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Abstract. We present an advanced version of dynamic scripting, which we apply
to an agent created for the Fighting Game AI Competition. In contrast to the orig-
inal method, our new approach is able to successfully adapt an agent’s behavior
in real-time scenarios. Based on a set of rules created with expert knowledge, a
script containing a subset of these rules is created online to control our agent. Our
method uses reinforcement learning to learn which rules to include in the script
and how to arrange them. Results show that the algorithm successfully adapts
the agent’s behavior in tests against three other agents, allowing our agent to win
most evaluations in our tests and the CIG 2014 competition.

Keywords: Artificial Intelligence - Al - Computer Game - Fighting Game - Dy-
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1 Introduction

Scripting is one of the most widely used techniques for Al in commercial video games
due to its many advantages [14]. One of the major downsides on scripted game Al,
though, is its lack of creativity. An agent controlled by a classic script may show foolish
behavior in any situation the developer has not foreseen and it is an easy prey to counter
strategies because it cannot adapt.

Dynamic scripting [14] minimizes the downsides of scripting while retaining its
strengths. The idea is to build a static rulebase beforehand and to select and order a
subset of its rules to generate scripts on the fly. Commonly reinforcement learning is
used for the selection and ordering process whereas expert knowledge is used to design
rules. In many cases dynamic scripting is capable of adapting to an enemy’s strategy
after just a few fights [14]. These results are encouraging but the method is still too
slow if enemies change their strategies frequently. Therefore, agents that are controlled
by dynamic scripting in its basic form do not perform well against human players or
other agents with dynamic strategies.

In the present article we introduce an improved method that meets real-time re-
quirements and, thus, resolves dynamic scripting’s shortcoming. The rest of the paper is
structured as follows: We give a short introduction to the framework FightingICE used
here and discuss related work in section 2. Our advanced version of dynamic scripting
is presented in detail in section 3. We compare our solution with the state of the art in
section 4 and close with a summary and conclusions.



2 Background

We first introduce the framework used in the Fighting Game AI Competition to make the
reader familiar with the most important aspects. Please refer to the official website [4]
for details not covered here. We then present related work.

2.1 FightingICE Framework
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Fig. 1. Screenshot of the FightingICE framework, taken at the beginning of a fight.

The FightingICE framework, used here in version 1.01, is an open source Beat "’Em
Up game written in Java. Developed and maintained by the Intelligent Computer En-
tertainment Lab. of Ritsumeikan University, Japan [4, 7] it is the official software used
for the Fighting Game AI Competition (FTGAIC), organized by the same group from
Ritsumeikan University. The goal of the FTGAIC is to create an agent which controls
one of the two characters in the game. The FTGAIC was one of the competitions held at
the IEEE Conference on Computational Intelligence and Games 2014 (CIG 2014) [6].
FightingICE implements the classic concept of a Beat ’'Em Up game: Two opponent
characters fight each other in an arena until a winning criterion is fulfilled. Figure 1
shows a screen capture of the game taken at the beginning of a fight. As shown there,
the initial state of the game has the two opponents standing at fixed positions in a neutral
posture. Damage and energy values are set to zero. Both characters can move along the
x- and y-axis on a two-dimensional grid by using predefined actions. In the context
of the FTGAIC a round lasts 60 seconds, one second consisting of 60 frames, which
equals 3600 discrete time steps per round. An agent controlling a character has to react
in real-time, which means it has 1/60 ~ 0.017 seconds to decide which action to take.
The last action is reused by the framework if an agent violates this constraint.
At the end of a round, a total of 1000 points are split between the two characters
based upon the damage one inflicted to the other:
H . =
— %1000 iff (H+H)#0
+H

P = (1)

500 otherwise



where H and H are the damage values of the two characters. A fight consists of three
rounds. The winner is the agent that gained the most points during the three rounds,
which means that 1501 points are sufficient to win.

What makes FightingICE interesting is an artificial lag in the data provided to an
agent. At time step ¢, an agent receives the game state belonging to the time step 15
frames ago. This simulates a response time of 0.25 seconds, similar to a human player’s.
During the first 15 frames of a round, an agent receives the initial game state.

