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On Local LTI Model Coherence for LPV
Interpolation

Qinghua Zhang, Lennart Ljung, Rik Pintelon

Abstract—In the local approach to linear parameter varying
(LPV) system identification, it is widely acknowledged that locally
estimated linear state-space models should be made coherent
before being interpolated, but the accurate meaning of the term
“coherent” or “coherence” is rarely defined. The purpose of this
paper is to analyze the relevance of two existing definitions and
to point out the consequence of this analysis on the practice of
LPV system identification.

Index Terms—System identification, LPV model, Coherent
local linear models.

I. INTRODUCTION

Linear parameter varying (LPV) models are widely used
in nonlinear control systems [1], [2], [3], [4], [5], [6], [7],
[8], [9]. In order to build such models from sensor data,
different methods for LPV system identification have been
reported [10], [11], [12], [13], [14], [15], [5], [16], [17], [18].
These methods are usually classified into the local approach
or the global approach. While each of the two approaches has
its advantages and drawbacks, this paper is focused on the
local approach. In this approach, interpolation is essential to
establishing a global LPV model from a collection of locally
estimated linear time invariant (LTI) models [14], [19], [20],
[21]. As each LTI state-space model can be estimated in
an arbitrary state basis, independently from each other, the
interpolation of a collection of such models is not a trivial
problem.

It is widely acknowledged in the LPV system identification
literature that it is important to use a coherent collection of
local models for the purpose of interpolation. However, the
accurate meaning of the term “coherent” or “coherence” in
this context is rarely defined. To our knowledge, two different
definitions have been proposed in [20] and in [22], which will
be respectively recalled as Definitions 2 and 3 in Section III.
The purpose of this paper is to analyze the relevance of
these two definitions and to point out the consequence of this
analysis on the practice of LPV system identification.

Typically, locally estimated LTI state-space models are
transformed into some canonical form before being interpo-
lated, by (implicitly) assuming that local models are coherent
if they are in the same canonical form. For example, some
identification methods are based on the modal form [23],
on the controllable canonical form [24], on the balanced
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form [25], on a zero-pole decomposition-based form [26], [19],
and on a normalized observability matrix-based form [20].

It is shown in [22] that, without any global structural
assumption, locally estimated LTI models do not contain suf-
ficient information to make themselves coherent. This result is
in the sense of the local model coherence definition formulated
in the same cited paper. It is thus important to investigate the
relevance of this definition, because of the important impact
of the aforementioned result on the practice of LPV system
identification following the local approach. As a matter of fact,
this result is in contradiction with the practice of interpolating
local models in some canonical form as recalled above. This
paper will carefully analyze the relevance of the coherence
definition formulated in [22] and its consequence. Here let us
make a related remark: the reported works based on different
canonical forms naturally raise the compatibility issue: given
a set of local LTI state-space models, the interpolations based
on different canonical forms lead certainly to different LPV
models, but do they have (closely) the same input-output
(I-O) behavior? By clarifying the definition of local model
coherence, this paper will bring some hint to answer this
question.

Only state-space models are considered in this paper, as
local model coherence is not relevant for other models. For
shorter expressions, the words “state-space” will be omitted
from terms like “local state-space model” and “LTI state-space
model”.

II. PROBLEM STATEMENT

As the coherence of local models is a concept that essen-
tially concerns the deterministic part of LPV systems, in this
paper the stochastic part will be neglected in order to use
shorter notations.

Let u(t) ∈ Rq and y(t) ∈ Rs be respectively the input
and the output at discrete time instant t = 0, 1, 2, . . . , and
p(t) be the scheduling variable evolving within a compact set
S of scheduling values. An LPV system is described by the
state-space model

x(t+ 1) = A(p(t))x(t) +B(p(t))u(t) (1a)
y(t) = C(p(t))x(t) +D(p(t))u(t) (1b)

where x(t) ∈ Rn is the state vector, and A(p(t)), B(p(t)),
C(p(t)), D(p(t)) are matrices of appropriate sizes depending
on p(t) ∈ S.

