
Rogue-like Games as a Playground for
Artificial Intelligence - Evolutionary Approach

Vojtech Cerny and Filip Dechterenko

Charles University in Prague, Czech Republic,
woitee@gmail.com, filip.dechterenko@gmail.com

Abstract. Rogue-likes are difficult computer RPG games set in a pro-
cedurally generated environment. Attempts have been made at play-
ing these algorithmically, but few of them succeeded. In this paper, we
present a platform for developing artificial intelligence (AI) and creat-
ing procedural content generators (PCGs) for a rogue-like game Desktop
Dungeons. As an example, we employ evolutionary algorithms to recom-
bine greedy strategies for the game. The resulting AI plays the game bet-
ter than a hand-designed greedy strategy and similarly well to a mediocre
player – winning the game 72% of the time. The platform may be used
for additional research leading to improving rogue-like games and general
PCGs.

Keywords: artificial intelligence, computer games, evolutionary algo-
rithms, rogue-like

1 Introduction

Rogue-like games, as a branch of the RPG genre, have existed for a long time.
They descend from the 1980 game ”Rogue” and some old examples, such as
NetHack (1987), are played even to this day. Many more of these games are
made every year, and their popularity is apparent.

A rogue-like is a single-player, turn-based, highly difficult RPG game, fea-
turing a randomized environment and permanent death1. The player takes the
role of a hero, who enters the game’s environment (often a dungeon) with a very
difficult goal. Achieving the goal requires a lot of skill, game experience and
perhaps a little bit of luck.

Such a game, bordering between RPG and puzzle genres, is challenging for
artificial intelligence (AI) to play. One often needs to balance between being
reactive (dealing with current problems) and proactive (planning towards the
main goal). Attempts at solving rogue-likes by AI have been previously made [9,
2, 7], usually using a set of hand-coded rules as basic reasoning, and being to
some extent successful.

On the other hand, the quality of a rogue-like can heavily depend on its pro-
cedural content generator (PCG), which usually creates the whole environment.

1 The game offers no save/load features, it is always replayed from beginning to end.



2

Procedural generation [14] has been used in many kinds of games [17, 5], and
thus, the call for high-quality PCG is clear [8]. However, evaluating the PCG
brings issues [4, 16], such as how to balance between the criteria of high quality
and high variability.

But a connection can be made to the former – we could conveniently use
the PCG to evaluate the artificial player and similarly, use the AI to evaluate
the content generator. The latter may also lead to personalized PCGs (creating
content for a specific kind of players) [15].

In this paper, we present a platform for developing AI and PCG for a
rogue-like game Desktop Dungeons [11]. It is intended as an alternative to
other used AI or PCG platforms, such as the Super Mario AI Benchmark [6]
or SpelunkBots [13]. AI platforms have even been created for a few rogue-like
games, most notably NetHack [2, 7]. However, Desktop Dungeons has some char-
acteristics making it easier to use than the other. Deterministic actions and short
play times help the AI, while small dungeon size simplifies the work of a PCG.

And as such, more experimental and resource demanding approaches may
be tried. The platform could also aid other kinds of research or teaching AI, as
some people create their own example games for this purpose [12, Chapter 21.2],
where Desktop Dungeons could be used instead.

The outline of this paper is as follows. First, we introduce the game to the
reader, then we proceed to describe our platform, and finally, we will show how to
use it to create a good artificial rogue-like player using evolutionary algorithms.

2 Desktop Dungeons Description

Desktop Dungeons by QCF Design [11] is a single-player computer RPG game
that exhibits typical rogue-like features. The player is tasked with entering a
dungeon full of monsters and, through careful manipulation and experience gain,
slaying the boss (the biggest monster).

Disclaimer: The following explanation is slightly simplified. More thorough
and complete rules can be found at the Desktop Dungeons wiki page [1].

2.1 Dungeon

The dungeon is a 20 × 20 grid viewed from the top. The grid cells may contain
monsters, items, glyphs, or the hero (player). Every such object, except for the
hero, is static - does not move2. Only a 3× 3 square around the hero is revealed
in the beginning, and the rest must be explored by moving the hero next to it.
Screenshot of the dungeon early in the game can be seen in Fig. 1.