Agents can perform five different kinds of actions. Basic actions are the neutral pos-
ture in three variations: standing, crouching and in the air. Movement actions are used to
move the character around. Guard actions can block or weaken the damage of an attack
by the opponent. Recovery actions are automatically performed if the character has been
hit by the opponent or landed after a jump. An agent cannot control the character during
arecovery action. Skill actions are used to attack the opponent. A skill action consists of
three distinct phases: startup (lasts 5 to 35 frames), active (2 to 30 frames) and recovery
(8 to 58 frames). Damage is dealt to the opponent only during the active phase and only
if the opponent is hit. During the other two phases, the character cannot be controlled
and is particularly vulnerable to attacks of the opponent. Detailed information on the
56 different actions can be downloaded from the competition website [4].
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(a) The defensive hit box of the
left character (left rectangle) collides
with the offensive hit box of the right
character (dashed rectangle in the

(b) A projectile with an offensive hit
box (dashed rectangle) moves away
from the attacking character with a
constant velocity vector (grey arrow).

middle).

Fig. 2. Examples for hit boxes and collisions.

Whether or not a character receives damage from an attack is determined by offen-
sive and defensive hit boxes, modeled as axis aligned bounding boxes (see figure 2(a)).
The hit boxes approximate the outline of the character or of parts of the character’s
body. The size and position of the hit boxes depend on the current actions performed.
A character is hit if the intersection of its defensive hit box and the offensive hit box
of the attacker is not empty. In this case, the victim receives damage based upon the
current actions of both characters. Few skill actions create moving offensive hit boxes
which move through the arena, independent from the character (see figure 2(b)). They
simulate magical powers, e.g. fireballs.



Some skill actions, if successful, increase the energy level of the character based
upon the damage inflicted on the opponent. The maximum energy level is 1000 points.
Other skill actions consume energy, which means that they can only be performed if the
character has enough energy and that the energy level is reduced by a certain amount
if such an action is performed. In other words, the energy can be regarded as a reward
for successful attacks and this reward can then be spent to perform other, usually very
powerful, actions.

The information available to an agent is incomplete, due to the artificial lag and, to
our knowledge, no universal dominating strategy exists, due to the diversity of possible
attacks and counter actions. A successful agent therefore needs the ability to act under
incomplete knowledge and to adapt its behavior to opponents with new strategies in
real-time. Both aspects make the FTGAIC an interesting testbed for Al and learning
methods.

The FightingICE framework showed nondeterministic behavior during our experi-
ments. We believe that this noise is introduced by synchronization issues in the parallel
part of the code. This adds a further obstacle an agent has to deal with. During our ex-
periments, we did our best to minimize the influence of other processes running on the
same machine, to keep the conditions as homogeneous as possible.

2.2 Related Work

In the context of this paper, the most important contribution from literature is the work
by Spronck et al., Adaptive game Al with dynamic scripting [14], which we use as a
basis for our approach. Spronck et al. use a mixture of a classic rulebase (scripting)
and reinforcement learning (RL), which they call dynamic scripting. They apply their
approach to a group of agents for a simulated and a commercial computer role-playing
game. As the agents are of different types like warrior or wizard, which are capable of
using very different actions, one rulebase for each type is designed manually. A learning
method based on reinforcement learning selects subsets of these rulebases to create one
script per agent on the fly. Spronck et al. test their group of agents in combats against
other groups with similar basic abilities but static strategies. The scripts are evaluated
and modified only once after each combat and it usually takes the learning method
several combats to successfully adapt to an opponent. Thus, dynamic scripting in its
basic form does not adapt the agents’ strategies in real-time.

The primary order of rules within scripts is fixed and based on manually assigned in-
teger values called priorities. Rules with equal priority, though, are ordered by the learn-
ing algorithm itself. Further work by Timuri, Spronck and van den Herik [18] demon-
strates that the order of rules within scripts can be learned, leading to solutions of equal
or better quality and a convergence rate only slightly slower compared to Spronck’s
original approach. Other articles on dynamic scripting suggest to generate new rules or
even complete rulebases automatically [16,9, 11, 15]. The presented ideas and results
are encouraging.

There are a number of publications that are directly related to FightingICE. The
software itself is described in the article Fighting Game Artificial Intelligence Competi-
tion Platform by Lu et al. [7]. Up to the FTGAIC in the year 2013, all agents submitted
to the competition were based on static rule bases or finite state machines. For the first



time, adaptive agents like ours were submitted to the FTGAIC 2014. The source code
and short descriptions of all entries can be found on the competition website [4].