This formulation is sometimes referred to as static p-
dependent (or static parameter-dependent) LPV systems, as
opposed to dynamic p-dependent LPV systems, in which the
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system matrices may depend on the scheduling values at
different instants, for example, A(p(t), p(t− 1), . . . , p(t− l)).
In the local approach, each local LTI model is estimated from
data collected around a working point, typically corresponding
to a value of p(t). If the working point was characterized by
p(t), p(t − 1), . . . , p(t − l) with p(t) evolving with time, the
working point would move away, and it would be difficult
to collect sensor data around a fixed working point. For this
reason, only static p-dependent LPV systems are considered
in this paper.

Based on the fact that the LPV system (1) becomes an LTI
system when the scheduling variable p(t) is maintained at a
fixed value, the following definition aims at establishing a link
between LPV and LTI models.

Consider a set of m LTI models indexed by the integer i =
1, 2, . . . ,m,

x(t+ 1) = Aix(t) +Biu(t) (2a)
y(t) = Cix(t) +Diu(t) (2b)

where the input u(t) ∈ Rq , the output y(t) ∈ Rs, the state
x(t) ∈ Rn, and the matrices Ai, Bi, Ci, Di are of appropriate
sizes.

The notation

σi , (Ai, Bi, Ci, Di) (3)

will be used to denote the matrices characterizing the i-th LTI
model (2), or the LTI model itself by abuse of notation. The
set of LTI models will be denoted by

Σ = {σi : i = 1, 2, . . . ,m}. (4)

Definition 1: A set of local LTI models

Σ∗ = {(A∗
i , B

∗
i , C

∗
i , D

∗
i ) : i = 1, 2, . . . ,m} (5)

is called a multi-snapshot of the LPV system (1) captured at

P = {p1, . . . , pm} ⊂ S, (6)

if, for all i = 1, . . . ,m,

A∗
i = A(pi), B

∗
i = B(pi), C

∗
i = C(pi), D

∗
i = D(pi). (7)

�
In the local approach to LPV system identification, it is

assumed that, if the multi-snapshot Σ∗ involves a sufficient
number of local LTI models corresponding to the scheduling
values in P appropriately located in S, the interpolation of
the matrices contained in Σ∗ leads to a good approximation
of the LPV system (1) in the sense that, for any scheduling
value p ∈ S, the interpolation produces a local model

σ̌(p) = (Ǎ(p), B̌(p), Č(p), Ď(p)) (8)

close to the corresponding matrices of the LPV sys-
tem (1) captured at the same scheduling value, namely
(A(p), B(p), C(p), D(p)).

In practice, a set Σ̂ of local LTI models σ̂i are estimated,
each from the I-O data collected around a working point

corresponding to one of the scheduling values in P. In gen-
eral, an LTI model is estimated up to an arbitrary similarity
transformation, i.e., each estimated LTI model

σ̂i = (Âi, B̂i, Ĉi, D̂i) (9)

is related to the multi-snapshot Σ∗ through

Âi = TiA
∗
i T

−1
i , B̂i = TiB

∗
i , Ĉi = C∗

i T
−1
i , D̂i = D∗

i ,

or equivalently,

Âi = TiA(pi)T
−1
i , B̂i = TiB(pi), (10a)

Ĉi = C(pi)T
−1
i , D̂i = D(pi), (10b)

where Ti ∈ Rn×n is some invertible matrix for each i =
1, . . . ,m, if the estimation error is neglected.

As the true multi-snapshot Σ∗ is unknown, the practical
interpolation has to be based on the estimated model set Σ̂.
Due to the arbitrary and unknown transformation matrices Ti,
the interpolation of Σ̂ cannot lead to the same LPV model
as the interpolation of Σ∗. However, it is expected that, after
applying an appropriately chosen state transformation to every
estimated local model σ̂i ∈ Σ̂, so that the transformed local
models are “coherent”, the interpolation will lead to an LPV
model exhibiting an I-O behavior close to that of the LPV
system (1).

It follows from the above discussion that the interpolation
of a “coherent” set of local LTI models should lead to an LPV
model that is equivalent to the LPV system (1) in terms of I-
O behavior, up to interpolation errors. In particular, consider
the case where the scheduling variable p(t) evolves within
the values of the finite set P only, so that the interpolation of
the local models is trivial1. This restriction would make the
interpolation useless in practice, but it simplifies the following
theoretical analysis. In this case, a coherent set of local LTI
models should satisfy the following requirement.

