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Abstract Hand pose estimation has matured rapidly
in recent years. The introduction of commodity depth
sensors and a multitude of practical applications have
spurred new advances. We provide an extensive analysis
of the state-of-the-art, focusing on hand pose estima-
tion from a single depth frame. To do so, we have im-
plemented a considerable number of systems, and have
released software and evaluation code. We summarize
important conclusions here: (1) Coarse pose estimation
appears viable for scenes with isolated hands. However,
high precision pose estimation (required for immersive
virtual reality) and cluttered scenes (where hands may
be interacting with nearby objects and surfaces) remain
a challenge. To spur further progress we introduce a
challenging new dataset with diverse, cluttered scenes.
(2) Many methods evaluate themselves with disparate
criteria, making comparisons di�cult. We de�ne a con-
sistent evaluation criteria, rigorously motivated by hu-
man experiments. (3) We introduce a simple nearest-
neighbor baseline that outperforms most existing sys-
tems. This implies that most systems do not general-
ize beyond their training sets. This also reinforces the
under-appreciated point that training data is as impor-
tant as the model itself. We conclude with directions
for future progress.
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1 Introduction

Human hand pose estimation empowers many prac-
tical applications, for example sign language recog-
nition (Keskin et al. 2012), visual interfaces (Melax
et al. 2013), and driver analysis (Ohn-Bar and
Trivedi 2014a). Recently introduced consumer depth
cameras have spurred a urry of new advances (Ren
et al. 2011, Keskin et al. 2012, D. Tang and Kim 2013, Li
and Kitani 2013, Melax et al. 2013, Xu and Cheng 2013,
Tang et al. 2014, Tompson et al. 2014, Qian et al. 2014,
Sridhar et al. 2015).

Motivation: Recent methods have demonstrated im-
pressive results. But di�ering (often in-house) testsets,
varying performance criteria, and annotation errors im-
pede reliable comparisons (Oberweger et al. 2015a). In-
deed, a recent meta-level analysis of object tracking pa-
pers reveals that it is di�cult to trust the \best" re-
ported method in any one paper (Pang and Ling 2013).
In the �eld of object recognition, comprehensive bench-
mark evaluation has been vital for progress (Fei-Fei
et al. 2007, Deng et al. 2009, Everingham et al. 2010).
Our goal is to similarly diagnose the state-of-a�airs, and
to suggest future strategic directions, for depth-based
hand pose estimation.

Contributions: Foremost, we contribute the most ex-
tensive evaluation of depth-based hand pose estimators
to date. We evaluate 13 state-of-the-art hand-pose es-
timation systems across 4 testsets under uniform scor-
ing criteria. Additionally, we provide a broad survey of
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Fig. 1 NN Memorization: We evaluate a broad collec-
tion of hand pose estimation algorithms on di�erent training
and testsets under consistent criteria. Test sets which con-
tained limited variety, in pose and range, or which lacked com-
plex backgrounds were notably easier. To aid our analysis, we
introduce a simple 3D exemplar (nearest-neighbor) baseline
that both detects and estimates pose suprisingly well, outper-
forming most existing systems. We show the best-matching
detection window in ( b ) and the best-matching exemplar in
(c). We use our baseline to rank dataset di�culty, compare
algorithms, and show the importance of training set design.
We provide a detailed analysis of which problem types are
currently solved, what open research challenges remain, and
provide suggestions for future model architectures.

contemporary approaches, introduce anew testsetthat
addresses prior limitations, and propose anew baseline
for pose estimation based on nearest-neighbor (NN) ex-
emplar volumes. Surprisingly, we �nd that NN exceeds
the accuracy of most existing systems (Fig. 1). We orga-
nize our discussion along three axes: test data (Sec. 2),
training data (Sec. 3), and model architectures (Sec. 4).
We survey and taxonomize approaches for each dimen-
sion, and also contribute novelty to each dimension (e.g.
new data and models). After explicitly describing our
experimental protocol (Sec. 5), we end with an exten-
sive empirical analysis (Sec. 6).

Preview: We foreshadow our conclusions here. When
hands are easily segmented or detected, current systems
perform quite well. However, hand \activities" involv-
ing interactions with objects/surfaces are still challeng-
ing (motivating the introduction of our new dataset).
Moreover, in such cases even humans perform imper-
fectly. For reasonable error measures, annotators dis-
agree 20% of the time (due to self and inter-object oc-
clusions and low resolution). This has immediate impli-
cations for test benchmarks, but also imposes a chal-
lenge when collecting and annotating training data.
Finally, our NN baseline illustrates some surprising
points. Simple memorization of training data performs
quite well, outperforming most existing systems. Vari-
ations in the training data often dwarf variations in the
model architectures themselves (e.g., decision forests

Dataset Chal. Scn. Annot. Frms. Sub. Cam. Dist. (mm)
ASTAR [70] A 1 435 435 15 ToF 270-580
Dexter 1 [55] A 1 3,157 3,157 1 Both 100-989

MSRA-2014 [42] A 1 2,400 2,400 6 ToF 339-422
ICL [59] A 1 1,599 1,599 1 Struct 200-380

FORTH [37] AV 1 0 7,148 5 Struct 200-1110
NYU [63] AV 1 8,252 8,252 2 Struct 510-1070

HandNet [69] AV 1 202,198 202,198 10 Struct 200-650
MPG-2014 [65] AV 1 2,800 2,800 1 Struct 500-800
FingerPaint [51] AV 1 113,800 113,800 5 ToF 400-700
CVAR-EGO [32] AV 2 2,166 2,166 1 ToF 60-650

MSRA [58] AV 1 76,375 76,528 9 ToF 244-530
KTH [39] AVC 1 NA 46,000 9 Struct NA
LISA [35] AVC 1 NA 3,100 1 Struct 900-3780

UCI-EGO [44] AVC 4 364 3,640 2 ToF 200-390
Ours AVC 10+ 23,640 23,640 10 Both 200-1950

Challenges (Chal.): A-Articulation V-Viewpoint
C-Clutter

Table 1 Testing data sets: We group existing bench-
mark testsets into 3 groups based on challenges addressed
- articulation, viewpoint, and/or background clutter. We
also tabulate the number of captured scenes, number of
annotated versus total frames , number of subjects , camera
type (structured light vs time-of-ight), and distance of the
hand to camera. We introduce a new dataset ( Ours ) that
contains a signi�cantly larger range of hand depths (up to
2m), more scenes (10+), more annotated frames (24K), and
more subjects (10) than prior work.

versus deep neural nets). Thus, our analysis o�ers the
salient conclusion that \it's all about the (training)
data".

Prior work: Our work follows in the rich tradi-
tion of benchmarking (Everingham et al. 2010, Dol-
lar et al. 2012, Russakovsky et al. 2013) and tax-
iomatic analysis (Scharstein 2002, Erol et al. 2007).
In particular, Erol et al. (Erol et al. 2007) reviewed
hand pose analysis in 2007. Contemporary approaches
have considerably evolved, prompted by the intro-
duction of commodity depth cameras. We believe
the time is right for another look. We do extensive
cross-dataset analysis, by training and testing sys-
tems on di�erent datasets (Torralba and Efros 2011).
Human-level studies in benchmark evaluation (Mar-
tin et al. 2004) inspired our analysis of human-
performance. Finally, our NN-baseline is closely in-
spired by non-parametric approaches to pose estima-
tion (Shakhnarovich et al. 2003). In particular, we use
volumetric depth features in a 3D scanning-window (or
volume) framework, similar to Song and Xiao (2014).
But, our baseline does not need SVM training or multi-
cue features, making it simpler to implement.

2 Testing Data

Test scenarios for depth-based hand-pose estimation
have evolved rapidly. Early work evaluated on synthetic
data, while contemporary work almost exclusively eval-
uates on real data. However, because of di�culties in
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manual annotation (a point that we will revisit), eval-
uation was not always quantitative - instead, it has
been common to show select frames to give a qualitative
sense of performance (Delamarre and Faugeras 2001,
Bray et al. 2004, Oikonomidis et al. 2011, Pieropan
et al. 2014). We fundamentally assume that quantita-
tive evaluation on real data will be vital for continued
progress.

