can be extended to model the behaviour of management operations, and how
the proposed modelling permits to automate different types of analysis. Sect. 5
illustrates our proof-of-concept. Related work is discussed in Sect. 6, while some
concluding remarks are drawn in Sect. 7.

2 Background: TOSCA

TOSCA [15] is an emerging standard aimed at enabling the specification of
portable cloud applications and the automation of their management. To do
so, TOSCA provides a modelling language to describe the structure of a cloud
application as a typed topology graph, and its tasks as plans. More precisely,
each cloud application is represented as a ServiceTemplate (Fig. 1), consisting
of a mandatory TopologyTemplate and of optional management Plans. Generic
type definitions are also contained in the document defining the ServiceTem-

plate as they are referred to by the elements in its topology.
The TopologyTemplate is a typed directed graph describing the structure

of the composite cloud application. Its nodes (NodeTemplates) model the ap-
plication components, while its edges (RelationshipTemplates) model the re-
lations among those components. NodeTemplates and RelationshipTemplates
are typed by means of NodeTypes and RelationshipTypes, respectively. A No-

deType defines (i) the observable properties of an application component, (ii)
the possible states of its instances, (iii) its requirements, (iv) the capabilities it
offers to satisfy other components’ requirements, and (v) its management op-

Fig. 1. TOSCA ServiceTemplate.

erations. RelationshipTypes describe the properties of relationships occurring
among components. Syntactically, properties are described by PropertiesDefi-

nition, states by InstanceStates, requirements by RequirementDefinitions
(of certain RequirementTypes), capabilities by CapabilityDefinitions (of cer-
tain CapabilityTypes), and operations by Interfaces and Operations.

Plans instead allow to describe the management aspects of a ServiceTem-

plate. More precisely, each Plan is a workflow orchestrating the management
Operations offered by the application components to address (part of) the man-
agement of the whole cloud application1.

3 Motivating scenario

Consider two utility web services, Translator and Convertor, and suppose that
we want to manage them on a TOSCA-compliant cloud platform. After de-
scribing the services in TOSCA, we have to specify the third-party application
components needed to properly host them. For instance, we may indicate that
they have to run on an Apache server installed on a Debian operating system,
which in turn runs on an VMWare virtual machine. Fig. 2 illustrates the re-
sulting TopologyTemplate, according to the graphical notation introduced by
Winery [14]. For the sake of readability, we focus only on the lifecycle interfaces
[8] of each NodeType instantiated in the topology (i.e., the interfaces containing
the operations to install, configure, start, stop, and uninstall a component).

Suppose now that we want to specify the deployment of the Translator and
Convertor services by writing a TOSCA Plan. It is worth noting that, since
TOSCA does not include any representation of the management protocols of
(third-party) NodeTypes, one may produce invalid Plans. For instance, while
Fig. 3 illustrates three seemingly valid BPMN Plans, only (c) is a valid Plan.
Plan (a) is not valid since Apache’s Configure operation cannot be executed

1 A more detailed and self-contained introduction to TOSCA can be found in [8].

Fig. 2. Motivating scenario.

(a)

(b)

(c)

Fig. 3. Examples of deployment Plans.

before Apache itself is running, while Plan (b) is not valid since Apache cannot
be installed if the Debian operating system is not running.

While the validity of Plans can be manually verified, this is a time-consuming
and error-prone process. In order to enable the automated verification of the va-
lidity of Plans, TOSCA needs to be extended with an explicit, machine-readable
representation of NodeTypes’ management protocols.

4 Management protocols for cloud applications

TOSCA NodeTypes can be described by means of their states, requirements,
capabilities, and management operations, but there is currently no way to specify

how management operations affect states, how operations or states depend on
requirements, or which capabilities are concretely provided in a certain state.

In this section we propose an extension of TOSCA that permits to specify
the behaviour of management operations and their relations with states, require-
ments, and capabilities.

4.1 Definition of management protocols

Let N be a TOSCA NodeType, and let us denote its states, requirements, capa-
bilities, and management operations with SN , RN , CN , and ON , respectively.

