
HAL Id: hal-01758435
https://inria.hal.science/hal-01758435

Submitted on 4 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Real Time Lighting Technique for Procedurally
Generated 2D Isometric Game Terrains

Érick O. Rodrigues, Esteban Clua

To cite this version:
Érick O. Rodrigues, Esteban Clua. A Real Time Lighting Technique for Procedurally Generated 2D
Isometric Game Terrains. 14th International Conference on Entertainment Computing (ICEC), Sep
2015, Trondheim, Norway. pp.32-44, �10.1007/978-3-319-24589-8_3�. �hal-01758435�

https://inria.hal.science/hal-01758435
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


A Real Time Lighting Technique for
Procedurally Generated 2D Isometric Game

Terrains

Érick O. Rodrigues and Esteban Clua

Department of Computer Science, Universidade Federal Fluminense,
Rua Passo da Pátria 156, Niterói - RJ, Brazil

erickr@id.uff.br, esteban@ic.uff.br

Abstract. This work proposes an automatic real time lighting tech-
nique for procedurally generated isometric maps. The scenario is gener-
ated from a string seed and the proposed lighting system estimates the
geometrical shape of the 2D objects as if they were 3D for further light
interaction, therefore producing a 2.5D effect. We employ opacity maps
to overcome an issue generated by the geometrical shape estimation. The
solution is a coupled approach between the CPU and GPU. The produced
visuals, gameplay and performance were evaluated by gamers, program-
mers and designers. Furthermore, the performance, in terms of frames
per second, was evaluated over distinct graphics cards and processors
and was satisfactory.

Keywords: procedural generation, lighting, isometric, 2.5D, real time

1 Introduction

As the processing power of computers improves over time, so does the opportu-
nity for more complex game architectures and mechanics. Procedural Content
Generation (PCG) techniques for games enable the construction of more immer-
sive, defying, lasting and realistic games. The game Spore, for instance, employs
several concepts of evolution, where creatures, textures and game spaces are pro-
cedurally generated to simulate natural selection, evolution and exploration of
an infinite universe. In addition, PCG has the feasibility to reduce manual design
efforts of nearly every part of the game and the time required for game develop-
ment [1] while having the potential of contributing greatly to the reduction of
the game data.

Shadows and lights in games are frequently computed on the basis of 3D ge-
ometries of scene objects. Although isometric terrains produce a visually pleasing
result, resemble a 3D world, and conform to the effort reduction in game pro-
duction due to disregarding 3D models and working with 2 dimensions instead,
such as in [2] and as shown in Figure 1, their illumination is not trivial due to
the lack of geometrical data. A possible solution for this is the usage of normal
maps or even a simplistic volume information associated to the 2D scene that is



2 É. O. Rodrigues and E. Clua

employed as a guide for light and shadow interaction [3, 4]. However, these kind
of solutions require dedicated design of the scene elements, which in many cases
may be impracticable.

Fig. 1. Final fantasy tactics, one of the most famous games that adopts the isometric
perspective.

This work proposes (1) a novel technique for estimating the geometry of
2D sprites in the isometric environment and (2) an approach for tracing lights
and shadows of the scene based on the CPU and GPU. Both of these steps are
automatically generated. In other words, given a certain scene having several dis-
tinct 2D sprites and no access to any kind of geometrical information nor normal
maps, we propose a lighting system that interacts with the 2D environment and
produces 3D-like illumination.

2 Literature Review

Currently, the literature on PCG is scattered across numerous fields. However,
it is primarily related to Computer Science in areas such as Computer Graphics,
Pattern Recognition, Games, Artificial Intelligence and Multimedia Computing.
The earliest games that employed PCG were produced around 1980. The explo-
ration game Elite is one of the earliest and employed a Pseudo-Random Number
Generation (PRNG) to produce a very large universe [5]. When applying PRNG,
the data is generated using a seeded algorithm, which allows the process to be
deterministic. This is an important feature since the automatically generated
data can be consistently reproduced and therefore tested [6]. Perlin Noise, for
instance, is a PRNG developed to make computer generated images look more
realistic [7].