Test set properties: We have tabulated a list of con-
temporary test benchmarks in Table 1, giving URLs
on our website1. We refer the reader to the caption
for a detailed summary of speci�c dataset properties.
Per dataset, Fig. 2 visualizes the pose-space covered us-
ing multi-dimensional scaling (MDS). We embed both
the camera viewpoint angles and joint angles (in a nor-
malized coordinate frame that is centered, scaled and
rotated to the camera viewpoint). We conclude that
previous datasets make di�erent assumptions about ar-
ticulation, viewpoint, and perhaps most importantly,
background clutter. Such assumptions are useful be-
cause they allow researchers to focus on particular as-
pects of the problem. However it is crucial to make such
assumptions explicit (Torralba and Efros 2011), which
much prior work does not. We do so below.

Articulation: Many datasets focus on pose estimation
with the assumption that detection and overall hand
viewpoint is either given or limited in variation. Ex-
ample datasets include MSRA-2014 (Qian et al. 2014),
A-Star (Xu and Cheng 2013), and Dexter (Sridhar
et al. 2013). While these test sets focus on estimat-
ing hand articulation, not all test sets contain the same
amount of pose variation. For example, a sign language
test set will exhibit a small number of discrete poses.
To quantify articulation, we �t a multi-variate Gaussian
distribution to a test set's �nger joint angles. Then we
compute the di�erential entropy for the test set's dis-
tribution:

h(� ) = :5 log
�
(2�e )N det(� )

�
(1)

where � is the covariance of the test set's joint angles
and N is the number of joint angles in each pose vec-
tor. This analysis suggests that our proposed test set
contains greater pose variation (entropy,h = 89) than
the ICL ( h = 34), NYU ( h = 82), FORTH ( h = 65) or
A-STAR ( h = 79) test sets. We focus onICL (Tang
et al. 2014) as a representative example for experi-
mental evaluation because it has been used in multiple
prior published works (Tang et al. 2014, D. Tang and
Kim 2013, Oberweger et al. 2015a).

1 http://www.ics.uci.edu/ ~jsupanci/#HandData

Fig. 2 Pose variation: We use MDS (multi-dimensional
scaling) to plot the pose space covered by a set of hand
datasets with compatible joint annotations. We split the pose
space into two components and plot the camera viewpoint an-
gles (a) and �nger joint angles (b). For each testset, we plot
the convex hull of its poses. In terms of joint angle cover-
age, most testsets are similar. In terms of camera viewpoint,
some testsets consider a smaller range of views (e.g., ICL and
A-STAR). We further analyze various assumptions made by
datasets in the text.

Art. and viewpoint: Other testsets have focused
on both viewpoint variation and articulation.
FORTH (Oikonomidis et al. 2011) provides �ve
test sequences with varied articulations and view-
points, but these are unfortunately unannotated. The
CVAR-EGO (Oberweger et al. 2016) dataset provides
highly precise joint annotations but contains fewer
frames and only one subject. In our experiments, we
analyze the NYU dataset (Tompson et al. 2014)
because of its wide pose variation (see Fig. 2), larger
size, and accurate annotations (see Sec. 3).

Art. + View. + Clutter: The most di�cult datasets
contain cluttered backgrounds that are not easy to
segment away. These datasets tend to focus on \in-
the-wild" hands performing activities and interact-
ing with nearby objects and surfaces. The KTH
Dataset (Pieropan et al. 2014) provides a rich set of 3rd
person videos showing humans interacting with objects.
Unfortunately, annotations are not provided for the
hands (only the objects). Similarly, the LISA (Ohn-Bar
and Trivedi 2014a) dataset provides cluttered scenes
captured inside vehicles. However, joint positions are
not annotated, only coarse gesture. TheUCI-EGO
(Rogez et al. 2014) dataset provides challenging se-
quences from an egocentric perspective with joint level
annotations, and so is included in our benchmark anal-
ysis.

Our testset: Our empirical evaluation will show that
in-the-wild hand activity is still challenging. To push
research in this direction, we have collected and anno-
tated our own testset of real images (labeled asOurs
in Table 1, examples in Fig. 3). As far as we are aware,
our dataset is the �rst to focus on hand pose estimation
across multiple subjects and multiple cluttered scenes.

http://www.ics.uci.edu/~jsupanci/#HandData
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(a) (b)

(c) (d)

Fig. 3 Our new test data challenges methods with clut-
ter (a), object manipulation (b), low-res (c), and various
viewpoints (d). We collected data in diverse environments
(8 o�ces, 4 homes, 4 public spaces, 2 vehicles, and 2 out-
doors) using time-of-ight (Intel/Creative Gesture Camera)
and structured-light (ASUS Xtion Pro) depth cameras. Ten
(3 female and 7 male) subjects were given prompts to per-
form natural interactions with objects in the environment, as
well as display 24 random and 24 canonical poses.

This is important, because any practical application
must handle diverse subjects, scenes, and clutter.

3 Training Data

Here we discuss various approaches for generating train-
ing data (ref. Table 2). Real annotated training data
has long been the gold standard for supervised learn-
ing. However, the generally accepted wisdom (for hand
pose estimation) is that the space of poses is too large to
manually annotate. This motivates approaches to lever-
age synthetically generated training data, discussed fur-
ther below.

Real data + manual annotation: Arguably, the space
of hand poses exceeds what can be sampled with real
data. Our experiments identify a second problem: per-
haps surprisingly, human annotators often disagree on
pose annotations. For example, in our testset, human
annotators disagree on 20% of pose annotations (con-
sidering a 20mm threshold) as plotted in Fig. 19. These
disagreements arise from limitations in the raw sensor
data, either due to poor resolution or occlusions. We
found that low resolution consistently corresponds to
annotation ambiguities, across test sets. See Sec. 5.2)
for further discussion and examples. These ambigui-
ties are often mitigated by placing the hand close to

Dataset Generation Viewpoint Views Size Subj.
ICL [59] Real + manual annot. 3rd Pers. 1 331,000 10

NYU [63] Real + auto annot. 3rd Pers. 3 72,757 1
HandNet [69] Real + auto annot. 3rd Pers. 1 12,773 10
UCI-EGO [44] Synthetic Egocentric 1 10,000 1

libhand [67] Synthetic Generic 1 25,000,000 1

Table 2 Training data sets: We broadly categorize train-
ing datasets by the method used to generate the data and
annotations: real data + manual annotations, real data + au-
tomatic annotations, or synthetic data (and automatic anno-
tations). Most existing datasets are viewpoint -speci�c (tuned
for 3rd-person or egocentric recognition) and limited in size
to tens of thousands of examples. NYU is unique in that it
is a multi view dataset collected with multiple cameras, while
ICL contains shape variation due to multiple (10) subjects .
To explore the e�ect of training data, we use the public lib-
hand animation package to generate a massive training set of
25 million examples.

the camera (Xu and Cheng 2013, Tang et al. 2014,
Qian et al. 2014, Oberweger et al. 2016). As an illustra-
tive example, we evaluate theICL training set (Tang
et al. 2014).

Real data + automatic annotation: Data gloves directly
obtain automatic pose annotations for real data (Xu
and Cheng 2013). However, they require painstaking
per-user calibration. Magnetic markers can partially
alleviate calibration di�culties (Wetzler et al. 2015)
but still distort the hand shape that is observed in
the depth map. When evaluating depth-only systems,
colored markers can provide ground-truth through the
RGB channel (Sharp et al. 2015). Alternatively, one
could use a \passive" motion capture system. We eval-
uate the largerNYU training set (Tompson et al. 2014)
that annotates real data by �tting (o�ine) a skinned 3D
hand model to high-quality 3D measurements. Finally,
integrating model �tting with tracking lets one leverage
a small set of annotated reference frames to annotate
an entire video (Oberweger et al. 2016).