We want to describe whether and how the management operations of N
depend on (i) other operations of the same node and/or on (ii) operations of
other nodes providing the capabilities that satisfy the requirements of N .

(i) The first kind of dependencies can be easily described by specifying the re-
lationship between states and management operations of N . More precisely,
to describe the order with which the operations of N can be executed, we
introduce a transition relation τ specifying whether an operation o can be
executed in a state s, and which state is reached by executing o in s.

(ii) The second kind of dependencies can be described by associating transi-
tions and states with (possibly empty) sets of requirements to indicate that
the corresponding capabilities are assumed to be provided. More precisely,
the requirements associated with a transition t specify which are the capa-
bilities that must be offered to allow the execution of t. The requirements
associated with a state of a NodeType N specify which are the capabili-
ties that must (continue to) be offered by other nodes in order for N to
(continue to) work properly.

To complete the description, we also associate to each state s of a NodeType N
the capabilities provided by N in s.

Definition 1. Let N = 〈SN , RN , CN , ON ,MN 〉 be a NodeType, where SN , RN ,
CN , and ON are the finite sets of its states, requirements, capabilities, and man-
agement operations. MN = 〈sN , ρN , χN , τN 〉 is the management protocol of N ,
where

– sN ∈ SN is the initial state,
– ρN is a function indicating, for each state s ∈ SN , which conditions on

requirements must hold (i.e., ρN (s) ⊆ RN),
– χN is a function indicating which capabilities of N are concretely offered in

a state s ∈ SN (i.e., χN (s) ⊆ CN), and
– τN ⊆ SN × 2RN × ON × SN is a set of quadruples modelling the transition

relation (i.e., 〈s,H, o, s′〉 ∈ τN means that in state s, and if condition H
holds, o is executable and leads to state s′).

Syntactically, to represent MN we slightly extend the syntax2 for describing
a TOSCA NodeType. First, we enrich the description of InstanceStates by

2 A more detailed syntax for extended NodeTypes can be found in [5].

introducing the nested elements ReliesOn and Offers. ReliesOn defines ρN by
enabling the association between states and conditions on requirements, while
Offers defines χN by indicating the capabilities offered in a state. Furthermore,
we introduce the element ManagementProtocol, to specify the InitialState s
of a protocol, as well as the Transitions defining its transition relation τN .

The management protocols of the NodeTypes in our motivating scenario
(Sect. 3) are shown in Fig. 4, whereMWS is the management protocol for Web-
Services,MS for Server,MOS for OperatingSystem, andMVM for Virtual-
Machine. Consider for instance the management protocol MS of the Server

MWS MOS

MS MVM

Fig. 4. Management protocols of the NodeTypes in our motivating scenario.

NodeType, typing a Tomcat server.Its states SS are Unavailable (initial), Stop-
ped, and Working, the only requirement in RS is ServerContainer, the only
capability in CS is WebAppRuntime, its management operations OS are Setup,
Uninstall, Run, Stop, and Configure. States Unavailable and Stopped are
not associated with any requirement or capability. State Working instead speci-
fies that the capability corresponding to the ServerContainer requirement must
be provided in order for Server to (continue to) work properly. State Working

also specifies that Server provides the WebAppRuntime capability when in such
state. Finally, all transitions (but those involving operations Stop and Confi-

gure) bind their executability to the availability of the capability that satisfies
the ServerContainer requirement.

Management protocols (as per Def. 1) allow operations to have non-determi-
nistic effects (e.g., a state may have two outgoing transitions corresponding to the
same operation and leading to different states3). This form of non-determinism

3 Note that the conditions of the two transitions may both hold even if the sets of
requirements they refer to are disjoint. Hence the state obtained by performing the
operation would be non-deterministic.

is not acceptable when managing TOSCA applications [8]. We will thus focus
on deterministic management protocols (i.e., protocols ensuring deterministic
effects when performing an operation in a state).