2 Some spells and effects move monsters, but that is quite uncommon and can be
ignored for our purpose.



3

Fig. 1. Screenshot of the dungeon, showing the hero, monsters, and an item (a health
potion). The dark areas are the unexplored parts of the dungeon.



4

2.2 Hero

The hero is the player-controlled character in the dungeon and holds a set of
values. Namely: health, mana, attack power, the number of health/mana potions,
and his spell glyphs. The hero can also perform a variety of actions. He can attack
a monster, explore unrevealed parts of the dungeon, pick up items and glyphs,
cast spells or convert glyphs into bonuses.

2.3 Exploring

Unrevealed grid cells can be explored by moving the hero next to them (at least
diagonally). Not only does exploration reveal what lies underneath for the rest
of the game, but it also serves one additional purpose – restoring health and
mana. Every square explored will restore health equal to the hero’s level and 1
mana. This means that the dungeon itself is a scarce resource that has to be
managed wisely. It shall be noted, though, that monsters heal also when hero
explores, so this cannot be used to gain an edge over damaged monsters.

2.4 Combat

Whenever the hero bumps into a monster, a combat exchange happens. The
higher level combatant strikes first (monster strikes first when tied). The first
attacker reduces his opponent’s health by exactly his attack power. The other
attacker, if alive, then does the same. No other action causes any monster to
attack the hero.

2.5 Items

Several kinds of items can be found lying on the ground. These comprise of a
Health Powerup, Mana Powerup, Attack Powerup, Health Potion and a Mana Po-
tion. These increase the hero’s health, mana, attack power, and amount of health
and mana potions respectively.

2.6 Glyphs

Spell glyphs are special items that each allow the hero to cast one kind of spell
for it’s mana cost. The hero starts with no glyphs, and can find them lying in
the dungeon. Common spells include a Fireball spell, that directly deals damage
to a monster (without it retaliating), and a Kill Protect spell, that saves the
hero from the next killing blow.

Additionally, a spell glyph can be converted to a racial bonus - a specific
bonus depending on the hero’s race. These are generally small stat increases
or an extra potion. The spell cannot be cast anymore, so the hero should only
convert glyphs he has little use for.



5

2.7 Hero Races and Classes

Before entering the dungeon, the player chooses a race (Human, Elf, etc.) and a
class (Warrior, Wizard, etc.) of his hero. The race determines only the reward
for converting a glyph, but classes can modify the game in a completely unique
way.

2.8 Other

The game has a few other unmentioned mechanics. The player can enter special
”challenge” dungeons, he can find altars and shops in the dungeon, but all that
is far beyond the basics we’ll need for our demonstration. As mentioned, more
can be found at the Desktop Dungeons wiki [1].

3 AI Platform

Desktop Dungeons has two parameters rarely seen in other similar games. Every
action in the game is deterministic3 (the only unknown is the unrevealed part
of the dungeon) and the game is limited to 20 × 20 grid cells and never extends
beyond. These may allow for better and more efficient AI solutions, and may
be advantageously utilized when using search techniques, planning, evaluating
fitness functions, etc.

On the other hand, Desktop Dungeons is a very interesting environment for
AI. It is complex, difficult, and as such can show usefulness of various approaches.
Achieving short-term and long-term goals must be balanced, and thus, simple
approaches tend to not do well, and must be specifically adjusted for the task.
Not much research has been done on solving rogue-like games altogether, only
recently was a famous, classic title of this genre — NetHack — beaten by AI [7].

From the perspective of a PCG, Desktop Dungeons is similarly interesting.
The size of the dungeon is very limited, so attention to detail should be paid.
If one has an artificial player, the PCG could use him as a measure of quality,
even at runtime, to produce only the levels the artificial player found enjoyable
or challenging.

This is why we created a programming interface (API) to Desktop Dungeons,
together with a Java framework for easy AI and PCG prototyping and imple-
mentation. We used the alpha version of Desktop Dungeons, because it is more
direct, contains less story content and player progress features, runs in a browser,
and the main gameplay is essentially the same as in the full version.

The API is a modified part of the game code that can connect to another
application, such as our framework, via a WebSocket (TCP) protocol and provide
access to the game by sending and receiving messages. A diagram of the API
usage is portrayed in Fig. 2.