Quasi-synthetic data: Augmenting real data with geo-
metric computer graphics models provides an attractive
solution. For example, one can apply geometric trans-
formations (e.g., rotations) to both real data and its
annotations (Tang et al. 2014). If multiple depth cam-
eras are used to collect real data (that is then registered
to a model), one can synthesize a larger set of varied
viewpoints (Sridhar et al. 2015, Tompson et al. 2014).
Finally, mimicking the noise and artifacts of real data
is often important when using synthetic data. Domain
transfer methods (D. Tang and Kim 2013) learn the re-
lationships between a small real dataset and large syn-
thetic one.

Synthetic data: Another hope is to use data rendered
by a computer graphics system. Graphical synthesis
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Fig. 4 libhand joints: We use the above joint identi�ers to
describe how we sample poses (for libhand) in table 3. Please
see http://www.libhand.org/ for more details on the joints
and their parameters.

sidesteps the annotation problem completely: precise
annotations can be rendered along with the features.
One can easily vary the size and shape of synthesized
training hands, a fact which allows us to explore how
user-speci�c training data impacts accuracy. Our exper-
iments (ref. Sec. 6) verify that results may be optimistic
when the training and test datasets contain the same in-
dividuals, as non-synthetic datasets commonly do (ref.
Table 2). When synthesizing novel exemplars, it is im-
portant de�ne a good sampling distribution. A common
strategy for generating a sampling distribution is to col-
lect pose samples with motion capture data (Castellini
et al. 2011, Feix et al. 2013). TheUCI-EGO training
set (Rogez et al. 2014) synthesizes data with an ego-
centric prior over viewpoints and grasping poses.

3.1 libhand training set:

To further examine the e�ect of training data, we cre-
ated a massive custom training set of 25,000,000 RGB-
D training instances with the open-source libhand
model (some examples are shown in Fig. 7). We mod-
i�ed the code to include a forearm and output depth
data, semantic segmentations, and keypoint annota-
tions. We emphasize that this synthetic training set is
distinct from our new test dataset of real images.

Synthesis parameters: To avoid biasing our synthetic
training set away from unlikely, but possible, poses we
do not use motion capture data. Instead, we take a
brute-force approach based on rejection-sampling. We
uniformly and independently sample joint angles (from
a bounded range), and throw away invalid samples that
yield self-intersecting 3D hand poses. Speci�cally, using
the libhand joint identi�ers shown in Fig. 4, we generate

poses by uniformly sampling from bounded ranges, as
shown in Table. 3.

Quasi-Synthetic backgrounds:Hand synthesis engines
commonly under-emphasize the importance of image
backgrounds (�Sari�c 2011, Oikonomidis et al. 2011,
Tompson et al. 2014). For methods operating on
pre-segmented images (Keskin et al. 2012, Sridhar
et al. 2013, Qian et al. 2014), this is likely not an is-
sue. However, for active hands \in-the-wild", the choice
of synthetic backgrounds, surfaces, and interacting ob-
jects becomes important. Moreover, some systems re-
quire an explicit negative set (of images not contain-
ing hands) for training. To synthesize a robust back-
ground/negative training set, we take a quasi-synthetic
approach by applying random a�ne transformations
to 5,000 images of real scenes, yielding a total of
1,000,0000 pseudo-synthetic backgrounds. We found it
useful to include human bodies in the negative set be-
cause faces are common distractors for hand models.

4 Methods

Next we survey existing approaches to hand pose es-
timation (summarized in Table 4). We conclude by
introducing a novel volumetric nearest-neighbor (NN)
baseline.

4.1 Taxonomy

Trackers versus detectors:We focus our analy-
sis on single-frame methods. For completeness, we
also consider several tracking baselines (Oikonomidis
et al. 2011, PrimeSense 2013, Intel 2013) needing
ground-truth initialization. Manual initialization may
provide an unfair advantage, but we will show that
single-frame methods are still nonetheless competi-
tive, and in most cases, outperform tracking-based ap-
proaches. One reason is that single-frame methods es-
sentially \reinitialize" themselves at each frame, while
trackers cannot recover from an error.

Discrete versus continuous pose: We further concen-
trate our analysis on the continuous pose regression
problem. However historically, much prior work has
tackled the problem from a discrete gesture classi�-
cation perspective (Mo and Neumann 2006, Prime-
Sense 2013, Premaratne et al. 2010, Ohn-Bar and
Trivedi 2014b). Yet, these perspectives are closely re-
lated because one can tackle continuous pose estima-
tion using a large number of discrete classes. As such,
we evaluate several discrete classi�ers in our bench-
mark (Muja and Lowe 2014, Rogez et al. 2015a).
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Description Identi�ers bend side elongation
Intermediate and Distal Joints F1:4 ; 2:3 U( � �

2
r ; �

7
r ) 0 0

Proximal-Carpal Joints F1:4 ; 4 U( � �
2

r ; �
7

r ) U( � �
8

r ; �
8

r ) 0
Thumb Metacarpal F5; 4 U(� 1r ; :5r ) U(� :7r ; 1:2r ) U(:8r ; 1:2r )
Thumb Proximal F5; 3 U(� 1r ; � :6r ) U(� :2r ; :5r ) 0

Wrist Articulation P1 U(� 1r ; 1r ) U(� :5r ; :8r ) 0

Table 3 Synthetic hand distribution: We render synthetic hands with joint angles sampled from the above uniform
distributions. bend refers to the natural extension-retraction of the �nger joints. The proximal-carpal, wrist and thumb joints
are additionally capable of side -to- side articulation. We do not consider a third type of articulation, twist , because it would
be extremely painful and result in injury. We model anatomical di�erences by elongating some bones fanning out from a
joint. Additionally, we apply an isotropic global metric scale factor sampled from the range U( 2

3 ; 3
2 ). Finally, we randomize

the camera viewpoint by uniformly sampling tilt, yaw and roll from U(0; 2� ).

Method Approach Model-drv. Data-drv. Detection Implementation FPS
Simulate [28] Tracker (simulation) Yes No Initialization Published 50
NiTE2 [41] Tracker (pose search) No Yes Initialization Public > 60
Particle Swarm Opt. (PSO) [37] Tracker (PSO) Yes No Initialization Public 15
Hough Forest [70] Decision forest Yes Yes Decision forest Ours 12
Random Decision Forest (RDF) [23] Decision forest No Yes - Ours 8
Latent Regression Forest (LRF) [59] Decision forest No Yes - Published 62
DeepJoint [63] Deep network Yes Yes Decision forest Published 25
DeepPrior [33] Deep network No Yes Scanning window Ours 5000
DeepSegment [14] Deep network No Yes Scanning window Ours 5
Intel PXC [21] Morphology (convex detection) No No Heuristic segment Public > 60
Cascades [44] Hierarchical cascades No Yes Scanning window Provided 30
Ego. WS. [45] Multi-class SVM No Yes Whole volume classif. Provided 275
EPM [73] Deformable part model No Yes Scanning window Ours 1=2
Volumetric Exemplars Nearest neighbor (NN) No Yes Scanning volume Ours 1=15

Table 4 Summary of methods: We broadly categorize the pose estimation systems that we evaluate by their overall
approach: decision forests, deep models, trackers, or others. Though we focus on single-frame systems, we also evaluate trackers
by providing them manual initialization. Model-driven methods make use of articulated geometric models at test time, while
data-driven models are trained beforehand on a training set. Many systems begin by detect ing hands with a Hough-transform
or a scanning window/volume search. Finally, we made use of public source code when available, or re- implement ed the system
ourselves, verifying our implementation's accuracy on published benchmarks. `Published' indicates that published performance
results were used for evaluation, while `public' indicates that source code was available, allowing us to evaluate the method on
additional testsets. We report the fastest speeds (in FPS), either reported or our implementation's.