PCG is constantly being applied to a large amount of commercial games.
Rogue is a dungeon crawling game of the 1980s. Unlike adventure games of
the time, Rogue randomly generated the dungeon layout and the location of
items. Furthermore, PCG was applied to a couple of games at the time such as



A Real Time Lighting Technique for PCG 3

Telengard, Nethack and Elite but further nearly vanished from the mainstream
of commercial games. PCG was easy to implement in games of this period, which
run over DOS. As soon as the frameworks became more complex, the appliance
of PCG became even more complex and was consequently rarely regarded.

In 1996, Diablo resurrected PCG and roguelike games to the mainstream of
commercial games. Diablo procedurally generates its levels and loot. Its sequel,
Diablo II, maintained the PCG characteristic of the former. Every time a player
starts the game, the maps and levels are assembled distinctly. Both Diablo and
Diablo II are 2D games in the isometric perspective. The first Diablo game
featured no lighting effects apart from what can be done with sprites. Diablo II,
on the other hand, used a simplistic pre-built geometry of the scene to apply an
incipient 2D illumination.

Randomness is one of the basis of PCG. In general, what mainly changes
amongst several approaches is the chosen threshold of randomness and the way
it is applied to the problem. Evolutionary algorithms, which involve random mu-
tations, are often applied to the procedural generation of characters [8], terrains
[9], tracks for racing games [10] and others. However, as previously addressed,
deterministic algorithms can also be classified as procedural. Although the result
of the computation is always the same for a combination of input parameters,
the set of parameters itself (seed) may be randomly generated. In this work, the
generated lights and shadows vary related to the position of the light and to
the environment in a deterministic fashion. Therefore, the maps, as well as the
positions, are the seed of the algorithm.

Ebert et al. [11] introduced several methods for procedurally generating game
contents. Among these methods, algorithms for generating solids, gases, water,
fire, noise, cloud, earth textures and materials, for instance, were regarded. Kelly
et al. [12] surveyed techniques for procedurally generating cities, focusing on in-
dividual buildings, road networks and cityscapes. Smelik et al. [13] surveyed
procedural generation of terrain and urban environments. At last, Hendrikx et
al. [5] surveyed several aspects of PCG for games and categorized the existing
algorithms in 6 main distinct classes: Game Bits, Game Space, Game Systems,
Game Scenario, Game Design and Derived Content. The class (1) Game Bits
comprises the generation of texture, sound, vegetation, buildings, behavior, fire,
water, stone and clouds; (2) Game Spaces, on the other hand, aggregates indoor
maps (e.g., rooms in general), outdoor maps (e.g., terrains) and bodies of water
(e.g., river, lakes and seas). Furthermore, ecosystems, road networks, urban en-
vironments and entity behavior are comprised by the (3) Game Systems class.
Notwithstanding, puzzles, storyboards, story and levels are fit in the (4) Game
Scenario class. If the algorithm refers to the creation of mathematical patterns
underlying the game and game rules then it was categorized as (5) Game Design.
Finally, news and leaderboards are fit in the (6) Derived Content class.

The approach proposed in this work does not fit properly in any of the classes
defined by Hendrikx et al. [5]. That is so because we are the first to introduce a
methodology that procedurally estimates the geometry of 2D sprites for further
light interaction. In our methodology, we draw the light rays to a texture and



4 É. O. Rodrigues and E. Clua

further pass it to the fragment shader. Thus, it could be partially comprised by
the Game Bits category. However, since the entire methodology does not just
generate a texture, it appears to be misclassified. Perhaps a new class called
Game Effects could be added to the definition of Hendrikx et al. for a proper
categorization.