Definition 2. Let N = 〈SN , RN , CN , ON ,MN 〉 be a NodeType. The manage-
ment protocol MN = 〈sN , ρN , χN , τN 〉 is deterministic if and only if

∀〈s1, H1, o1, s
′
1〉, 〈s2, H2, o2, s

′
2〉 ∈ τN : (s1 = s2 ∧ o1 = o2)⇒ s′1 = s′2

4.2 Analysis of management protocols

In this section we describe different analyses that can be performed on the man-
agement protocol of a TOSCA application, such as checking the validity of a
Plan, determining its effects, or discovering Plans that allow to reach certain
system configurations.

We first define an intensional operational semantics of the management protocol
of a single component (viz., a TOSCA NodeType), which models all possible
sequences of management operations that could be performed on a component
if the conditions on the needed requirements were satisfied by the environment.
Formally, the intensional semantics of the management protocol of a NodeType

N can be defined by a labelled transition system over configurations that are
the states of N .

Definition 3. Let N = 〈SN , RN , CN , ON ,MN 〉 be a NodeType. The intensional
semantics of the management protocol MN of N is modelled by a labelled tran-
sition system whose set of configurations is SN and where the transition relation
is defined by the following inference rule:

N = 〈SN , RN , CN , ON ,MN 〉 MN = 〈sN , ρN , χN , τN 〉 〈s,H, o, s′〉 ∈ τN

s
〈H,o〉−−−→N s′

Intuitively, a transition s
〈H,o〉−−−→N s′ denotes that operation o can be executed

on N when N is in state s, and under the hypothesis that condition H holds,
making N evolve into state s′.

The intensional semantics of the management protocol of a single NodeTy-

pe permits to determine the conditions that must hold in the environment for
sequences of management operations such as

s0
〈H1,o1〉−−−−−→N s1

〈H2,o2〉−−−−−→N · · ·
〈Hh,oh〉−−−−−→N sh

to be effectively executable on a NodeTemplate of such NodeType.

We can now define the semantics of the management protocol of a whole applica-
tion (viz., a TOSCA ServiceTemplate) by suitably composing the intensional
semantics of the management protocols of the components (NodeTemplates)
that form such application. Formally, the semantics of the management protocol

of a ServiceTemplate S can be defined by a labelled transition system over
configurations that denote the states of the NodeTemplates of S. Intuitively, a
transition

G
〈o,Ni〉−−−−→S G

′

denotes that operation o can be executed on NodeTemplateNi when the “global”
state of S is G, making S evolve into the new global state G′.

We first formally define the notion of global state of a ServiceTemplate

and introduce a shorthand notation to denote the capability connected to a
requirement in a ServiceTemplate (e.g., to denote Container as the capability
connected to the OSContainer requirement in our motivating scenario — Fig. 2).

Definition 4. A global state of ServiceTemplate S is denoted by a set

{(N1, s1), . . . , (Nm, sm)}

where N1, . . . , Nm is the set of NodeTemplates in S, and where si is a state of
Ni. We denote by G the initial global state S in which each NodeTemplate is in
its initial state (viz., G = {(N1, s1), . . . , (Nm, sm)}).

We also denote by capS(r) the (partial) function associating a requirement r
with the capability connected to r in S by means of a RelationshipTemplate.

We can now formally define the semantics of the management protocols in a
ServiceTemplate S. Intuitively, a management operation o can be executed on
a NodeTemplate Ni only if all the requirements needed by Ni to perform o are
satisfied by the capabilities provided by (other) NodeTemplates in S.

Definition 5. The semantics of the management protocols in a ServiceTem-

plate S is modelled by a labelled transition system whose configurations are the
global states of S, and where the transition relation is defined by the following
inference rule:

G = {(N1, s1), . . . , (Ni, si), . . . , (Nm, sm)}
G′ = {(N1, s1), . . . , (Ni, s

′
i), . . . , (Nm, sm)}

si
〈H,o〉−−−→Ni s

′
i ∀r ∈ H : capS(r) is defined ∧ capS(r) ∈

m⋃
j=1

χNj (sj)

G
〈o,Ni〉−−−−→S G

′

Definition 5 permits to model the evolution of a ServiceTemplate when a se-
quence of management operations is executed:

G0

〈o1,Ni1 〉−−−−−→S G1

〈o2,Ni2 〉−−−−−→S · · ·
〈oh,Nih

〉
−−−−−−→S Gh.