Data-driven versus model-driven: Historic attempts to
estimate hand pose optimized a geometric model to
�t observed data (Delamarre and Faugeras 2001, Bray
et al. 2004, Stenger et al. 2006). Recently, Oikono-
midis et al. (Oikonomidis et al. 2011) demonstrated
hand tracking using GPU accelerated Particle Swarm
Optimization (PSO). However, such optimizations re-
main notoriously di�cult due to local minima in the
objective function. As a result, model driven systems
have historically found their successes mostly limited
to the tracking domain, where initialization constrains
the search space (Sridhar et al. 2013, Melax et al. 2013,
Qian et al. 2014). For single image detection, vari-
ous fast classi�ers and regressors have obtained real-
time speeds (Keskin et al. 2012, Intel 2013, Oberweger
et al. 2015a, Oberweger et al. 2015b, Tang et al. 2015,
Sun et al. 2015, Li et al. 2015, Wan et al. 2016). Most
of the systems we evaluate fall into this category. When
these classi�ers are trained with data synthesized from
a geometric model, they can be seen as e�ciently ap-
proximating model �tting.

Multi-stage pipelines: Systems commonly separate
their work into discrete stages: detecting, posing, re-
�ning and validating hands. Some systems use special
purpose detectors as a \pre-processing" stage (Girard
and Maciejewski 1985, Oikonomidis et al. 2011, Ke-
skin et al. 2012, Cooper 2012, Xu and Cheng 2013,
Intel 2013, Romero et al. 2009, Tompson et al. 2014).
A segmentation pre-processing stage has been histori-
cally popular. Typically, RGB skin classi�cation (Vezh-
nevets et al. 2003) or morphological operations on the
depth image (Premaratne et al. 2010) segment the hand
from the background. Such segmentation allows compu-
tation of Zernike moment (Cooper 2012) or skeletoniza-
tion (Premaratne et al. 2010) features. While RGB
features compliment depth (Rogez et al. 2014, Gupta
et al. 2014), skin segmentation appears di�cult to gen-
eralize across subjects and scenes with varying light-
ing (Qian et al. 2014). We evaluate a depth-based seg-
mentation system (Intel 2013) for completeness. Other
systems use a model for inverse-kinematics/IK (Tomp-
son et al. 2014, Xu and Cheng 2013), geometric re�ne-
ment/validation (Melax et al. 2013, Tang et al. 2015),
or collaborative �ltering (Choi et al. 2015) during a
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\post-processing" stage. For highly precise hand pose
estimation, recent hybrid pipelines compliment data-
driven per-frame reinitialization with model-based re-
�nement (Taylor et al. 2016, Ballan et al. 2012, Sridhar
et al. 2015, Qian et al. 2014, Ye et al. 2016).

4.2 Architectures

In this section, we describe popular architectures for
hand-pose estimation, placing in bold those systems
that we empirically evaluate.

Decision forests: Decision forests constitute a domi-
nant paradigm for estimating hand pose from depth.
Hough Forests (Xu and Cheng 2013) take a two-
stage approach of hand detection followed by pose es-
timation. Random Decision Forests (RDFs) (Ke-
skin et al. 2012) and Latent Regression Forests
(LRFs) (Tang et al. 2014) leave the initial detection
stage unspeci�ed, but both make use of coarse-to-�ne
decision trees that perform rough viewpoint classi�-
cation followed by detailed pose estimation. We ex-
perimented with several detection front-ends for RDFs
and LRFs, �nally selecting the �rst-stage detector from
Hough Forests for its strong performance.

Part model: Pictorial structure models have been pop-
ular in human body pose estimation (Yang and Ra-
manan 2013), but they appear somewhat rarely in the
hand pose estimation literature. For completeness, we
evaluate a deformable part model de�ned on depth im-
age patches (Felzenszwalb et al. 2010). We speci�-
cally train an exemplar part model (EPM) con-
strained to model deformations consistent with 3D ex-
emplars (Zhu et al. 2012).

Deep models:Recent systems have explored using deep
neural nets for hand pose estimation. We consider
three variants in our experiments. DeepJoint (Tomp-
son et al. 2014) uses a three stage pipeline that ini-
tially detects hands with a decision forest, regresses
joint locations with a deep network, and �nally re�nes
joint predictions with inverse kinematics (IK). Deep-
Prior (Oberweger et al. 2015a) is based on a similar
deep network, but does not require an IK stage and
instead relies on the network itself to learn a spatial
prior. DeepSeg (Farabet et al. 2013) takes a pixel-
labeling approach, predicting joint labels for each pixel,
followed by a clustering stage to produce joint locations.
This procedure is reminiscent of pixel-level part classi-
�cation of Kinect (Shotton et al. 2013), but substitutes
a deep network for a decision forest.

4.3 Volumetric exemplars

We propose a nearest-neighbor (NN) baseline for addi-
tional diagnostic analysis. Speci�cally, we convert depth
map measurements into a 3D voxel grid, and simul-
taneously detect and estimate pose by scanning over
this grid with volumetric exemplar templates. We intro-
duce several modi�cations to ensure an e�cient scan-
ning search.

Voxel grid: Depth cameras report depth as a function
of pixel (u; v) coordinates:D (u; v). To construct a voxel
grid, we �rst re-project these image measurements into
3D using known camera intrinsicsf u ; f v .

(x; y; z) =
�

u
f u

D(u; v);
v
f v

D(u; v); D (u; v)
�

(2)

Given a test depth image, we construct a binary voxel
grid V [x; y; z] that is `1' if a depth value is observed at a
quantized (x; y; z) location. To cover the rough viewable
region of a camera, we de�ne a coordinate frame ofM 3

voxels, whereM = 200 and each voxel spans 10mm3.
We similarly convert training examples into volumetric
exemplarsE [x; y; z], but instead use a smallerN 3 grid
of voxels (whereN = 30), consistent with the size of a
hand.

Occlusions: When a depth measurement is observed at
a position (x0; y0; z0) = 1, all voxels behind it are oc-
cluded z > z 0. We de�ne occluded voxels to be `1' for
both the test-time volume V and training exemplar E .

Distance measure: Let Vj be the j th subvolume (of size
N 3) extracted from V, and let E i be the i th exemplar.
We simultaneously detect and estimate pose by com-
puting the best match in terms of Hamming distance:

(i � ; j � ) = argmin
i;j

Dist( E i ; Vj ) where (3)

Dist( E i ; Vj ) =
X

x;y;z

I (E i [x; y; z] 6= Vj [x; y; z]); (4)

such that i � is the best-matching training exemplar and
j � is its detected position.

E�cient search: A naive search over exemplars and
subvolumes is prohibitively slow. But because the un-
derlying features are binary and sparse, there exist con-
siderable opportunities for speedup. We outline two
simple strategies. First, one can eliminate subvolumes
that are empty, fully occluded, or out of the camera's
�eld-of-view. Song et al. (Song and Xiao 2014) refer to
such pruning strategies as \jumping window" searches.
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Fig. 5 Volumetric Hamming
distance: We visualize 3D voxels
corresponding to an exemplar (a)
and subvolume (b). For simplic-
ity, we visualize a 2D slice along
a �xed y-value. Because occluded
voxels are de�ned to be `1' (indi-
cating they are occupied, shown
in blue) the total Hamming dis-
tance is readily computed by the
L1 distance between projections
along the z-axis (c), mathemati-
cally shown in Eq.(5).

Second, one can compute volumetric Hamming dis-
tances with 2D computations:

Dist( E i ; Vj ) =
X

x;y

jei [x; y] � vj [x; y]j where (5)

ei [x; y] =
X

z

E i [x; y; z]; vj [x; y] =
X

z

Vj [x; y; z]:

Intuition for our encoding: Because our 3D volumes
are projections of 2.5D measurements, they can be
sparsely encoded with a 2D array (see Fig. 5). Taken
together, our two simple strategies imply that a 3D vol-
umetric search can be as practically e�cient as a 2D
scanning-window search. For a modest number of ex-
emplars, our implementation still took tens of seconds
per frame, which su�ced for our o�ine analysis. We
posit faster NN algorithms could yield real-time speed
(Moore et al. 2001, Muja and Lowe 2014).