Requirement 1: A candidate set Σ of coherent local models
regarding the LPV system (1) must satisfy the property that,
when the scheduling variable p(t) evolves within the finite
set P, the trivial interpolation (see footnote 1) of Σ leads to
an LPV model exhibiting the same I-O behavior as the LPV
system (1). �

It is expected that, by appropriately choosing a transfor-
mation matrix T̂i for every estimated local model σ̂i, the
similarity transformations

σ̂i
T̂i−→ σi (11)

will lead to a set of coherent local models σi. As each locally
estimated model σ̂i is related to the LPV system (1) through
(10), it depends on a single scheduling value pi ∈ P. Moreover,
each chosen transformation matrix T̂i must be specific to the
estimated local model σ̂i and independent of the time t, hence
each transformed local model σi depends also on a single
scheduling value pi ∈ P. Indeed, if each transformed local

1 Given a set of m local models, with each local model σi corresponding
to one of the m scheduling value pi ∈ P, when p(t) evolves within P, the
interpolation for p(t) = pi is trivial, because the result is simply the given
local model σi, without any interpolation error.
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model σi depended on several scheduling values, their inter-
polation would lead to a dynamic p-dependent LPV model.
This motivates the following requirement.

Requirement 2: A candidate set of coherent local models

{σi = (Ai, Bi, Ci, Di) : i = 1, . . . ,m} (12)

regarding the LPV system (1) captured at

P = {p1, . . . , pm} ⊂ S (13)

must satisfy the property that each local model σi corresponds
to a single scheduling value pi, in the sense that there exist
invertible transformation matrices T̃i ∈ Rn×n such that, for
all i = 1, . . . ,m,

Ai = T̃iA(pi)T̃
−1
i , Bi = T̃iB(pi), (14a)

Ci = C(pi)T̃
−1
i , Di = D(pi), (14b)

where A(·), B(·), C(·), D(·) are the p-dependent matrices in-
volved in the definition of the LPV system (1). �

Notice that the transformation matrices T̃i appearing in
(14a) satisfy T̃i = T̂iTi with the matrices Ti and T̂i as involved
in (10) and (11) respectively.

Of course, Requirements 1 and 2 represent necessary condi-
tions that a coherent local model set must satisfy, not sufficient
conditions. Nevertheless, they will exclude most candidate
definitions of coherent local model sets, as shown in the
following sections.

III. TWO EXISTING DEFINITIONS

Let us examine two existing definitions of local model
coherence in order to gain more insight about what a relevant
definition should be.

The following definition was formulated in [22].
Definition 2: A set of LTI models

{σi = (Ai, Bi, Ci, Di) : i = 1, . . . ,m} (15)

is coherent regarding the LPV system (1) captured at

P = {p1, . . . , pm} ⊂ S, (16)

if there exists an invertible transformation matrix T ∈ Rn×n,
common to all the LTI models σi, such that, for all i =
1, . . . ,m,

Ai = TA(pi)T
−1, Bi = TB(pi), (17a)

Ci = C(pi)T
−1, Di = D(pi), (17b)

where A(·), B(·), C(·), D(·) are the p-dependent matrices in-
volved in the definition of the LPV system (1). �

It is important to notice that the above transformation
matrice T is common to to all the LTI models σi. Under
this definition, when p(t) evolves within the finite set P, the
trivial interpolation of a coherent set of LTI models leads to
an LPV model that is related to the LPV system (1) through
the constant transformation matrix T at every time instant t.
It is clear that the similarity transformation with the constant
matrix T preserves the I-O behavior of the LPV system, hence
Definition 2 satisfies Requirement 1. Moreover, each local

model σi satisfying (17) depends on a single value pi ∈ P,
hence Requirement 2 is also satisfied.

In general, each locally estimated LTI model σ̂i is re-
lated to the LPV system through a different transformation
matrix Ti, as expressed in (10), whereas in Definition 2
the transformation matrix T is common to all the local
LTI models. A natural question is if this definition can be
relaxed to different transformation matrices. In the classical
linear time varying (LTV) system theory [27], it is well
known that time varying linear state transformations preserve
the I-O behavior. An LPV system, with its system matrices
A(p(t)), B(p(t)), C(p(t)), D(p(t)) depending on the time t
through the scheduling variable p(t), is also an LTV system.
For this reason, it seems not necessary to restrict the definition
of local model coherence to a constante transformation matrix
T . Indeed, the following definition, formulated in [20], follows
this direction.