The organizers of the competition themselves provide an agent called Mizuno Al
which is based on k-nearest neighbor clustering and is able to adapt its behavior in real-
time [19]. The clustering is used to predict the next action of the opponent. Mizuno Al
then simulates the outcome of various counter actions and chooses the one with the best
possible outcome. The agent proved to be competitive when compared to the best three
entries of the 2013 competition.

Another agent that has been developed for FightingICE is described in the article
of Park et al. [10]. This agent searches for similar situations in massive play data to
decide on promising actions. The data has been collected and stored during training
fights against the FTGAIC 2013 participants and two sample bots. The developed agent
showed good results in tests against a randomly acting sample bot and Mizuno Al but
it was clearly outperformed by the FTGAIC 2013 winner called T.

A different approach for Fighting Game AI commonly used is the imitation of a
human player’s behavior [17, 13]. The article of Lueangrueangroj and Kotrajaras [8]
presents an improved version of Thunputtarakul’s Ghost Al [17], which imitates a hu-
man player’s actions after an offline learning phase. The agent of Lueangrueangroj et
al., however, is able to mimic its opponent’s behavior in real-time. Furthermore, it eval-
uates the performance of learned actions and uses effective rules more frequently. As
a consequence, the improved agent is able to partly adapt its actions to its opponent’s
strategy in real-time.

Ricciardi and Thill reduce fighting games to plain old Rock-Paper-Scissors [12].
They argue that the central aspect of such a game is to predict the action of the opponent
and to react with an appropriate counter action. This problem is therefore modeled as
a Markov decision problem and solved with a RL algorithm. For the simple case of
only three available actions they created an agent that is able to adapt its behavior to an
opponent in real-time. But as soon as they expanded the state space by adding four more
actions, the RL algorithm failed to adapt the behavior sufficiently fast. This approach is
therefore not applicable to a real-time game like the FightingICE framework.

A classic approach, which we found in many articles, was the use of a combina-
tion of reinforcement learning and neural networks [1, 5, 3]. The techniques, applied in
these articles, work well for very simple games but need long training phases and are,
therefore, not appropriate for real-time games. Cho, Park and Yang compare the value
of genetic algorithms, neural networks and evolutionary neural networks for fighting
game Al [2]. They come to the conclusion that evolutionary neural networks are the
most appropriate technique among them, due to its convergence speed and ratio. But
even evolutionary neural networks needed many thousand iterations to adapt to a sim-
ple opponent in their tests.

3 Adaptive Generation of Scripts in Real-Time

This section presents an improved version of Spronck’s dynamic scripting method.
First, we introduce an alternative and more powerful definition for rules and scripts and



give some brief suggestions on rulebase design. Then we explain our learning method
and apply it to an agent created for the Fighting Game AI Competition.

3.1 Rules and Scripts

An agent for FightingICE has to consider many variables, including the characters’
positions, speed vectors, current actions and past actions, in real-time to decide on
appropriate measures. Furthermore, it needs to take into account the simulated delay
and stochastic state changes of the game. To cope with the large and high-dimensional
search space we will develop a set of rules, based on expert knowledge. These rules
classify and, thus, reduce the search space.

Definition 1. A rule R is a mapping R: Z — B x A. Where B = {0,1}, Z the set of
possible game states and A the set of possible actions. We say that z € Z fulfills R iff
R(z) = (1,a) for some a € A.

Definition 2. E(R) := {z € Z | z fulfills R} is the fulfilling set of R. We call R an
empty rule, iff E(R) = () and a default rule iff E(R) = Z.

The definition of rules in this article differs a lot from the usual understanding of
the term rule and even Spronck’s definition [14]. A rule in our context represents a
sub-agent, which maps the entire state space of the game to a set of actions. As a con-
sequence, one single rule could possibly control all of the agent’s actions. This special
case would be equivalent to the classic scripting approach.

The combination of rules, though, is what gives the learning method the ability
to generate highly specialized scripts on the fly. In our method, if a rule is fulfilled,
it thereby informs the agent that it believes to know a good solution for the current
situation. In general, the fulfilling sets of rules are not disjoint and multiple rules could
be fulfilled at the same time. The following definition explains how to manage these
situations.

Definition 3. Let S = {Ry,...,R,} (n € N) be an ordered set of rules and Prio: S —
Z. S is called script iff

Prio(Ry) < ... < Prio(R,) )
and
U E®R=2. (€)
ReS

We call Prio(R) the priority of R € S.