Comparison: Our volumetric exemplar baseline uses
a scanning volume search and 2D depth encodings.
It is useful to contrast this with a \standard" 2D
scanning-window template on depth features (Janoch
et al. 2013). First, our exemplars are de�ned in met-
ric coordinates (Eq. 2). This means that they will not
�re on the small hands of a toy �gurine, unlike a scan-
ning window search over scales. Second, our volumet-
ric search ensures that the depth encoding from a local
window contain features only within a �xed N 3 volume.
This gives it the ability to segment out background clut-
ter, unlike a 2D window (Fig. 6).

5 Protocols

5.1 Evaluation

Reprojection error: Following past work, we evaluate
pose estimation as a regression task that predicts a set
of 3D joint locations (Oikonomidis et al. 2011, Keskin
et al. 2012, Qian et al. 2014, Taylor et al. 2014, Tang

(a) (b)

Fig. 6 Windows v. volumes: 2D scanning windows (a)
versus 3D scanning volumes (b). Volumes can ignore back-
ground clutter that lies outside the 3D scanning volume but
still falls inside its 2D projection. For example, when scoring
the shown hand, a 3D volume will ignore depth measurements
from the shoulder and head, unlike a 2D window.

Fig. 7 Our error criteria: For each predicted hand, we
calculate the average and maximum distance (in mm) be-
tween its skeletal joints and a ground-truth. In our exper-
imental results, we plot the fraction of predictions that lie
within a distance threshold, for various thresholds. This �gure
visually illustrates the misalignment associated with various
thresholds for max error. A 50mm max-error seems visually
consistent with a \roughly correct pose estimation", and a
100mm max-error is consistent with a \correct hand detec-
tion".

et al. 2014). Given a predicted and ground-truth pose,
we compute both the average and max 3D reprojection
error (in mm) across all joints. We use the skeletal joints
de�ned by libhand ( �Sari�c 2011). We then summarize
performance by plotting the proportion of test frames
whose average (or max) error falls below a threshold.

Error thresholds: Much past work considers perfor-
mance at fairly low error thresholds, approaching
10mm (Xu and Cheng 2013, Tang et al. 2014, Tomp-
son et al. 2014). Interestingly, (Oberweger et al. 2015a)
show that established benchmarks such as theICL test-
set include annotation errors of above 10mm in over
a third of their frames. Ambiguities arise from man-
ual labeling of joints versus bones and centroids ver-
sus surface points. We rigorously evaluate human-level
performance through inter-annotator agreement on our
new testset (Fig. 19). Overall, we �nd that max-errors
of 20mm approach the limit of human accuracy for
closeby hands. We present a qualitative visualization of
max error at di�erent thresholds in Fig. 7. 50mm ap-
pears consistent with a roughly correct pose, while an
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Fig. 8 Required precision per discrete pose: Larger
pose vocabularies require more precision. We plot this rela-
tionship by considering the sparsest distribution of N poses.
A max-joint-error precision of 20mm su�ces to perfectly dis-
ambiguate a vocabulary of 100 discrete poses, while 10mm
roughly disambiguates 240 poses. If perfect classi�cation is
not needed, one can enlarge the e�ective vocabulary size.

error within 100mm appears consistent with a correct
detection. Our qualitative analysis is consistent with
empirical studies of human grasp (Bullock et al. 2013)
and gesture communication (Stokoe 2005), which also
suggest that a max-joint di�erence of 50mm di�eren-
tiates common gestures and grasps. But in general,
precision requirements depend greatly on the applica-
tion; So we plot each method's performance across a
broad range of thresholds (Fig. 8). We highlight 50 and
100mm thresholds for additional analysis.

Vocabulary size versus threshold:To better interpret
max-error-thresholds, we ask \for a discrete vocabulary
of N poses, what max-joint-error precision will su�ce?".
Intuitively, larger pose vocabularies require greater pre-
cision. To formalize this notion, we assume the user
always perfectly articulates one ofN poses from a dis-
crete vocabulary � , with j� j = N . Given a �xed vo-
cabulary � , a recognition system needs to be precise
within prec mm to avoid confusing any two poses from
� :

prec < min
� 1 2 �;� 2 2 �

dist(P(� 1) � P(� 2))
2

(6)

where� 1 and � 2 represent two poses in� , P(� ) projects
the pose� 's joints into metric space, and dist gives the
maximum metric distance between the corresponding
joints from each pose. To �nd the minimum precision
required for each N , we construct a maximally dis-
tinguishable vocabulary � by maximizing the value of
prec , subject to the kinematic constraints of libhand.
Finding this most distinguishable pose vocabulary is
an NP-hard problem. So, we take a greedy approach to
optimize a vocabulary � for each vocabulary sizeN .

input : predictions and ground truths for each image
output : a set of errors, one per frame
forall the test images do

P  method's most con�dent prediction;
G  ground truths for the current test image;
if G = ; then

/* Test Image contains zero hands */
if P = ; then

errors  errors [ f 0g;
else

errors  errors [ f1g ;
end

else
/* Test Image contains hand(s) */
if P = ; then

errors  errors [ f1g ;
else

best error  1 ;
/* Find the ground truth best

matching the method's prediction
*/

forall the H 2 G do
/* For mean error plots, replace

maxi with meani */
/* V denotes the set of visible

joints */
current error  max i 2 V jj H i � Pi jj 2 ;
if current error < best error then

best error  current error;
end

end
errors  errors [ f best errorg;

end
end

end
Algorithm 1: Scoring Procedure: For each frame
we compute a max or mean re-projection error for
the ground truth(s) G and prediction(s) P. We later
plot the proportion of frames with an error below a
threshold, for various thresholds.

Detection issues: Reprojection error is hard to de�ne
during detection failures: that is, false positive hand
detections or missed hand detections. Such failures are
likely in cluttered scenes or when considering scenes
containing zero or two hands. If a method produced zero
detections when a hand was present, or produced one
if no hand was present, this was treated as a \maxed-
out" reprojection error (of 1 mm). If two hands were
present, we scored each method against both and took
the minimum error. Though we have released our eval-
uation software, we give pseudocode in Alg. 1.

Missing data: Another challenge with reprojection er-
ror is missing data. First, some methods predict 2D
screen coordinates for joints, not 3D metric coordi-
nates (Premaratne et al. 2010, Intel 2013, Farabet
et al. 2013, Tompson et al. 2014). Approximatingz �
D (u; v), inferring 3d joint positions should be straight-
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RGB Depth LibHand

(a)

(b)

(c)

Fig. 9 Annotation procedure: We annotate until we are
satis�ed that the �tted hand pose matches the RGB and
depth data. The �rst two columns show the image evidence
presented and keypoints received. The right most column
shows the �tted libhand model. The IK solver is able to eas-
ily �t a model to the �ve given keypoints (a), but it doesn't
match the image well. The annotator attempts to correct the
model (b), to better match the image, by labeling the wrist.
Labeling additional �nger joints �nally yields and acceptable
solution (c).

forward with Eq. 2. But, small 2D position errors can
cause signi�cant errors in the approximated depth, es-
pecially around the hand silhouette. To mitigate, we
instead use the centroid depth of a segmented/detected
hand when the measured depth lies outside the seg-
mented volume. Past comparisons appear not to do
this (Oberweger et al. 2015a), somewhat unfairly pe-
nalizing 2D approaches (Tompson et al. 2014). Second,
some methods may predict a subset of joints (Intel 2013,
Premaratne et al. 2010). To ensure a consistent com-
parison, we force such methods to predict the loca-
tions of visible joints with a post-processing inverse-
kinematics (IK) stage (Tompson et al. 2014). We �t
the libhand kinematic model to the predicted joints,
and infer the location of missing ones. Third, ground-
truth joints may be occluded. By convention, we only
evaluate visible joints in our benchmark analysis.