It is worth observing that while Definition 5 checks that the requirements needed
by a NodeTemplate Ni to perform an operation o are satisfied by the capabilities
provided by the (other) NodeTemplates in S, it does not check whether after
performing o the requirements assumed by (the states of) all NodeTemplates
will continue to be satisfied. We hence introduce the notion of consistent global
state of a ServiceTemplate.

Definition 6. A global state {(N1, s1), . . . , (Nm, sm)} of a ServiceTemplate S
is consistent if and only if

∀i ∈ {1..m},∀r ∈ ρNi
(si) : capS(r) is defined ∧ capS(r) ∈

m⋃
j=1

χNj
(sj).

Definitions 5 and 6 allow us to formally characterize the validity of a sequence
of management operations.

Definition 7. A sequence o1o2 . . . on of management operations is valid from a
global state G0 of a ServiceTemplate S if and only if:

G0

〈o1,Ni1
〉

−−−−−→S G1

〈o2,Ni2
〉

−−−−−→S · · ·
〈on,Nin 〉−−−−−−→S Gn

and each Gi is a consistent global state.

The validity of a TOSCA Plan descends immediately from Def. 7.

Definition 8. Let G be a global state of a ServiceTemplate S. A Plan P for
S is valid from G if and only if all its sequential traces are valid in G.

It is easy to see now that the deployment plan (c) of Fig. 3 is valid since, by
starting from the initial global state, all its sequential traces are valid (and reach
the same global state). Conversely, Plans (a) and (b) in Fig. 3 are not valid as
their traces are not valid. More precisely, Plan (a) is not valid since all its
sequential traces produce the derivation shown in Fig. 5, and Apache:Configure

Fig. 5. Initial evolution according to Plan (a) in Fig. 3.

cannot be executed in the reached global state (because it requires Apache to
be in state Working, instead of Stopped). On the other hand, Plan (b) is not
valid since all its traces start as shown in Fig. 6, and Apache:Setup cannot be
executed in the reached global state. It indeed requires the capability satisfying

Fig. 6. Initial evolution according to Plan (b) in Fig. 3.

Apache’s ServerContainer to be provided, but that capability is not provided
when Debian is not in state Running.

The introduced modelling can be exploited for various other purposes be-
sides checking Plans validity. For instance, valid Plans may not be enough, as
their sequential traces may reach different global states. It is thus interesting to
characterize deterministic Plans.

Definition 9. Let G be a global state of a ServiceTemplate S. A valid Plan

P for S is deterministic from G if and only if all its sequential traces reach the
same global state G′.

It is also interesting to compute the effects of a valid Plan P on the states of the
components of a TOSCA ServiceTemplate, as well as on the requirements that
are satisfied and the capabilities that are available. Such effects can be directly
determined from the global state(s) reached by performing the sequential traces
of P . Moreover, the problem of finding whether there is a deployment Plan

which starts from the initial global state G and achieves a specific goal (e.g.,
bringing some components of an application to specific states or making some
capabilities available) can be solved with a breadth-first search of the reachable
global states. The same approach also works in the case of generic management
plans (i.e., plans starting from a generic global state G), and it permits to find the
sequential Plans (if any) allowing to reach a certain goal from whatever starting
G. It also allows to characterize an interesting property that a ServiceTemplate

may exhibit: if it is possible to reach the intial global state G from any G that
is reachable from G itself, then it is always possible to generate a plan for any
(reachable) goal from any (reachable) global state. This ensures reversibility of
actions, meaning that whatever G we reach from G, we can always get back to
G, thus always permitting a (soft) reset of the application.

5 Proof-of-concept implementation

We now illustrate the feasibility of our approach by introducing Barrel, a web-
based application4 that permits to edit and analyse management protocols in

4 Barrel’s interface is written in HTML5, while its back-end is written in JavaScript.
The application can be accessed at http://ranma42.github.io/MProt/ with any
modern web-browser, like Google Chrome or Mozilla Firefox. The source code is
publicly available at https://github.com/ranma42/MProt.

http://ranma42.github.io/MProt/
https://github.com/ranma42/MProt

TOSCA applications. In the following, we shall not deepen into implementation
details, but rather focus on how Barrel can be used to edit and analyse existing
TOSCA applications.