The execution of a script generates a candidate solution (action) based on the cur-
rent game state and script. Rules that are part of the script are traversed according to
their order until the first fulfilled rule is reached. This rule determines the action that is
returned by the script. Equation 3 assures that every game state is part of at least one
rule’s fulfilling set and, therefore, the script’s execution will always yield a valid result.

According to inequality 2, rules in a script are sorted by priority in ascending order.
Therefore rules with low priority determine the script’s result before rules with high
priority. The order of rules with equal priority is not prescribed and can be decided by
the learning algorithm itself. For further information on this topic, please see section
3.3.



3.2 Rulebase Design

The design of a good rulebase is a long and iterative process in many cases and it de-
pends highly on the specific use case. For this reason, concepts that we have learned
during the development of our rulebase may not hold true for other scenarios. Never-
theless, we want to give the interested reader a brief overview of our rulebase and the
underlying principles.

We designed 28 rules and priorities based on expert knowledge (see appendix A).
Rules with low priority are mostly counter-strategies, which are fulfilled in very few
and specific situations to avoid them from dominating the script’s results. Their early
position in the script assures that every chance for a counterattack is taken. Many offen-
sive rules share priority —1. Thus the learning method can independently decide which
of these attacks is most effective on a specific enemy. Near the end of the script there
are rules that handle situations in which their predecessors have failed. They buy time
for the agent to change its strategy. To accomplish this the enemy is avoided and held
at distance.

Two rules, a default rule called PSlideDefault and a very essential defensive rule
called MFBCtr, are added to the script manually without taking the learning method
into consideration. This kind of interference should only take place very rarely as it
reduces much of the algorithms’ degree of freedom. It can be an effective option in
limited cases, though. The default rule receives the highest possible priority to assure
that it only takes action if no other rule is fulfilled. Its job is to assure that the agent is
able to decide on an action in any possible situation.

Some of the developed rules are able to perform loops of actions that, if successful,
dominate and damage the opponent very effectively. We observed that in some situa-
tions these loops were canceled too soon even though they performed really well. To
improve our agent’s performance we decided to implement a mechanism that informs
other rules on successfully running loops. The other rules will take this information into
account when deciding whether they are fulfilled or not.

The quality of the agent depends highly on the script’s maximum length which is
set to 20 within this work. On one hand, if the limit is chosen too low the generated
scripts do not reach the needed complexity to produce decent behavior. On the other
hand, if scripts grow too long the agent’s behavior will be dominated by rules with low
priority because rules at the end of the script might never be reached. A good length
depends very much on the specific game and rulebase design. 27 of the 28 developed
rules are added to the rulebase exactly once. The remaining rule is an empty rule and it
is added to the rulebase 17 times. This allows the learning method to vary the script’s
effective length between 3 and 20 rules. The rulebase contains an overall number of
27 4+ 17 = 44 rules.

3.3 Learning Method

To generate scripts in real-time we need a learning method that is able to handle dy-
namic objective functions and to learn without examples. Furthermore, the method
should be able to handle the delayed response and stochastic state changes of the game.



The problem’s nature allows for a very straightforward reinforcement learning algo-
rithm that fulfills all of the mentioned constraints. The players’ points and their gra-
dients are closely connected to the agent’s performance. This significantly simplifies
the search for a decent evaluation function. Furthermore, reinforcement learning uses
parameters that are readable and understandable for humans. Due to the presented ad-
vantages we choose reinforcement learning as the base for our learning method. More-
over, our choice allows us to benefit from the theory and results of Spronck et al. as
they have also used reinforcement learning for script generation. Nevertheless, other
learning methods could be considered in future research as well.

In fighting games it is advantageous to evaluate sequences of time steps rather than
just single actions. This strongly reduces the impact of random noise and smooths
the evaluation function. Furthermore it allows the learning method to rate the overall
script’s performance rather than just the value of single actions on their own.

Definition 4. The evaluation function F, 1, N x N — [0,1] C R is given by

ﬁab . a7
_ Hap + Ha 0
Fab =14 Hap + Ha i (Hap + Ha) 7

0.5 else

where Hap (Hap) is the damage that the player’s (opponent’s) character received during
the time steps a, . . . , b.