3 Some rare effects have probabilistic outcomes, but with a proper game setting, this
may be completely ignored.



6

Fig. 2. The API, as a part of the game, connects to an application using a WebSockets
protocol and provides access to the game by receiving and sending messages.

The framework allows the user to focus on high-level programming, and have
the technical details hidden from him. It efficiently keeps track of the dungeon
elements, and provides full game simulation, assisting any search techniques and
heuristics that might be desired. The developed artificial players can be tested
against the default PCG of the game, which has the advantage of being designed
to provide challenging levels for human players, or one can generate the dungeon
on his own and submit it to the game. Intermediate ways can also be employed,
such as editing the dungeons generated by the game’s PCG to e.g. adjust the
difficulty or reduce the complexity of the game.

The framework is completely open-source and its repository can be found at
https://bitbucket.org/woitee/desktopdungeons-java-framework.

4 Evolutionary Approach

To demonstrate the possibilities of the Desktop Dungeons API, we have imple-
mented an evolutionary algorithm (EA) [10] to fine-tune greedy AI. A general
explanation of EAs is, however, out of the scope of this paper.

4.1 Simple Greedy Algorithm

The original greedy algorithm was a simple strategy for each moment of the
game. It is best described by a list of actions, ordered by priority.

1. Try picking up an item.
2. Try killing a monster (prefer strongest).
3. Explore.

The hero tries to perform the highest rated applicable action, and when
none exists, the run ends. Killing the monster was attempted by just simulating
attacks, fireballs and drinking potions until one of the participants died. If suc-
cessful, the sequence of actions was acted out. This can be modeled as a similar
list of priority actions:

1. Try casting the Fireball spell.
2. Try attacking.
3. Try drinking a potion.



7

Some actions have parameters, e.g. how many potions is the hero allowed to
use against a certain level of monster. These were set intuitively and tuned by
trial and error.

This algorithm has yielded good results. Given enough time (weeks, tens of
thousands of runs), this simple AI actually managed to luck out and kill the
boss. This was very surprising, we thought the game would be much harder to
beat, even with chance on our side. It was probably caused by the AI always
calculating how to kill every monster it sees, which is tedious and error-prone
for human players to do.

4.2 Design of the Evolution

We used two ordered lists of elementary strategies in the greedy approach, but
we hand-designed them and probably have not done that optimally. This would
become increasingly more difficult, had we added more strategies to the list.
We’ll solve this by using evolutionary algorithms.

We’ll call the strategies used to select actions in the game maingame strate-
gies and the strategies used when trying to kill monsters attack strategies.
Each strategy has preconditions (e.g. places to explore exists) and may have
parameters. We used as many strategies as we could think of, which resulted in
a total of 7 maingame strategies and 13 attack strategies.

The evolutionary algorithm was tasked with ordering both lists of strategies,
and setting their parameters. It should be emphasized, that this is far from an
easy task. Small imperfections in the strategy settings accumulate over the run,
and thus only the very refined individuals have some chance of slaying the final
boss.

However, the design makes the AI ignore some features of the game. It doesn’t
buy items in shops nor does it worship any gods. These mechanics are neverthe-
less quite advanced, and should not be needed to win the basic setting of the
game. Using them can have back-biting effects if done improperly, so we just
decided to ignore them to keep the complexity low.

On a side note, this design is to a certain extent similar to linear genetic
programming [3].

4.3 Fitness Function

Several criteria could be considered when designing the fitness function. An
easy solution would be to use the game’s score, which is awarded after every
run. However, the score takes into account some attributes that do not directly
contribute towards winning the game, e.g. awarding bonuses for low completion
time, or never dropping below 20% of health.

We inspired ourselves by the game’s scoring, but simplified it. Our basic
fitness function evaluates the game’s state at the end of the run and looks like



8

this:

fitness = 10 · xp + 150 · healthpotions
+ 75 ·manapotions

+ health

The main contributor is the total gained XP (experience points, good runs
get awarded over a hundred), and additionally, we slightly reward leftover health
and potions. We take these values from three runs and add them together. Three
runs are too few to have low variance on subsequent evaluations, but it yields
far better results than evaluating only one run, and more runs than three would
just take too much time to complete.