The very first step is to import a CSAR package5 containing a ServiceTem-

plate, as well as the NodeTypes instantiated in its TopologyTemplate. Once
the CSAR is loaded, the NodeTypes’ names appear in the left hand pane of
Barrel’s interface (Available NodeTypes), and by selecting one of them the user
can start editing its management protocol (Fig. 7). The management protocol

Fig. 7. Screenshot of Barrel: Editing mode.

is visualized in the central pane, by displaying the selected NodeType’ states
and the transitions among these states (if any). By clicking on a state s, a
dedicated TOOLBOX opens in the right pane. This TOOLBOX permits editing
the current values of ρ(s), χ(s), and τ(s), by allowing the user to update the
set of requirements on which the selected state s relies, the set of capabilities it
offers, and its outgoing transitions. Such updates can also be viewed directly in
the XML source of the current NodeType, by clicking on the Show XML button in
the left pane. Once the NodeTypes’ management protocols have been edited, the
updated CSAR can be downloaded through the EXPORT CSAR functionality.

Users can also analyse the behaviour of the management operations appear-
ing in the imported ServiceTemplate by selecting the ANALYZE option in the
top menu. As a result, Barrel pops out a window showing the current global
state of the application topology (Fig. 8). More precisely, the window lists all the

5 A CSAR (Cloud Service ARchive) is a compressed zip file containing the TOSCA
definitions describing the cloud application, along with the concrete artefacts imple-
menting its components [15].

Fig. 8. Screenshot of Barrel: Analysis mode.

NodeTemplates in the TopologyTemplate, each associated with its current state,
the requirements it relies on, the capabilities it offers and the operation actually
available. Each operation is highlighted in green if all the capabilities connected
to the requirements needed to execute it are currently available, otherwise it
is highlighted in yellow. By clicking on a (green) operation users can simulate
its execution, thus updating the current global state and then the ANALYZER
window. If the reached state is inconsistent, a warning banner is displayed.

With the simple, interactive ANALYZER of Barrel, users can perform the
analyses described in Sect. 4.2. For instance, to check whether a Plan is valid,
they just need to simulate its sequential traces and check that no inconsistent
state is traversed. They can also compute the effects of a valid Plan on states,
capabilities and requirements by looking at the initial and final configurations
displayed by the ANALYZER window. In this first version of Barrel, developers
can only perform these analyses interactively, by manually clicking on the (green)
operations and by looking at how they affect the global state6.

It is worth noting that Barrel is already partially integrated with the Open-
TOSCA open source ecosystem [3,14]. Barrel is indeed able to process CSARs
developed with the visual editor Winery [14], and it produces CSARs that can
be imported in Winery7.

6 As part of our future work, we intend to extend Barrel in a working prototype
capable of automatically performing all the aforementioned analyses.

7 While Winery imports the CSARs generated by Barrel, it does not properly process
the information concerning management protocols. This is obviously because the
extension to TOSCA we propose is not yet part of the TOSCA standard, and hence
not (yet) supported in the OpenTOSCA open source environment.

6 Related work

The problem of automating application management is well-known in computer
science. In the cloud era, it has become even more prominent because of the
complexity of both applications and platforms [9]. This is witnessed by the pro-
liferation of so-called “configuration management systems”, like Chef [10] or
Puppet [18]. These management systems provide domain-specific languages to
model the desired configuration for a software solution, and employ a client-
server model to ensure that such configuration is met. However, the lack of a
machine-readable representation of how to effectively manage cloud application
components inhibits the possibility of performing automated analyses on com-
ponents’ configurations and dependencies.