Definition 3: A set of LTI models

{σi = (Ai, Bi, Ci, Di) : i = 1, . . . ,m} (18)

is coherent regarding the LPV system (1) captured at

P = {p1, . . . , pm} ⊂ S, (19)

if there exists a matrix-valued function T : S→∈ Rn×n, such
that, for all i = 1, . . . ,m,

Ai = T (pi)A(pi)T
−1(pi), Bi = T (pi)B(pi), (20a)

Ci = C(pi)T
−1(pi), Di = D(pi), (20b)

where A(·), B(·), C(·), D(·) are the matrix functions involved
in the definition of the LPV system (1). �
More accurately, the definition originally formulated in [20]
states that, for each i = 1, . . . ,m, Ai is an evaluation of
T (p)A(p)T−1(p) for some T (p) with p = pi, and similarly for
Bi, Ci, Di. Though in [20] nothing is said about the properties
of the matrix-valued function T (p), some regularity properties
seem necessary, otherwise Ti = T (pi) could be arbitrary
matrices, and any set of locally estimated LTI models σ̂i
would be coherent in the sense of Definition 3, according
to (10). It seems reasonable to assume that T (p) is bounded
and differentiable with bounded derivatives, so is its inverse
T−1(p).

By restricting Ti = T (pi) with regularity assumptions,
Definition 3 may be a reasonable relaxation of Definition 2,
taking into account the fact that time varying transformations
generally preserve the I-O behavior of an LTV or LPV system,
as known from the classical LTV system theory [27].

IV. p-DEPENDENT TRANSFORMATIONS

However, as pointed out in [28], by applying a p-dependent
linear transformation z(t) = T (p(t))x(t), the LPV system (1)
becomes

z(t+ 1) = T (p(t+ 1))A(p(t))T−1(p(t))z(t)

+ T (p(t+ 1))B(p(t))u(t) (21a)

y(t) = C(p(t))T−1(p(t))z(t) +D(p(t))u(t), (21b)



4

hence A(p(t)) is transformed as

A(p(t)) −→ Ā(p(t), p(t+ 1)) (22)

with

Ā(p(t), p(t+ 1)) , T (p(t+ 1))A(p(t))T−1(p(t)). (23)

In general T (p(t + 1)) 6= T (p(t)), hence in (23) the two
matrices surrounding A(p(t)) are not the inverse of each other.

Definition 3 is based on a p-dependent transformation
matrix T (pi), yet the same one is present at both sides of
A(pi) in (20), i.e.,

Ai = T (pi)A(pi)T
−1(pi). (24)

Apparently, this Ai is in a form not in agreement with the
matrix defined in (23). When the scheduling variable p(t)
evolves within the finite set P, the trivial interpolation of a
coherent set of local LTI models, in the sense of Definition 3,
does not correspond to a (time varying) linear transformation
of the LPV system (1), hence it may not preserve the I-O
behavior of the LPV system (1). In other words, Definition 3
does not satisfy Requirement 1, in general.

Of course, in the case of constant transformation T , like in
Definition 2, the two equations (23) and (24) are in agreement.
The problem revealed in the above discussion is due to the
fact that a p-dependent linear transformation T (p(t)) applied
to a static p-dependent LPV system leads to a dynamic p-
dependent LPV system (21), in general. It then seems that
only constant transformations T can satisfy Requirement 1.

Nevertheless, it has been reported in [28] that, in some
particular case, there do exist p-dependent transformations
preserving the static p-dependence of LPV models. How can
this be possible? Let us look at a simple example.

Consider an LPV system with S = P = {p1, p2} and the
p-dependent matrices A(·), B(·), T (·) defined as

A(p1) =

[
1 1
0 0

]
, A(p2) =

[
2 1
0 0

]
, (25a)

B(p1) =

[
1
0

]
, B(p2) =

[
2
0

]
, (25b)

T (p1) =

[
1 0
1 2

]
, T (p2) =

[
1 2
1 0

]
. (25c)

The matrices C(·) and D(·) do not matter in this example,
because in (21b) the scheduling variable appears only as p(t).