The strategy for rule selection is controlled by weights w € [Win, Winae] C N.
Each rule in the rulebase is associated with exactly one weight. The higher a rule’s
weight, the likelier it will become part of the agent’s script. The algorithm used for rule
selection draws one rule at a time from the rulebase without replacement. The chance
for a rule with weight w to be drawn is approximately w/sum, where sum is the weight
of all rules that are not part of the script yet. Once a rule has been drawn, it is inserted
into the script according to its priority. Rules that have an equal priority are sorted by
weight. The higher a rule’s weight, the earlier its position in the script. If the rules’
weights are also equal, their order is random.

At the start of each fight every rule receives the same initial weight. Based on the
evaluation function a reward is calculated, which the agent aims to maximize by adapt-
ing the rules’ weights accordingly. In this work the weights are adjusted and a new
script is generated every 4 seconds by the learning algorithm. The longer these peri-
ods of time are chosen, the longer it takes the agent to adapt to enemy behavior. But if
they are chosen too short the agent’s decision making will be effected by random noise.
Experiments indicated that 4 seconds seem to be a good trade-off in our case.

The reward Aw for the time period of evaluation [a, b] is calculated via

B —Ya
- {Pm,m B]:bJ iff F, < B
Aw = = B 4)
{Rmaw abBJ otherwise

where P, and R, are the absolute values of the maximum penalty and reinforce-
ment. B is the value of the evaluation function F,; for which the agent is neither



punished nor reinforced. The bigger B gets, the harder it becomes for the agent to re-
ceive reinforcement and the more frequently it will get punished. For smaller values of
B the opposite is the case.

The new weight of rules with weight w that have fired (determined the result of the
script) during the time period of evaluation is w+ Aw. Rules that have not fired but been
part of the script receive a fifth of the reward and, therefore, the new weight w + %Aw.
The weights are clipped to W, O Wiy, if they exit the interval (Wi, Winaz|- The
factor of % is a result of trial and error and could possibly be further optimized. Our
first tests were made with a factor of % as suggested by Spronck et al. in their paper
on dynamic scripting [14]. This value seems to be much too high for frequent weight
updates, though. The weights of rules that fire rarely would reflect only the overall
script’s performance and neglect their individual quality. The much lower value of %
reduces this effect without ignoring the overall script’s performance in our case.

Weights of rules, which are currently not part of the script, are adapted to assure that
the the overall sum of weights in the rulebase stays constant. They all receive the same
positive or negative adjustment. As a consequence their weights go down if the script
generates good results and up if the script performs badly. Therefore, scripts that per-
form well will not be modified frequently. But as soon as the script’s performance drops,
even rules with previously very low weight will receive another chance to become part
of the script. This is one of the major advantages of dynamic scripting.

In this work we chose W,,in = 0, Wiiae = 200, Phaz = 80, Riyur = 80,
B = 0.8 and the initial weight to be 80. In the following discussion we assume that only
one of these values may be varied at the same time while the others remain constant.
This assumption is necessary because the parameters influence each other mutually.
Because of W,,,;,, = 0 the learning method is allowed to reduce the chances of bad
performing rules of being part of the script to zero. As previously explained this does
not prevent these rules from regaining weight as soon as the script performs badly.
Winae controls the agent’s variability. Spronck et al. chose the very high value of 2000
for this parameter in their article [14]. This allows the rules’ weights to grow effectively
unbounded. Thus, the agent’s strategy will eventually become very static, once it has
adapted to the opponent. In our work W, is set to a much lower value because our
agent will have to adapt to non-static enemies as well.

The parameter B is set to the very high value 0.8. As a result neutral and random
behavior will not be reinforced and the agent will begin to adapt its behavior long before
it starts to perform badly. This enables the agent to switch smoothly from one strategy
to another as soon as the requirements change. If the agent does not perform well, the
combination of high values for P, 45, Rinq: and B results in rapid reorganization of the
agent’s script. This speed is crucial for the generation of counter-strategies in real-time
and on the fly. An undesired side effect of the strict reinforcement and punishment is
that the learning algorithm may discard good strategies prematurely. Then again, the
nature of dynamic scripting will assure that falsely discarded strategies will eventually
return if the script performs poorly without them. This process is even accelerated by the
short update periods of 4 seconds. Therefore the high value of B does not only discard
rules rashly, but it also assures that they get another chance very soon. In consequence,
this side effect is not a major downside of our method.
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If the rule’s initial weights are chosen too low compared to W, .., it is likely that a
very small number of rules will share all the available weight between them, while the
other rules’ weights might drop near zero. This would limit the agent’s complexity and
is, therefore, undesirable. On the other side, if the initial weights are chosen too high
compared to W, 4., this may lead to a lot of rules with high weights. As a consequence,
the selection process will become very random. The value of 80 for the initial weights
is a compromise between these contrary effects, which works well in practice for our
agent.