If the AI manages to kill the boss in any of the runs, we triple the fitness value
of that run. This may look a little over the top, but slaying the final monster
is very difficult, and if one of the individuals is capable of doing so, we want to
spread it’s gene in the population. Note, that we don’t expect our AI to kill the
boss reliably, 5-10% chance is more what we are aiming for.

We have tried a variety of fitness functions, taking into account other prop-
erties of the game state and with different weights. For a very long time, the
performance of the bots was similiar to the hand-designed greedy strategy. But,
by analyzing more of the game, we have constructed roughly the fitness function
above and the performance has hugely improved.

The improvement lies in the observation of how can the bots improve dur-
ing the course of evolution. Strong bots in the early state will probably just
use objectively good strategies, and not make complete blunders in strategy
priorities, such as exploring the whole level before trying to kill anything. This
should already make them capable of killing quite a few monsters. Then, the bots
can improve and fine-tune their settings, to use less and less resources (mainly
potions) to kill as many monsters as possible. And towards the late state of
evolution, the bots can play the game so effectively, they may still have enough
potions and other resources to kill the final boss and beat the game. The cur-
rent fitness function supports this improvement, because the fitness values of the
hypothetical bots in subsequent stages of evolution continuously rises.

After implementation, this was exactly the course the bots have evolved
through. Note, that saving at least a few potions for the final boss fight is
basically a necessary condition for success.

4.4 Genetic Operators

Priorities of the strategies are represented by floating point numbers in the [0, 1]
interval. Together with the strategy’s parameter values, we can encode it as just
a few floating point numbers, integers and booleans.

This representation allows us to use classical operators like one-/two-point
crossovers and small change mutations. And they make good sense and work,
but they are not necessarily optimal, and after some trial and error, we have



9

Dwarf Priest Elf Wizard Halfling Thief Human Fighter

10000

20000

30000

0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30
Generation

F
itn

es
s

Absolute Best Fitness Best Fitness Mean Fitness

Fig. 3. Graphs describing the fitnesses of the evolution for each of our class-race set-
tings. The three curves describe the total best fitness ever encountered, the best fit-
nesses averaged over all runs and the mean fitnesses averaged over all runs. The vertical
line indicates the point, where the AI has killed the boss and won the game at least
once in three attempts. This fitness value is different for each setting, since some race-
class combinations can gain more hitpoints or health potions than other, both of which
directly increase their fitness (see Section 4.3).



10

started using a weighted average operator to crossover the priorities for better
performance.

The AI evolved with these settings were just a little too greedy, often using
all their potions in the early game, and even though they advanced far, they
basically had no chance of beating the final boss. These strategies found quite a
strong local optimum of the fitness, and we wanted to slightly punish them for
it. We did so in two ways. Firstly, we rewarded leftover potions in our fitness
value calculation, and secondly, a smart mutation was added, that modifies a
few individuals from the population to not use potions to kill monsters of lower
level than 5. After some balancing, this has shown itself to be effective.

Mating and natural selection was done by simple roulette, i.e. individuals
were chosen with probability proportional to their fitness. This creates a rather
low selection pressure, and together with a large enough number of individuals
in a generation, the evolution should explore a large portion of the candidate
space and tune the strategies finely.

4.5 Results

After experimentation, we settled to do final runs with a population of 100 indi-
viduals, evolving through 30 generations. The population seemed large enough
to be exploring the field well, and the generations sufficient for the population
to converge. We ran the EA on 4 computers for a week, with a different com-
bination of hero class and race on each computer. The result was a total of 62
runs, every hero class and race setting completed a minimum of 12 full runs. A
single evaluation of an individual takes about 2 seconds, and a single whole run
finishes in about 14 hours (intel i5-3470 at 3.2GHz, 4GB RAM, two instances in
parallel).

The data of the results contain a lot of good strategies, their qualities can
be seen in Fig. 3. Every combination of hero race and class managed to beat
the boss at least once, and the strongest evolved individual kills the boss 72% of
time (averaged over 10000 runs). This is definitely more than we expected. Note
that no AI can slay the boss 100% of the time, since the game’s default PCG
sometimes creates an obviously unbeatable level (e.g. all exits from the starting
room surrounded by high level monsters).