It can be readily checked that, in this example,

T (p2)A(p1)T
−1(p1) = T (p1)A(p1)T

−1(p1) =

[
0.5 0.5
0.5 0.5

]
(26a)

T (p1)A(p2)T
−1(p2) = T (p2)A(p2)T

−1(p2) =

[
0.5 1.5
0.5 1.5

]
(26b)

and

T (p2)B(p1) = T (p1)B(p1) =

[
1
1

]
(27a)

T (p1)B(p2) = T (p2)B(p2) =

[
2
2

]
. (27b)

Therefore, for this example with the p-dependent matrices
A(·), B(·), T (·) defined as in (25), the apparently dynamic p-
dependent state equation (21a) can also be written as

z(t+ 1) = T (p(t))A(p(t))T−1(p(t))z(t)

+ T (p(t))B(p(t))u(t),

which becomes a static p-dependent state equation!
This example illustrates the existence of p-dependent trans-

formations preserving static p-dependence of LPV models,
suggesting that Definition 3 may satisfy Requirement 1 in such
circumstances. However, equalities (26) and (27) are due to
some degeneracy in the system model. It remains to analyze
if such degenerate models are significant in practice.

V. EXCLUDING DEGENERATE MODELS

In this section different conditions will be formulated in
order to exclude degenerate models like the example built in
(25).

A. Discretized continuous time systems

In most applications, the true systems are in continuous
time, yet discrete time models are often used for efficient
numerical computations related to sampled sensor data. In this
case, when the scheduling variable is maintained at a constant
value, say p(t) = pi, the discrete time system (1) corresponds
to a discretized LTI model. By assuming a zero order hold at
the (controlled) input, the matrix A(p(t)) in (1) corresponds
to

A(pi) = eAc(pi)τ (28)

for some matrix Ac(pi) characterizing the continuous time sys-
tem and for some sampling period τ . As such an exponential
matrix cannot be singular, in this case singular matrices like
the examples of A(p1) and A(p2) in (25a) are excluded.

Theorem 1: Let Σ = {σ1, . . . , σm} be a candidate set of
coherent local models regarding the LPV system (1), with
each local model σi corresponding to one scheduling value
pi ∈ P. Assume that the multi-snapshot of the LPV system (1),
captured at P as defined in Definition 1, is such that at
least one of the matrices A∗

i = A(pi) is non singular. Then
Requirements 1 and 2 are satisfied by Σ, if and only if Σ is
a set of coherent local models in the sense of Definition 2. �

As discussed above, for discretized continuous time sys-
tems, the matrices A(pi) = A∗

i are non singular, thus Theo-
rem 1 applies in this case.

Proof of Theorem 1.
It is straightforward to check the sufficiency, i.e., a coherent

set of local models in the sense of Definition 2 satisfy
Requirements 1 and 2. Let us prove the necessity in the
following.

Let

Σ = {σi = (Ai, Bi, Ci, Di) : i = 1, . . . ,m} (29)

be a set of local LTI models satisfying Requirements 1 and 2,
and assume that, in the corresponding multi-snapshot, at least
one of the matrices A(pi) = A∗

i is non singular. It will be
shown that Σ is a coherent set of local models in the sense of
Definition 2.

When p(t) evolves within the finite set P, according to
Requirement 1, the trivial interpolation of Σ leads to an LPV
model exhibiting the same I-O behavior as the LPV system
(1).
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As pointed out in [28], to preserve the I-O behavior of the
LPV system (1), the interpolated LPV model must be related to
(1) through a (generally time varying) invertible transformation
matrix T (p(t)) such that, at each instant t, the interpolated
matrix Ǎ(p(t)) satisfies

Ǎ(p(t)) = T (p(t+ 1))A(p(t))T−1(p(t)) (30)

where A(·) is the p-dependent matrix involved in the LPV
system (1).

Still consider p(t) evolving within the finite set P, and
assume that p(t) = pi ∈ P and p(t + 1) = pj ∈ P. Then
the trivial interpolation yields Ǎ(p(t)) = Ai, with the same
Ai as the one involved in (29). Hence equation (30) becomes

Ai = T (pj)A(pi)T
−1(pi). (31)

This result shows that Ai depends on both pi and pj , which is
apparently in contradiction with Requirement 2, which states
that each local model σi depends on a single scheduling value
pi ∈ P, so does Ai as part of σi as expressed in (29). The
only way to avoid this contradiction is that

T (pj)A(pi)T
−1(pi) = T (pi)A(pi)T

−1(pi) (32)

despite the fact that pj 6= pi, like the equalities (26) in the
illustrative example, so that

Ai = T (pi)A(pi)T
−1(pi) (33)

depends on the single scheduling value pi.
Unlike in the illustrative example where A(pi) was singular,

in the statement of Theorem 1, at least one of the matrices
A(pi), say A(p1), is assumed non singular.