4 Results and Discussion

In this section we will evaluate our agent’s performance in fights against three other
agents called 7, Mizuno Al and Airpunch Al. To distinguish our agent from the others
we name it Code Monkey (Version 1.1). Code Monkey has been tested in 100 fights
against each opponent with an overall number of 900 rounds and a running time of
approximately 15 hours. The number of repetitions does not influence our agent’s per-
formance because it is reinitialized with no prior knowledge about its opponent before
every fight. The repetitions’ purpose was merely to reduce random noise in our results.

The winner of the FTGAIC 2013 called T is based on a static rulebase. The agent’s
source code can be accessed on the contest’s homepage [4]. T prefers executing slide
tackles, but they are also its own greatest weakness. Mizuno Al has already been de-
scribed in section 2.2. Its ability to adapt to enemy behavior in real-time makes it a
highly interesting opponent. Here, Code Monkey needs to adapt its strategy faster than
Mizuno Al to succeed. The last opponent used for evaluation is AirPunch Al This agent
has been developed by our team to test Code Monkey’s ability to counter air attacks.
AirPunch Al jumps up in the air repeatedly to avoid being hit and then it attacks with
a punch diagonally towards the ground. The illustrated combination can be repeated
rapidly and a hit inflicts a high amount of damage. Because of the framework’s simu-
lated delay an enemy that uses this combination is very hard to control. It showed that
AirPunch Al performs outstandingly well against most enemies what makes it even
more interesting as an opponent for our agent. Airpunch Al is vulnerable to attacks that
hit the enemy at a distance and in midair. The most important rule of our agent in this
context is called PDiagonalFB.

Figure 3 shows the frequency of usage for Code Monkey’s rules during our tests in
percent. Firstly, the percentages for each fight had been calculated and then they where
arithmetically averaged. For clarity, only frequently used rules are explicitly named in
the figures. Percentages of the remaining rules are summed up as Others. More than
80% of Code Monkey’s behavior against each enemy was determined by the top three
to five rules. This is a major specialization since the rulebase contains 44 rules to choose
from. It turns out that the rules most frequently used against T and AirPunch AI aim
right at their weaknesses (please see figure 3 and the rules explained in appendix A).

Figure 4(a) shows box plots of the results (Code Monkey’s points) after every round
and fight. At the end of each round both agents split 1000 points between them based
on the damage they received. A fight consists of three rounds and is won if the sum
of the agent’s points exceeds 1500. Code Monkey dominated Mizuno Al and has won
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Fig. 3. The rules’ averaged frequency of usage during the fights against T, Mizuno Al and Air-
Punch AL

all of the 100 fights. On average, Code Monkey gathered even more points against T
and won 99 fights (one loss). It is fair to say that T, although being the winner of the
2013 competition, is no match against Code Monkey. The picture is not that clear in the
comparison with AirPunch AIl: Code Monkey was able to win 75% of the fights but lost
the other 25% (no draws). A Wilcoxon signed-rank test with continuity correction con-
firms that the results are statistically significant: When testing with the null hypothesis
that the true median of Code Monkey’s points is 1500 and the alternative that the true
median is greater, we get a p-value of 1.109 x 10~°. Furthermore the true median is
greater than 1749.5 at a confidence level of 99%. It is, therefore, save to say that Code
Monkey is indeed better than AirPunch Al

When measuring the speed of adaption, it comes down to the question: When do
we know that Code Monkey successfully adapted to an enemy? We chose to compare
the agent’s points after every update period (4 seconds) with the points before this
period. If our agent’s point value has fallen, this means it received more damage than its
opponent and, thus, it is likely that Code Monkey still has not adapted to the enemy well.
Moreover, the use of time periods for evaluation minimizes the influence of random
noise on the calculated trend.