A first attempt to model the deployment of cloud-based applications was
the Aeolus component model [11]. The Aeolus model shares our objective of de-
scribing various characteristics of cloud applications’ components, including the
possibility that component interfaces may vary depending on the internal com-
ponent state. However, the Aeolus model only permits specifying what is offered
and required in a state. Our approach instead allows developers to distinguish
the requirements ensuring the consistency of a state from those constraining the
applicability of a management operation. This permits to express transitions
whose requirements concerns only the applicability of an operation and not the
consistency of a state (e.g., the transition 〈Unavailable, {ServerContainer},
Setup, Stopped〉 of the protocol MS in Fig. 4). Such kind of transitions can-
not be directly modelled in Aelous (without introducing dummy intermediate
states). Furthermore, Aelous and other emerging solutions, like Juju [13] or En-
gage [12], differ from our approach since so far they focus on the deployment
of a cloud application, rather than on its whole management. Aelous, Juju, and
Engage also differ from our approach since they are currently not integrated
with any cloud interoperability standard.

TOSCA’s rich type system has been exploited to devise various techniques
that facilitate the the reuse of available services, like [4,7,19]. Those techniques
permit to match and adapt (fragments of) existing ServiceTemplates to im-
plement a desired NodeType by checking that the features of the latter are
all provided by the former. While those techniques are capable of overcoming
various syntactical differences, they do not take into account the behaviour of
management operations. Namely, they do not check whether the behaviour of
a (fragment of) ServiceTemplate is compatible with the desired behaviour of
a NodeType. As our proposal extends TOSCA’s type system, it can be natu-
rally exploited to extend the reuse techniques based on TOSCA, like [4,7,19], to
account for management behaviour.

Finally, we have investigated the possibility of employing composition-ori-
ented automata (like interface automata [1]) to model valid plans directly as
the language accepted by the automaton obtained by composing the automata
modelling the management protocols of the components of an application. The
main drawbacks of such an approach are the size of the obtained automaton
(which grows exponentially with the number of application components and

hence makes the automaton scarcely readable even for simple applications), and
the need of recomputing the automaton whenever a new component is added or
its management protocol is modified.

7 Conclusions

In this paper we have proposed an extension of TOSCA to model the behaviour
of management operations and their relations with states, requirements, and
capabilities. We have then illustrated how such modelling permits to automate
different analyses, such as determining whether a management Plan is valid,
which are its effects, or which Plans allow to reach certain system configura-
tions. To illustrate the feasibility of the proposed approach, we have developed
a proof-of-concept graphical interface that permits to edit NodeTypes’ manage-
ment protocols and to analyze ServiceTemplates’ Plans.

It is worth noting that, even if some of the behaviour-aware analyses dis-
cussed in Sect. 4.2 have exponential time complexity in the worst case, they
still constitute a significant improvement with respect to the state-of-the-art, as
currently the development and validation of Plans is performed manually, after
delving through the documentation of the application’s components.

It is also worth observing that our approach builds on top of, but is not
limited to, TOSCA. It can indeed be adapted to other languages for specifying
cloud applications (e.g., like CAMP [16] or GENTL [2]), and more in general
to any stateful behaviour model of systems that describe states, requirements,
capabilities, and operations.

We are currently investigating the possibility of modelling management pro-
tocols for cloud-based applications with Petri nets [6], with the objective of
expressing some of the analyses described in Sect. 4.2 in terms of well-known
Petri net notions (e.g., expressing Plan’s validity in terms of firing sequences,
or reducing Plan determination to coverability) and hence to possibly exploit
some of the many available tools supporting the analyses of Petri nets. We see
two other directions for immediate future work. On the one hand, we intend
to extend our proof-of-concept Barrel into a working prototype supporting
all the analyses described in Sect. 4.2, and to fully integrate it with the Open-
TOSCA open source environment [3,14]. On the other hand, as we anticipated in
Sect. 6, another interesting direction for future work is to extend the matching
and adaptation reuse techniques based on TOSCA [4,7,19] to take into account
the management behaviour of cloud-based applications.