As p(t) is allowed to evolve arbitrarily within the finite set
P, p(t) = pi and p(t+ 1) = pj can be any pair of scheduling
values within P, hence equality (32) holds for all pi ∈ P and
pj ∈ P. In particular, for i = 1,

T (pj)A(p1)T−1(p1) = T (p1)A(p1)T−1(p1). (34)

The matrix A(p1) is assumed non singular, and T−1(p1) is by
definition non singular, hence equation (34) implies

T (pj) = T (p1), (35)

which holds for all pj ∈ P. In other words, the matrices T (pj),
for all pj ∈ P, are all equal to a common matrix, say T . Hence
(33) becomes, for all pi ∈ P,

Ai = TA(pi)T
−1, (36)

and similarly,

Bi = TB(pi), Ci = C(pi)T
−1, Di = D(pi). (37)

Therefore, Σ as expressed in (29) is a coherent set of local
models in the sense of Definition 2.

The necessity is thus proved, and then Theorem 1 is
established. �

B. Matrix rank condition
Theorem 1 mainly concerns discretized continuous time

systems. For systems intrinsically in discrete time, it may
happen that the matrix A(p) is singular for all p ∈ P. The
following result addresses this case.

Theorem 2: Let Σ = {σ1, . . . , σm} be a candidate set of
coherent local models regarding the LPV system (1), with each
local model σi corresponding to one scheduling value pi ∈
P. Assume that the multi-snapshot of the LPV system (1),
captured at P as defined in Definition 1, is such that the matrix
sum

m∑
i=1

[
A∗
i (A

∗
i )
T +B∗

i (B∗
i )T
]

(38)

is positive definite. Then Requirements 1 and 2 are satisfied
by Σ, if and only if Σ is a set of coherent local models in the
sense of Definition 2. �

This result differs from Theorem 1 in that the full rank
(positive definiteness) of the matrix sum (38) replaces the full
rank of at least one of A∗

i .
Each term A∗

i (A
∗
i )
T or B∗

i (B∗
i )T in (38) can contribute to

increase the rank of the matrix sum, and never to decrease the
rank, as each term is positive semi-definite. This sum is similar
to an empirical covariance matrix estimator, which is typically
of full rank. Hence Theorem 2 is based on a condition much
weaker than the one in Theorem 1, since the matrix sum (38)
is almost always of full rank in practice, even if each term in
it is rank deficient.

Proof of Theorem 2.
It is straightforward to check the sufficiency, i.e., a coherent

set of local models in the sense of Definition 2 satisfy
Requirements 1 and 2. Let us prove the necessity in the
following.

The beginning of the proof of Theorem 1 can be copied
exactly here, till equation (32), before using the non singularity
of one of the matrices A(pi), which was assumed in Theorem 1
only.

In (32), the invertible matrix T−1(pi) can be removed from
both sides, therefore,

T (pj)A(pi) = T (pi)A(pi), (39)

which holds for all pj ∈ P and all pi ∈ P, and in particular,

T (p1)A(pi) = T (pi)A(pi). (40)

Subtract each side of equation (40) from the corresponding
side of equation (39), then

[T (pj)− T (p1)]A(pi) = 0. (41)

In this last equation, pi can be any value within P. In addition,
A∗
i = A(pi) as in Definition 1. Therefore,

[T (pj)− T (p1)]

m∑
i=1

A∗
i (A

∗
i )
T = 0. (42)

This reasoning is then similarly repeated for T (p(t +
1))B(p(t)) in (21a), yielding

[T (pj)− T (p1)]

m∑
i=1

B∗
i (B∗

i )T = 0. (43)
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These results are then combined into

[T (pj)− T (p1)]

m∑
i=1

[
A∗
i (A

∗
i )
T +B∗

i (B∗
i )T
]

= 0. (44)

The matrix sum in (38) is assumed positive definite in the
statement of Theorem 2, hence

T (pj)− T (p1) = 0, (45)

which holds for all pj ∈ P. In other words, all the matrices
T (pj) are equal to a common matrix, say T , for pj ∈ P.