3 The Approach

The map architecture followed the Entity Component System (ECS) definition.
That is, every graphical component of the game is an extension of the Entity
class that has a (x, y) position property. In this work we propose the usage of
auxiliary layers that overlap each other. Thus, each tile or block of the map,
as shown in Figure 2, is composed of the block sprite plus at most 3 layers of
overlapping sprites such as shown in the third image of Figure 2.

Fig. 2. Tiles or blocks of the map.

The blocks of the map are then assembled together. The assemblage is
straightforward: the nth block is placed at the right position of the (n − 1)th

block, as long as there is no line break. If a line break is present, assuming that
the first block of the previous line is called p, then the n block is placed at the
bottom of p in the y direction, and at the center of p and p+1 in the x direction.
A randomly generated map is shown in Figure 3.

Fig. 3. Randomly generated map.



A Real Time Lighting Technique for PCG 5

The approach consists of, at first, creating an obstacle map every time a
new map is loaded and storing it in memory. At every iteration of the render
method, the light sources that appear within the scene are processed and drawn
to a texture of slightly greater size than the screen. The light rays are traced
using the Bresenham’s Line Algorithm [14]. The produced texture is then bound
to the fragment shader and the fragment shader alters the colors of each fragment
according to the light texture. The entire process is illustrated in Figure 4.

Fig. 4. Overall steps of the proposed approach.

3.1 Obstacle Map

As previously addressed, when a new map is loaded, a 2D boolean obstacle map
is created to store information that is used to halt the tracing of light rays if
they hit an opaque object. A heuristic was used to compute the obstacle map
and is shown in Algorithm 1. Figure 5 illustrates the ∆y of an arbitrary block.
The height of ∆y was empirically chosen to be 25 pixels in our case, where each
sprite of the block is 128x128 pixels wide.

Thereafter, a box-shaped noise reduction was applied to erase any tiny ob-
stacle from the obstacle map. That is, we consider a n×n window and displace
this window over the obstacle map verifying if there is less than n pixels set as
obstacle within the window. If so, the top-left pixel of the window is unset as
obstacle.

3.2 Light Rendering

Once at each l frames, the light rays are traced, interacting with the obstacle
map. The Bresenham Algorithm [14] was used to trace these lines and was



6 É. O. Rodrigues and E. Clua

while not every block b has been iterated do
1. read ∆y lines of b and store the largest sequence of non-transparent
pixels for each line;
2. take the sequence of occurrences s that has the least deviation to the
mean;
3. set the pixels of s as true in the obstacle map;
4. take the central pixel of s and set their upper and lower s.length/4 pixels
of the obstacle map as true;

end
Algorithm 1: Constructing the obstacle map.

Fig. 5. The ∆y in an arbitrary block.

properly adapted to the problem as shown in Algorithm 2. At every light source
within the screen a surrounding rectangular area of size a×b is regarded for
tracing the light rays. A total of 4ab light rays are traced towards every pixel of
the border of this area from the central pixel of each light source.

The Algorithm 2 receives the coordinates of the light source’s origin and the
coordinates of every pixel of the rectangular border. The pixels corresponding
to the traced rays are drawn in a particular order: from the center of the light
source to the pixels of the rectangular border. During this process, if any of these
pixels corresponds to an obstacle pixel in the obstacle map, then the tracing
halts at this specific pixel. If no obstacle is found, the algorithm draws the
intensity and transparency of the light texture’s pixel based on the function
i(∆j,∆i) = 255/(1 + max(∆j,∆i)), where ∆j and ∆i represent the distance
of the iterated pixel with regard to the central pixel of the light source and
assuming that the texture is 8-bits depth (max value: 255).