References

1. de Alfaro, L., Henzinger, T.A.: Interface automata. In: Proceedings of the 8th
European Software Engineering Conference Held Jointly with 9th ACM SIGSOFT
International Symposium on Foundations of Software Engineering. pp. 109–120.
ESEC/FSE-9, ACM (2001)

2. Andrikopoulos, V., Reuter, A., Sáez, S.G., Leymann, F.: A GENTL Approach for
Cloud Application Topologies. In: Villari, M., Zimmermann, W., Lau, K.K. (eds.)
Service-Oriented and Cloud Computing. LNCS, vol. 8745, pp. 148–159. Springer
(2014)

3. Binz, T., Breitenbücher, U., Haupt, F., Kopp, O., Leymann, F., Nowak, A., Wag-
ner, S.: OpenTOSCA – a runtime for TOSCA-based cloud applications. In: Basu,
S., Pautasso, C., Zhang, L., Fu, X. (eds.) Service-Oriented Computing. LNCS, vol.
8274, pp. 692–695. Springer (2013)

4. Brogi, A., Soldani, J.: Matching cloud services with TOSCA. In: Canal, C., Villari,
M. (eds.) Advances in Service-Oriented and Cloud Computing, CCIS, vol. 393, pp.
218–232. Springer (2013)

5. Brogi, A., Canciani, A., Soldani, J.: Modelling the behaviour of management op-
erations in TOSCA. Tech. Rep., University of Pisa (July 2015)

6. Brogi, A., Canciani, A., Soldani, J., Wang, P.: Modelling the behaviour of man-
agement operations in cloud-based applications. In: Moldt, D. (ed.) Proceedings
of the International Workshop on Petri Nets and Software Engineering, PNSE’15.
CEUR Workshop Proceedings, vol. 1372, pp. 191–205. CEUR-WS.org (2015)

7. Brogi, A., Soldani, J.: Reusing cloud-based services with TOSCA. In: IN-
FORMATIK 2014, Lecture Notes in Informatics (LNI). vol. 232, pp. 235–246.
Gesellschaft für Informatik (GI) (2014)

8. Brogi, A., Soldani, J., Wang, P.: TOSCA in a Nutshell: Promises and Perspectives.
In: Villari, M., Zimmermann, W., Lau, K.K. (eds.) Service-Oriented and Cloud
Computing. LNCS, vol. 8745, pp. 171–186. Springer (2014)

9. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing
and emerging IT platforms: Vision, hype, and reality for delivering computing as
the 5th utility. Future Generation Computer Systems 25(6), 599 – 616 (2009)

10. Chef: Opscode. https://www.opscode.com/chef
11. Di Cosmo, R., Mauro, J., Zacchiroli, S., Zavattaro, G.: Aeolus: A component model

for the cloud. Information and Computation 239(0), 100 – 121 (2014)
12. Fischer, J., Majumdar, R., Esmaeilsabzali, S.: Engage: A deployment management

system. In: Proceedings of the 33rd ACM SIGPLAN Conference on Programming
Language Design and Implementation. pp. 263–274. PLDI ’12, ACM (2012)

13. Juju: DevOps distilled. https://juju.ubuntu.com
14. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: Winery – Modeling Tool

for TOSCA-based Cloud Applications. In: Proceedings of the 11th International
Conference on Service-Oriented Computing. Springer (2013)

15. OASIS: Topology and Orchestration Specification for Cloud Applications. http:
//docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.pdf (2013)

16. OASIS: Cloud Application Management for Platforms (CAMP). http://docs.

oasis-open.org/camp/camp-spec/v1.1/camp-spec-v1.1.pdf (2014)
17. OASIS: TOSCA Simple Profile in YAML. http://docs.oasis-open.org/tosca/

TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.pdf

(2014)
18. Puppet: Puppet labs. https://puppetlabs.com
19. Soldani, J., Binz, T., Breitenbücher, U., Leymann, F., Brogi, A.: TOSCA-MART:

A method for adapting and reusing cloud applications. Tech. Rep., University of
Pisa (March 2015)

https://www.opscode.com/chef
https://juju.ubuntu.com
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.pdf
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.pdf
http://docs.oasis-open.org/camp/camp-spec/v1.1/camp-spec-v1.1.pdf
http://docs.oasis-open.org/camp/camp-spec/v1.1/camp-spec-v1.1.pdf
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.pdf
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.pdf
https://puppetlabs.com

	Modelling and analysing cloud application management