Implementations: We use public code when avail-
able (Oikonomidis et al. 2011, PrimeSense 2013, In-
tel 2013). Some authors responded to our request for
their code (Rogez et al. 2014). When software was
not available, we attempted to re-implement meth-
ods ourselves. We were able to successfully reimple-
ment (Keskin et al. 2012, Xu and Cheng 2013, Ober-
weger et al. 2015a), matching the accuracy on pub-
lished results (Tang et al. 2014, Oberweger et al. 2015a).
In other cases, our in-house implementations did not

su�ce (Tompson et al. 2014, Tang et al. 2014). For
these latter cases, we include published performance
reports, but unfortunately, they are limited to their
own datasets. This partly motivated us to perform a
multi-dataset analysis. In particular, previous bench-
marks have shown that one can still compare algorithms
across datasets using head-to-head matchups (similar
to approaches that rank sports teams which do not di-
rectly compete (Pang and Ling 2013)). We use our NN
baseline to do precisely this. Finally, to spur further
progress,we have made our implementations publicly
available, together with our evaluation code.

5.2 Annotation

We now describe how we collect ground truth anno-
tations. We present the annotator with cropped RGB
and depth images. They then click semantic key-points,
corresponding to speci�c joints, on either the RGB or
depth images. To ease the annotator's task and to get
3D keypoints from 2D clicks we invert the forward
rendering (graphics) hand model provided by libhand
which projects model parameters � to 2D keypoints
P(� ). While they label joints, an inverse kinematic
solver minimizes the distance between the currently an-
notated 2D joint labels, 8j 2 J L j , and those projected
from the libhand model parameters,8j 2 J Pj (� ).

min
�

X

j 2 J

kL j � Pj (� )k2 (7)

The currently �tted libhand model, shown to the an-
notator, updates online as more joints are labeled.
When the annotator indicates satisfaction with the �t-
ted model, we proceed to the next frame. We give an
example of the annotation process in Fig. 9.

Strengths: Our annotation process has several
strengths. First, kinematic constraints prevent some
possible combination of keypoints: so it is often pos-
sible to �t the model by labeling only a subset of key-
points. Second, the �tted model provides annotations
for occluded keypoints. Third and most importantly,
the �tted model provides 3D (x,y,z) keypoint locations
given only 2D (u,v) annotations.

Disagreements: As shown in in Fig. 19, annotators
disagree substantially on the hand pose, in a surpris-
ing number of cases. In applications, such as sign lan-
guage (Stokoe 2005) ambiguous poses are typically
avoided. We believe it is important to acknowledge that,
in general, it may not be possible to achieve full preci-
sion. For our proposed test set (with an average hand
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Fig. 10 Annotator disagreements: With whom do you agree? We show two frames where annotators disagree. The top
two rows show the RGB and depth images with annotated keypoints. The bottom row shows the libhand model �t to those
annotations. In Frame A , is the thumb upright or tucked underneath the �ngers? In Frame B , is the thumb or pinky occluded?
Long-range (low resolution) makes this important case hard to decide, In one author's opinion, annotator 1 is more consistent
with RGB evidence while annotator 2 is more consistent with depth evidence (we always present annotators with both).

distance of 1100mm), we encountered an average an-
notation disagreement of about 20mm. For only nearby
hands (� 750mm from the camera, with an average dis-
tance of 550mm) we encountered an average annotation
disagreement of about 10mm. The ICL dataset (Tang
et al. 2014) exhibits similar annotation inconsistencies
at similar ranges (Oberweger et al. 2015a). For hands
at an average distance 235mm from the camera, (Ober-
weger et al. 2016) reduced annotation disagreements to
approximately 4mm. This suggests that distance (which
is inversely proportional to resolution) directly relates
to annotation accuracy. Fig. 10 illustrates two examples
of annotator disagreement on our test set.

6 Results

We now report our experimental results, comparing
datasets and methods. We �rst address the \state
of the problem": what aspects of the problem have
been solved, and what remain open research questions?
Fig. 11 qualitatively characterizes our results. We con-
clude by discussing the speci�c lessons we learned and
suggesting directions for future systems.

Mostly-solved (distinct poses): Fig. 12 shows that
coarse hand pose estimation is viable on datasets of
uncluttered scenes where hands face the camera (i.e.
ICL). Deep models, decision forests, and NN all perform
quite well, both in terms of articulated pose estimation
(85% of frames are within 50mm max-error) and hand
detection (100% are within 100mm max-error). Surpris-

ingly, NN outperforms decision forests by a bit. How-
ever, when NN is trained on other datasets with larger
pose variation, performance is considerably worse. This
suggests that the test poses remarkably resemble the
training poses. Novel poses (those not seen in training
data) account for most of the remaining failures. More
training data (perhaps user-speci�c) or better model
generalization should correct these. Yet, this may be
reasonable for applications targeting su�ciently dis-
tinct poses from a small and �nite vocabulary (e.g., a
gaming interface). These results suggest thatthe state-
of-the-art can accurately predict distinct poses(i.e. 50
mm apart) in uncluttered scenes.

Major progress (unconstrained poses): The NYU test-
set still considers isolated hands, but includes a wider
range of poses, viewpoints, and subjects compared to
ICL (see Fig. 2). Fig. 20 reveals that deep models per-
form the best for both articulated pose estimation (96%
accuracy) and hand detection (100% accuracy). While
decision forests struggle with the added variation in
pose and viewpoint, NN still does quite well. In fact,
when measured with average (rather than max) er-
ror, NN nearly matches the performance of (Tompson
et al. 2014). This suggests that exemplars get most, but
not all �ngers, correct (see Fig. 13 andcf. Fig. 11 (c,ii )
vs. (d,ii )). Overall, we see noticeable progress on uncon-
strained pose estimation since 2007(Erol et al. 2007).

Unsolved (low-res, objects, occlusions, clutter):When
considering our testset (Fig. 19) with distant (low-
res) hands and background clutter consisting of ob-
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(i ) ICL Test [59] ( ii ) NYU Test [63] ( iii ) UCI-EGO Test [44] ( iv ) Ours Test
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Fig. 11 Characteristic results: The PSO (Oikonomidis et al. 2011) tracker tends to miss individually extended �ngers, in
this case the pinky (a, i ), due to local minima. Faces are common distractors for all methods. But, the PSO tracker in particular
never recovers once it locks onto a face. The �rst-stage Hough forest (Xu and Cheng 2013) detector can recover from failures.
But, the trees vote independently for global orientation and location using only local patch evidence. This local evidence seems
insu�cient to di�erentiate hands from elbows (b, ii ) and other hand sized clutter (b, iv ). The second-stage Hough (Xu and
Cheng 2013) forests typically provide poorer �nger-tip localization deeper inside the hand silhouette; here (b, i ) they confuse
the ring and middle �nger because without global context the local votes are noisy and unspeci�c. NN exemplars most often
succeeded in localizing the hand while the deep model (Oberweger et al. 2015a) more accurately estimated precise hand pose.
See Sec. 6 for further discussion.

jects or interacting surfaces (Fig. 14), results are sig-
ni�cantly worse. Note that many applications (Shot-
ton et al. 2013) often demand hands to lie at distances
greater than 750mm. For such scenes, hand detection
is still a challenge. Scanning window approaches (such
as our NN baseline) tend to outperform multistage
pipelines (Keskin et al. 2012, Farabet et al. 2013), which
may make an unrecoverable error in the �rst (detec-
tion and segmentation) stage. We show some illustra-
tive examples in Fig. 15. Yet, overall performance is
still lacking, particularly when compared to human per-
formance. Notably, human (annotator) accuracy also
degrades for low-resolution hands far away from the
camera (Fig. 19). This annotation uncertainty (\Hu-
man" in Fig. 19) makes it di�cult to compare meth-
ods for highly precise pose estimation. As hand pose
estimation systems become more precise, future work

must make test data annotation more precise (Ober-
weger et al. 2016). Our results suggest thatscenes of
in-the-wild hand activity are still beyond the reach of
the state-of-the-art.