It is interesting to note that not necessarily a light ray must be traced for
every pixel of the rectangular border. Some of these pixels can be skipped to
improve the overall performance and the eventual produced gaps can be further
corrected in the shader at the GPU with some kind of blurring algorithm [15].
Furthermore, we previously defined that the light rays are traced at every l
frames. Thus, while the light texture is not updated among these l frames, the
texture should be displaced (inverse translation) according to the main central
moving character, to avoid incorrect placements through the screen of a light that
was generated at a certain position at a certain frame. Finally, if the generated
light texture is directly drawn to the screen, then the result would look like



A Real Time Lighting Technique for PCG 7

method traceLightRay(int orgX, int orgY, int dstX, int dstY);
begin

int w = (dstX - orgX), h = (dstY - orgY);
short dx1 = 0, dy1 = 0, dx2 = 0, dy2 = 0;
if (w < 0) dx1 = -1; dx2 = -1; else if (w > 0) dx1 = 1; dx2 = 1;
if (h < 0) dy1 = -1; else if (h > 0) dy1 = 1;
short longest = absolute(w); short shortest = absolute(h);
if !(longest > shortest) then

longest = absolute(h); shortest = absolute(w); dx2 = 0;
if (h < 0) dy2 = -1; else if (h > 0) dy2 = 1;

end
int numerator = longest >> 1; boolean finished = false;
for int i=0; i ≤ longest and !finished; i++ do

if pixel(orgX, orgY ) is not blocked then
enlighten pixel(orgX, orgY );

else
finished = true;

end
numerator += shortest;
if !(numerator < longest) then

numerator -= longest;
orgX += dx1; orgY += dy1;

else
orgX += dx2; orgY += dy2;

end

end

end
Algorithm 2: Adapted Bresenham Algorithm.



8 É. O. Rodrigues and E. Clua

Figure 6. The white pixels on top of the trees and bushes represent the obstacle
map.

Fig. 6. Light texture being directly rendered on top of the sprites.

The arrows in Figure 6 indicate issues generated by the current approach.
That is, the bushes that are at a lower position in the vertical direction than
the light’s center should be completely dark, not half enlightened as it currently
is. Furthermore, the part of the tree pointed by the red arrow should have been
enlightened, but the current approach projects a shadow in this area.

To overcome this issue we introduce the concept of opacity maps. Each sprite
of the scene (excluding the floor blocks) has its own opacity map. An opacity map
is a boolean matrix that indicates if a certain pixel of the sprite is transparent
or not, given a certain threshold. Thus, the opacity maps of the sprites are
subtracted or added to the light texture. If the iterated sprite is at a higher
position than the center of the light in the vertical direction, the opacity map
of the same is added to the light texture and their illumination coefficient are
properly computed. Otherwise, if the sprite is at a lower position, then its opacity
map is subtracted from the light texture. The result of this correction is shown
in Figure 7.

After modifying the light texture according to the opacity maps of the sur-
rounding sprites, the texture is bound to the shader and the color of the frag-
ments are computed following the Algorithm 3. Essentially, the GPU will just
receive the light texture and change the colors of the fragments according to the
previously bound texture. Moreover, in our implementation, the framebuffer was
also used for drawing all the scene sprites priorly to applying the lighting effects.
Once the light texture is in the GPU, a simple box-blur algorithm is applied to
the same. Although the computations in the GPU are an essential part of the
process, the method is much more associated to the CPU. Therefore, processors
with shared memory between the GPU and CPU will benefit from the approach.



A Real Time Lighting Technique for PCG 9

Fig. 7. Opacity maps added to the light texture.

Data: texColor being the color of the fragment, ambientClarity being a float
that stores the ambient clarity and lightTexture being the texture binded
to the shader

begin
(...);
float luminance = texColor.r*0.349 + texColor.g*0.114 + texColor.b*0.537;
vec4 lightFactor =
luminance*lightTexture/(ambientClarity*ambientClarity+0.1);
vec4 texFactor = texColor*sqrt(ambientClarity);
texColor = texFactor + lightFactor;

end
Algorithm 3: Fragment shader algorithm.