Therefore, Σ is a coherent set of local models in the sense
of Definition 2.

The necessity is thus proved, and then Theorem 2 is
established. �

C. Minimal state LPV models

In an affine LPV system, the matrices A(p), B(p), C(p),
D(p) are affine functions of p.

According to [29] (see Theorem 2 therein), if two minimal
state affine LPV models are I-O equivalent, then they are
related by a constant transformation matrix T .

It is also pointed out in [29] that an LPV system with its
scheduling variable evolving within a finite set of scheduling
values is equivalent to an affine LPV system. See Section III
of [29] where such systems are called linear switched systems.

Now let us come back to the definitions of local model
coherence. Requirements 1 and 2 concern only the case where
the scheduling variable p(t) is restricted to the finite set P.
In this restricted case, the LPV system (1) is an affine LPV
system. Based on the results of [29] recalled above, at least
when p(t) evolves within the finite set P, there does not exist
any p-dependent transformation of a minimal state LPV model
preserving its I-O behavior. Therefore, for minimal state LPV
systems, it is not possible to relax Definition 2 to p-dependent
transformations T (p) without breaking Requirements 1 and 2.
This result is summarized as follows.

Theorem 3: Let Σ = {σ1, . . . , σm} be a candidate set of
coherent local models regarding the LPV system (1), with each
local model σi corresponding to one scheduling value pi ∈ P.
Assume that, when p(t) evolves within the finite set P, the
trivial interpolation of Σ leads to a minimal state LPV model.
Then Requirements 1 and 2 are satisfied by Σ, if and only if Σ
is a set of coherent local models in the sense of Definition 2.
�

An affine LPV model is a minimal state model if and only if
it is reachable and observable [29]. Good system identification
methods usually lead to minimal state models. The example
formulated in (25) is clearly not a minimal state model.

VI. TOLERANCE TO LACK OF COHERENCE

It was shown in the last section that, for most practically
significant LPV systems, Definition 2 is the only relevant
definition of coherent local models. It is then important to
recall that, as reported in [22], without any global structural
assumption, locally estimated LTI models do not contain
sufficient information to make themselves coherent, in the
sense of Definition 2.

On the other hand, quite a few LPV system identification
methods following the local approach have been reported, in
which locally estimated LTI models are typically transformed
into some canonical form before being interpolated. For exam-
ple, some methods are based on the modal form [23], on the
controllable canonical form [24], on the balanced form [25],
on a zero-pole decomposition-based form [26], [19], and on
a normalized observability matrix-based form [20]. It is thus
(implicitly) assumed that a collection of local models are “co-
herent” if they are in the same canonical form. This assumption
is obviously in contradiction with the aforementioned result
reported in [22]. Nevertheless, satisfactory results have been
reported in the above cited examples. Are they so lucky that, in
each of these reported works, the chosen particular canonical
form coincides with the almost only relevant definition of
coherent local models? Do they all work with degenerate
models, so that Definition 2 is not the only relevant one? A
more plausible explanation is as follows.

It is recently reported in [30] that, if two LPV systems have
equivalent I-O behavior when the scheduling variable p(t) is
maintained at any scheduling value p ∈ S, they generally do
not exhibit the same I-O behavior when p(t) evolves with time.
However, the difference in their I-O behaviors is bounded, with
an error bound depending on the evolution speed of p(t) and
on how far the two LPV systems are “incoherent” from each
other. Moreover, the difference between their I-O behaviors
can be made arbitrarily small by restricting the evolution
speed of p(t). It is possible that, in the reported examples of
LPV system identification following the local approach, the
scheduling variable evolves slowly enough so that the results
of local model interpolation are satisfactory, despite the fact
that these local models, in any of the chosen canonical forms,
may not be coherent in the sense of Definition 2.

VII. CONCLUSION

It has been shown in this paper that, for most systems
encountered in practice, Definition 2 is the only relevant
definition of local model coherence in the local approach
to LPV system identification. It is previously reported that,
under this definition, locally estimated state-space LTI models
without making global structural assumptions do not contain
sufficient information to make themselves coherent. Neverthe-
less, the interpolation of local models can tolerate the lack of
coherence, if the scheduling variable varies slowly.
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