Unsolved (Egocentric): The egocentric setting com-
monly presents (Fig. 17) the same problems discussed
before, with the exception of low-res. While egocentric
images do not necessarily contain clutter, most data
in this area targets applications with signi�cant clut-
ter (see Fig. 16). And, in some sense, egocentric views
make hand detection fundamentally harder. We can-
not merely assume that the nearest pixel in the depth
image corresponds to the hand, as we can with many
3rd person gesture test sets. In fact, theforearm often
provides the primary salient feature. In Fig. 11 (c-d,iii )
both the deep and the 1-NN models need the arm to
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ICL Test Set [59]

NN-Ego NN-NYU
NN-ICL NN-libhand
Hough [70] RDF [23] Simulation [28] DeepPrior [33]
LRF [59]

Fig. 12 We plot results for several systems on the ICL test-
set using max-error (top) and average-error (bottom). Except
for 1-NN, all systems are trained on the corresponding train
set (in this case ICL-Train). To examine cross-dataset gen-
eralization, we also plot the performance of our NN-baseline
constructed using alternate sets (NYU, EGO, and libhand).
When trained with ICL, NN performs as well or better than
prior art. One can �nd near-perfect pose matches in the train-
ing set (see Fig. 1). Please see text for further discussion.

Fig. 13 Min vs max error: Compared to state-of-the-
art, our 1-NN baseline often does relatively better under the
average-error criterion than under the max-error criterion.
When it can �nd (nearly) an exact match between training
and test data (left) it obtains very low error. However, it does
not generalize well to unseen poses (right). When presented
with a new pose it will often place some �ngers perfectly but
others totally wrong. The result is a reasonable mean error
but a high max error.

Fig. 14 Complex backgrounds: Most existing systems,
including our own 1-NN baseline, fail when challenged with
complex backgrounds which cannot be trivially segmented.
These backgrounds signi�cantly alter the features extracted
and processed and thus prevent even the best models from
producing sensible output.

(a) Latent Hough detection (c) per-pixel classi�cation

(b) Hough orientation failure (d) hard segmentation

Fig. 15 Risks of multi-phase approaches: Many ap-
proaches to hand pose estimation divide into three phases:
(1) detect and segment (2) estimate pose (3) validate or re-
�ne (Keskin et al. 2012, Intel 2013, Xu and Cheng 2013,
Tompson et al. 2014, Tang et al. 2014). However, when an
earlier stage fails, the later stages are often unable to recover.
When detection and segmentation are non-trivial, this be-
comes to root cause of many failures. For example, Hough
forests (Xu and Cheng 2013) (a) �rst estimate the hand's
location and orientation. They then convert to a cardinal
translation and rotation before estimating joint locations. (b)
When this �rst stage fails, the second stage cannot recover.
(c) Other methods assume that segmentation is solved (Ke-
skin et al. 2012, Farabet et al. 2013), (d) when background
clutter is inadvertently included by the hand segmenter, the
�nger pose estimator is prone to spurious outputs.

estimate the hand position. But, 1-NN wrongly pre-
dicts that the palm faces downwards, not towards the
co�ee maker. With such heavy occlusion and clutter,
these errors are not surprising. The deep model's de-
tector (Tompson et al. 2014, Oberweger et al. 2015a)
proved less robust in the egocentric setting. Perhaps it
developed sensitivity to changes in noise patterns, be-
tween the synthetic training and real test datasets. But,
the NN and deep detectors wrongly assume translation-
invariance for egocentric hands. Hand appearance and
position are linked by perspective e�ects coupled with
the kinematic constraints imposed by the arm. As a re-
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Fig. 16 Egocentric versus 3rd Person Challenges: A
robust hand-pose estimator must contend with isolated hands
in free space , frames with no hands visible, and hands
grasping objects in cluttered scenes. Uniformly sampling
frames from the test data in Table 1 we show the distribu-
tion of challenges for both Egocentric (UCI-EGO and CVAR-
EGO) and 3rd person test sets. Empirically, egocentric data
contains more object manipulation and occlusion. In general,
egocentric datasets target applications which involve signif-
icant clutter(Rogez et al. 2015a, Li and Kitani 2013, Fathi
et al. 2011, Rogez et al. 2015b). While, 3rd person test sets
historically focus on gesture recognition, involving less clut-
ter.

Table 5 Cross-dataset generalization: We compare
training and test sets using a 1-NN classi�er. Diagonal en-
tries represent the performance using corresponding train and
test sets. In each grid entry, we denote the percentage of test
frames that are correct (50mm max-error, above, and 50mm
average-error, below) and visualize the median error using the
colored overlays from Fig. 7. We account for sensor speci�c
noise artifacts using established techniques (Camplani and
Salgado 2012). Please refer to the text for more details.

sult, an egocentric-speci�c whole volume classi�cation
model (Rogez et al. 2015a) outperformed both.

Training data: We use our NN-baseline to analyze the
e�ect of training data in Table 5. Our NN model per-
formed better using the NYU training set (Tompson
et al. 2014) (consisting of real data automatically la-
beled with a geometrically-�t 3D CAD model) than
with the libhand training set. While enlarging the syn-
thetic training set increases performance (Fig. 18), com-
putation fast becomes intractable. This reects the
di�culty in using synthetic data: one must carefully
model priors (Oberweger et al. 2015a), sensor noise,
(Gupta et al. 2014) and hand shape variations between

UCI-EGO Test Dataset [44]

NN-Ego NN-NYU
NN-ICL NN-libhand
Hough [70] RDF [23] DeepPrior [33] PXC [21]
Cascades [44] Ego. WS. [45]

Fig. 17 For egocentric data, methods that classify the global
scene (Rogez et al. 2015a) tend to outperform local scanning-
window based approaches (including both deep and NN de-
tectors). Rogez at al (Rogez et al. 2015a) make the argument
that kinematic constrains from the arm imply that the loca-
tion of the hand (in an egocentric coordinate frame) e�ects its
local orientation and appearance, which in turn implies that
recognition should not be translation-invariant. Still overall,
performance is considerably worse than on other datasets.
Egocentric scenes contain more background clutter and ob-
ject/surface interactions, making even hand detection chal-
lenging for most methods.

Fig. 18 Synthetic data vs. accuracy : Synthetic training
set size impacts performance on our test testset. Performance
grows logarithmically with the dataset size. Synthesis is the-
oretically unlimited, but practically becomes unattractively
slow.
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users (Taylor et al. 2014, Khamis et al. 2015). In Fig. 21
we explore the impact of each of these factors to un-
cover two salient conclusions: First, training with the
test-time user's hand geometry (user-speci�c training
data) showed modestly better performance, suggesting
that results may be optimistic when using the same
subjects for training and testing. Second, for synthetic
hand data, modeling the pose-prior (i.e., choosing likely
poses to synthesize) overshadows other considerations.
Finally, in some cases, the variation in the performance
of NN (dependent on the particular training set) ex-
ceeded the variation between model architectures (de-
cision forests versus deep models) - Fig. 12. Our results
suggest the diversity and realism of thetraining set is
as important as the model learned from it.

Surprising NN performance: Overall, our 1-NN base-
line proved to be surprisingly potent, outperforming or
matching the performance of most prior systems. This
holds true even for moderately-sized training sets with
tens of thousands of examples (Tompson et al. 2014,
Tang et al. 2014), suggesting that simple memorization
outperforms much prior work. To demonstrate gener-
alization, future work on learning based methods will
likely bene�t from more and better training data. One
contribution of our analysis is the notion that NN-
exemplars provides a vital baseline for understanding
the behavior of a proposed system in relation to its train-
ing set.