The evolved strategies also vary from each other. Different race and class
combinations employ different strategies, but variance occurs even among runs
of the same configuration. This shows that Desktop Dungeons can be played
in several ways, and that different initial settings require different approaches
to be used, which makes the game more interesting for a human. The different
success rates of the configurations can also be used as a hint which race–class
combinations are more difficult to play than others, either to balance them in
the game design, or to recommend the easier ones to a beginner.



11

5 Conclusion

We present a platform for creating AI and PCG for the rogue-like game Desktop
Dungeons. As a demonstration, we created an artificial player by an EA adjust-
ing greedy algorithms. This AI functioned better than the hand-made greedy
algorithm, winning the game roughly three quarters of the time, compared to
a winrate of much less than 1%, and being as successful as an average human
player.

This shows that the game’s original PCG worked quite well, not generating
a great abundance of impossible levels, yet still providing a good challenge.

A lot of research is possible with this platform. AI could be improved by
using more complex EAs, or created from scratch using any techniques, such
as search, planning and others. The PCG may be improved to e.g. create more
various challenges for the player, adjust difficulty for stronger/weaker players
or reduce the number of levels that are impossible to win. For evaluating the
PCG, we could advantageously utilize the AI, and note some statistics, such as
winrate, how often are different strategies employed or number of steps to solve
a level. A combination of these would then create a rating function.

Also, it would be very interesting to keep improving both the artificial player
and the PCG iteratively by each other.

References

1. Desktop Dungeons - DDwiki.
http://www.qcfdesign.com/wiki/DesktopDungeons, (Accessed: 12 May 2015)

2. Tactical Amulet Extraction Bot (TAEB) - Other Bots.
http://taeb.github.io/bots.html, (Accessed: 12 May 2015)

3. Brameier, M.F., Banzhaf, W.: Linear Genetic Programming. Springer Science &
Business Media (2007)

4. Dahlskog, S., Smith, G., Togelius, J.: A Comparative Evaluation of Procedural
Level Generators in the Mario AI Framework. Proceedings of Foundations of Dig-
ital Games (2014)

5. Hendrikx, M., Meijer, S., Van Der Velden, J., Iosup, A.: Procedural content gen-
eration for games: A survey. ACM Transactions on Multimedia Computing, Com-
munications, and Applications 9(1), 1–22 (2013)

6. Karakovskiy, S., Togelius, J.: The Mario AI Benchmark and Competitions. IEEE
Transactions on Computational Intelligence and AI in Games 4(1), 55–67 (2012)

7. Kraj́ıček, J.: NetHack Bot Framework. Master’s thesis, Charles University in
Prague, Czech Republic (2015), (In Czech)

8. Liapis, A., Yannakakis, G.N., Togelius, J.: Towards a Generic Method of Evaluating
Game Levels. In: AIIDE (2013)

9. Mauldin, M.L., Jacobson, G., Appel, A.W., Hamey, L.G.C.: ROG-O-MATIC: a bel-
ligerent expert system (1983)

10. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press (1996)
11. QCF Design: Desktop Dungeons.

http://www.desktopdungeons.net/, (Accessed: 12 May 2015)
12. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall

Press, Upper Saddle River, NJ, USA, 3rd edn. (2009)



12

13. Scales, D., Thompson, T.: SpelunkBots API - An AI Toolset for Spelunky. IEEE
Conference on Computational Intelligence and Games pp. 1–8 (2014)

14. Shaker, N., Togelius, J., Nelson, M.J.: Procedural Content Generation in Games:
A Textbook and an Overview of Current Research. Springer (2015)

15. Shaker, N., Yannakakis, G.N., Togelius, J.: Towards Automatic Personalized Con-
tent Generation for Platform Games. In: AIIDE (2010)

16. Smith, G.: The Seven Deadly Sins of PCG Research.
http://sokath.com/main/blog/2013/05/23/, (Accessed: 12 May 2015)

17. Togelius, J., Yannakakis, G.N., Stanley, K.O., Browne, C.: Search-based procedural
content generation: A taxonomy and survey. IEEE Transactions on Computational
Intelligence and AI in Games 3(3), 172–186 (2011)