10 É. O. Rodrigues and E. Clua

4 Results

Figure 8 shows the final result with two light sources on both characters [16].
The ambient clarity in this occasion was set to 0.4. The blurring gives a final nice
aesthetics and allows the possibility of skipping some light rays during the tracing
to speed up the overall performance. If the texFactor variable in Algorithm 3
is multiplied by lightTexture, then what is not hit by the light texture would
appear completely dark.

Furthermore, we do not specifically generate shadows. That is, we assume
that every pixel that does not have an associated light ray is a shadow. However,
if one desires to cast shadows instead of light rays, then the light ray tracing
just need to be inverted. In other words, at its current state, the light rays are
traced until they reach an obstacle. To cast shadows, the shadow rays should be
painted after the light rays reach the same obstacle.

Fig. 8. Visual result.

The achieved Frame Rate Per Second (FPS) was satisfactory for a procedu-
rally generated approach. In some computers the drop in FPS was not notice-
able. Figure 9 illustrates some of the obtained FPS among distinct processors
and graphics cards. It is interesting to notice that, in fact, the bottleneck of
the approach is at the CPU and at the communication between the CPU and
GPU. The processors that have an integrated GPU obtained better results due to
memory bandwidth issues. The overall power of the GPU alone did not influence
positively on the obtained FPS.

The graphics cards used in each case from 1 to 9 were, respectively: (1) Nvidia
GeForce GTX 850M,(2) Nvidia GeForce GTX 550ti, (3) Nvidia GeForce 630, (4)
ATI Radeon HD 5550, (5) Intel HD Graphics, (6) ATI Radeon 280X Windforce,



A Real Time Lighting Technique for PCG 11

Fig. 9. A benchmark of the approach.

(7) Intel HD Graphics, (8) Nvidia GeForce GT 440 and (9) Intel HD Graphics.
It is clear that the Intel processors performed in a more efficient fashion than
AMD, specially in the chips that have an integrated graphics card. In addition, it
appears that when processors and graphics cards are of the same manufacturer,
the FPS is slightly benefited such as on cases 6 and 8 if compared to 2 and 3.
However, we cannot assure that correlation.

Beyond that analysis, we have also collected feedbacks from 61 evaluators
including gamers, designers and programmers regarding the usability, benefits
and visuals produced by the approach. Among them 40 were designers, 55 gamers
and 42 programmers. Their analysis are summarized in Table 1. The last concept
of the table is related to a comparison between the proposed approach and a
non-interactive approach, such as the one in image (b) in Figure 10 (including
movement, not only static). It is important to highlight that the resultant colors
between (a) and (b) are a little different, though we have tried to minimize that
difference as much as possible.

5 Conclusion

The obtained results with our proposed approach are satisfactory in the visual
and performance aspects. We have shown that the inclusion of automatic illumi-
nation in procedurally generated isometric scenes can be achieved without the
need of proper designing or modelling. Furthermore, we have also shown that
our method is independent of the sprites topology shapes.



12 É. O. Rodrigues and E. Clua

Table 1. General concepts analysis.

Concept Designers Gamers Programmers Mean

Overall rating (0 to 10) 8.72 8.74 8.85 8.65
Possible game production
speed up rating (0 to 10)

9.50 9.27 9.28 9.18

Would active the lighting with
no noticeable FPS drop (%)

97.5 85.4 90.4 85.2

Would active the lighting even
with noticeable FPS drop (%)

67.5 58.1 66.6 60.6

Would reduce resolution to
activate the lighting (%)

47.5 38.2 40.4 39.3

Find it better than no
interaction, Figure 10-(b) (%) 86.5 80.3 80.1 79.4

Proposed Light

(a) Proposed lighting

Texture/Gradient Light

(b) Lighting with no interaction

Fig. 10. Comparison of the light interaction.