Figure 4(b) shows the maximum number of update cycles Code Monkey needed to
adapt to its enemy for each fight. We used a Wilcoxon signed-rank test with continu-
ity correction to check if the results are statistically significant: When testing with the
null hypothesis that the true median of the required update cycles per fight to adapt to
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Fig. 4. Achieved points and speed of adaption.

Mizuno Al T and AirPunch Al is 3.5, 4.5 and 9 and the alternative that the true median
is smaller, we get p-values of 4.935 x 107>, 2.745 x 107> and 7.165 x 10~°. Fur-
thermore at a confidence level of 99% the true median of the times required to adapt to
Mizuno Al, T and AirPunch Al is smaller than 12, 16 and 32 seconds.

These are great results as they imply that Code Monkey is able to adapt rapidly,
even to strategies that change in real-time themselves. On average it took Code Monkey
twice the time to adapt to AirPunch Al and there were some outliers with even much
longer times. Nevertheless, in many cases Code Monkey adapted to AirPunch Al very
fast or at least fast enough to win the fight.

5 Conclusions

We presented an enhanced version of dynamic scripting and applied it to an agent for
fighting games. Our agent called Code Monkey (Version 1.1) outperformed its oppo-
nents in our tests and won the CIG Fighting Game AI Competition 2014. Furthermore,
our tests have shown that Code Monkey is able to adapt to static and dynamic strate-
gies in real-time and on the fly in less than 12 to 32 seconds on average. The learning
method proved to be very resistant to random noise and capable of handling stochastic
state changes. In most cases the agent turned out to be reliable, even though there were
a few outliers in our tests. Detailed results of the competition and Code Monkey’s com-
mented source code (including the rulebase) can be downloaded from the competition’s
homepage [4]. Therefore, our results can easily be replicated.

There are many promising opportunities for future work. Some examples, like the
automatic ordering or generation of rules, have already been mentioned in section 2.2.
Changes to the evaluation function could shift the agent’s primary goal from wining to,
for example, entertaining the player or behaving like a human player. In any case, there
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is a lot of room for creativity on this topic. In our opinion, the approach presented in
this article is very relevant for practical game development. Due to the method’s close
relation to scripting, game developers can reuse their existing scripts and experience
and still greatly increase their AI’s value.

A Appendix

Table 1. Names, priorities and short descriptions of the rules that control our agent.

Rule Prio |Description

MFBCtr —10|Counters strong enemy projectiles (megafireballs).

MFBTimeExtLow |—6 |Throws strong projectile (megafireball) if time is very low.

MFBEnemyDownHP|—5 |Throws strong projectile if enemy is on the ground.

MFBTimeLow —5 |Throws strong projectile if energy is high and time is low.

ShortSlideCtr —3 |Counter for too short enemy slide tackle.

UppercutAirCtrHP | —3 |UppercutAirCtr with higher priority.

ShortAttackCtr —2 |Counter for too short enemy attacks.

SlideCtr —2 |Jump over enemy slide tackle and counterattack from behind.

KneeAirCtrHP —2 |KneeAirCtr with higher priority.

DistanceAirFB —1 |Attack from distance using a projectile if enemy is in the air.

NearAirFB —1 [Projectile from near range if enemy is in the air.

FBCtr —1 [Counter for enemy projectiles.

PSlideHP —1 [Executes a slide tackle if possible.

SlideSlideCombo —1 |Combination of multiple slide tackles.

PSlideCtr —1 |Uses SlideCtr to attack the enemies back.

PHardAirPunch2HP |—1 [PHardAirPunch2 with high priority.

PDiagonalFB —1 [Executes an uppercut and throws projectiles at the enemy if possible.

WrongDirectionCtr |0 |Attack from behind if enemy is facing the wrong direction.

AirSlide 1 |Attack with a punch in midair if the enemy is near.

UppercutAirCtr 1 |Counters air attacks with an uppercut.

KneeAirCtr 2 |Counters air attacks with a knee strike.

PHardAirPunch2 2 |Jump and then a punch (type 1) in midair (if possible).

DistanceFB 3 |Attacks the enemy from distance using a projectile.

FleeJump 3 |Avoids the enemy by jumping away.

Uppercut 3 |Executes an uppercut when the enemy is near.

PHardAirPunch 9 |Jump and then a punch (type 2) in midair (if possible).

EmptyRule 20 |Rule with an empty fulfilling set.

PSlideDefault 100 |Executes a slide tackle if possible (default rule).
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