Moreover, the approach may contribute as an architectural basis for a frame-
work that can procedurally generate isometric maps of the addressed configu-
ration. Due to the fact that the geometrical shapes of the objects on the scene
and the lighting interaction are procedurally generated, there is no need to be
concerned with anything other than the seed generation, which involves no 3D
modelling and, therefore, greatly diminishes the workload. As a future work, we
intend to develop a sandbox framework, making it possible to include in different
tools.

We can conclude from the collected feedback that the approach is very inter-
esting from the perspective of the user, especially on the PCG-related aspects.
The greatest ratings were on the possibility of speeding up the production of
games if the proposed lighting is regarded. However, we can also conclude that
the majority would not use or activate the proposed lighting if the drop in FPS
is such that it affects the gameplay experience. This argument came in a more



A Real Time Lighting Technique for PCG 13

accentuated fashion from gamers than from developers (designers and program-
mers). Fortunately, with regard to some computers specifications, the proposed
lighting produces no apparent FPS drop. As future work we would also like to
improve the CPU bottleneck.

References

1. Young-Seol Lee. Context-aware petri net for dynamic procedural content genera-
tion in role-playing game. Computational Intelligence Magazine, 6:16–25, 2011.

2. Yerahmiel Doytsher and John K. Hall. Simplified algorithms for isometric and per-
spective projections with hidden line removal. Computers and Geoscience, 27:77–
83, 2001.

3. Mark J. Kilgard. A practical and robust bump-mapping technique for todays gpus.
Game Developers Conference: Advanced OpenGL, 2000.

4. Matt DesLauriers. Normal mapping. https://github.com/mattdesl/lwjgl-
basics/wiki/ShaderLesson6.

5. Mark Hendrikx, Sebastiaan Meijer, Joeri Van Der Velden, and Alexandru Iosup.
Procedural content generation for games: A survey. ACM Transactions on Multi-
media Computing, Communications, and Applications, 9, 2013.

6. Anthony J. Smith and Joanna J. Bryson. A logical approach to building dungeons:
Answer set programming for hierarchical procedural content generation in roguelike
games. Proceedings of the 50th Anniversary Convention of the AISB, 2014.

7. Ken Perlin. An image synthesizer. Proceedings of the 12th annual conference on
Computer graphics and interactive techniques, 19:287–296, 1985.

8. Mariela Nogueira Collazo, Carlos Cotta, and Antonio J. Fernndez-Leiva. Virtual
player design using self-learning via competitive coevolutionary algorithms, 2014.

9. William L. Raffe, Fabio Zambetta, and Xiaodong Li. A survey of procedural terrain
generation techniques using evolutionary algorithms. Proceedings of Congress of
Evolutionary Computation, 10:2090–2097, 2012.

10. Daniele Loiacono, Luigi Cardamone, and Pier Luca Lanzi. Automatic track genera-
tion for high-end racing games using evolutionary computation. IEEE Transactions
on Computational Intelligence and AI in Games, 3:245–259, 2011.

11. David S. Ebert, F. Kenton Musgrave, Darwyn Peachey, Ken Perlin, and Steven
Worley. Texturing and Modeling: A Procedural Approach. Morgan Kaufmann
Publishers, 3rd edition, 2003.

12. George Kelly and Hugh McCabe. A survey of procedural techniques for city gen-
eration. ITB Journal, 14, 2006.

13. S.A. Groenewegen, R.M. Smelik, K.J. de Kraker, and R. Bidarra. Procedural city
layout generation based on urban land use models. Proceedings of the 30th Annual
Conference of the European Association for Computer Graphics, pages 45–48.

14. J.E. Bresenham. Algorithm for computer control of a digital plotter. IBM Systems
Journal, 4:25–30, 1965.

15. Frederick M. Waltz and John W. V. Miller. Efficient algorithm for gaussian blur
using finite-state machines. Proceedings of SPIE 3521, Machine Vision Systems
for Inspection and Metrology VII, 1998.

16. E. O. Rodrigues. 2d shader light and shadow system.
https://www.youtube.com/watch?v=jpmRXUH2qFU.