NN vs Deep models:In fact, DeepJoint (Tompson
et al. 2014) and DeepPrior (Oberweger et al. 2015a)
were the sole approaches to signi�cantly outperform 1-
NN (Figs. 12 and 20). This indicates that deep architec-
tures generalize well to novel test poses. Yet, the deep-
model (Oberweger et al. 2015a) did show greater sensi-
tivity to objects and clutter than the 1-NN model. We
see this qualitatively in Fig. 11 (c-d,iii -iv ) and quanti-
tatively in Figs. 19 and 17. But, we can understand the
deep-model's failures: we did not train it with clutter,
so it \generalizes" that the bottle and hand are a single
large hand. This may contrast with existing folk wis-
dom about deep models: that the need for large train-
ing sets suggests that these models essentially memo-
rize. Our results indicate otherwise. Finally, the deep-
model performed worse on more distant hands; this is
understandable because it requires a larger canonical
template (128x128) than the 1-NN model (30x30).

Conclusion: The past several years have shown tremen-
dous progress regarding hand pose: training sets, test-
ing sets, and models. Some applications, such as gam-
ing interfaces and sign-language recognition, appear to

be well-within reach for current systems. Less than a
decade ago, this was not true (Erol et al. 2007, Pre-
maratne et al. 2010, Cooper 2012). Thus, we have made
progress! But, challenges remain nonetheless. Speci�-
cally, when segmentation is hard due to active hands
or clutter, many existing methods fail. To illustrate
these realistic challenges we introduce a novel testset.
We demonstrate that realism and diversity in training
sets is crucial, and can be as important as the choice of
model architecture. Thus, future work should investi-
gate building large, realistic, and diverse training sets.
In terms of model architecture, we perform a broad
benchmark evaluation and �nd that deep models ap-
pear particularly well-suited for pose estimation. Fi-
nally, we demonstrate that NN using volumetric ex-
emplars provides a startlingly potent baseline, provid-
ing an additional tool for analyzing both methods and
datasets.

Acknowledgement: National Science Founda-
tion Grant 0954083, O�ce of Naval Research-MURI
Grant N00014-10-1-0933, and the Intel Science and
Technology Center - Visual Computing supported
JS&DR. The European Commission FP7 Marie
Curie IOF grant \Egovision4Health" (PIOF-GA-2012-
328288) supported GR.

References

1. Ballan, L., Taneja, A., Gall, J., Gool, L. J. V., and
Pollefeys, M. (2012). Motion capture of hands in ac-
tion using discriminative salient points. In ECCV (6) .
7

2. Bray, M., Koller-Meier, E., M•uller, P., Van Gool, L.,
and Schraudolph, N. N. (2004). 3D hand tracking
by rapid stochastic gradient descent using a skinning
model. In 1st European Conference on Visual Media
Production (CVMP) . 3, 6

3. Bullock, I. M., Member, S., Zheng, J. Z., Rosa, S.
D. L., Guertler, C., and Dollar, A. M. (2013). Grasp
Frequency and Usage in Daily Household and Ma-
chine Shop Tasks. Haptics, IEEE Transactions on.
9

4. Camplani, M. and Salgado, L. (2012). E�cient
spatio-temporal hole �lling strategy for kinect depth
maps. In Proceedings of SPIE. 14

5. Castellini, C., Tommasi, T., Noceti, N., Odone, F.,
and Caputo, B. (2011). Using object a�ordances to
improve object recognition. Autonomous Mental De-
velopment, IEEE Transactions on. 5

6. Choi, C., Sinha, A., Hee Choi, J., Jang, S., and Ra-
mani, K. (2015). A collaborative �ltering approach to
real-time hand pose estimation. InProceedings of the



16 James Steven Supan�ci�c III et al.

Our Test Dataset - All Hands

Our Test Dataset - Near Hands ( � 750mm)

NN-Ego NN-NYU Human DeepPrior [33] NiTE2 [41] PSO [37]
NN-ICL NN-libhand EPM [73] DeepSeg [14] RDF [23] PXC [21]
Hough [70] Cascades [44]

Fig. 19 We designed our dataset to address the remaining challenges of in \in-the-wild" hand pose estimation, including
scenes with low-res hands, clutter, object/surface interactions, and occlusions. We plot human-level performance (as measured
through inter-annotator agreement) in black. On nearby hands (within 750mm, as commonly assumed in prior work) our
annotation quality is similar to existing testsets such as ICL (Oberweger et al. 2015a). This is impressive given that our testset
includes comparatively more ambiguous poses (see Sec. 5.2). Our dataset includes far away hands, for which even humans
struggle to accurately label. Moreoever, several methods (Cascades,PXC,NiTE2,PSO) fail to correctly localize any hand at any
distance, though the mean-error plots are more forgiving than the max-error above. In general, NN-exemplars and DeepPrior
perform the best, correctly estimating pose on 75% of frames with nearby hands.

IEEE International Conference on Computer Vision,
pages 2336{2344. 6

7. Cooper, H. (2012). Sign Language Recognition us-
ing Sub-Units. The Journal of Machine Learning Re-
search. 6, 15

8. D. Tang, T. Y. and Kim, T.-K. (2013). Real-time ar-
ticulated hand pose estimation using semi-supervised
transductive regression forests. InInternational Con-
ference on Computer Vision (ICCV). 1, 3, 4

9. Delamarre, Q. and Faugeras, O. (2001). 3D Artic-
ulated Models and Multiview Tracking with Physical
Forces. Computer Vision and Image Understanding.
3, 6

10. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K.,
and Fei-Fei, L. (2009). Imagenet: A large-scale hi-

erarchical image database. InComputer Vision and
Pattern Recognition (CVPR) . IEEE. 1

11. Dollar, P., Wojek, C., Schiele, B., and Perona, P.
(2012). Pedestrian detection: An evaluation of the
state of the art. Pattern Analysis and Machine Intel-
ligence, IEEE Transactions on. 2

12. Erol, A., Bebis, G., Nicolescu, M., Boyle, R. D.,
and Twombly, X. (2007). Vision-based hand pose
estimation: A review. Computer Vision and Image
Understanding. 2, 11, 15

13. Everingham, M., Van Gool, L., Williams, C. K.,
Winn, J., and Zisserman, A. (2010). The PASCAL
visual object classes (VOC) challenge.International
journal of computer vision. 1, 2



Depth-based hand pose estimation: methods, data, and challenges 17

NYU Test Dataset [63]

NN-Ego NN-NYU
NN-ICL NN-libhand
Hough [70] RDF [23] DeepJoint [63] DeepPrior [33]

Fig. 20 Deep models (Tompson et al. 2014, Oberweger
et al. 2015a) perform noticeably better than other systems,
and appear to solve both articulated pose estimation and
hand detection for uncluttered single-user scenes (common
in the NYU testset). However, the other systems compare
more favorably under average error. In Fig. 13, we interpret
this disconnect by using 1-NN to show that each test hand
commonly matches a training example in all but one �nger.
Please see text for further discussion.

14. Farabet, C., Couprie, C., Najman, L., and LeCun,
Y. (2013). Learning hierarchical features for scene
labeling. Pattern Analysis and Machine Intelligence,
IEEE Transactions on. 6, 7, 9, 12, 13, 16

15. Fathi, A., Ren, X., and Rehg, J. M. (2011). Learn-
ing to recognize objects in egocentric activities. In
Computer Vision and Pattern Recognition (CVPR),
2011 IEEE Conference On, pages 3281{3288. IEEE.
14

16. Fei-Fei, L., Fergus, R., and Perona, P. (2007).
Learning generative visual models from few training
examples: An incremental Bayesian approach tested
on 101 object categories.Computer Vision and Image
Understanding. 1

Synthetic Training - NYU Test [63]

Real training data Synth: real-poses
Synth: generic geometry Synth: sensor-noise
Synth: user speci�c Synth: 3d augmentation

Fig. 21 Challenges of synthetic data: We investigate
possible causes for our synthetic training data's lackluster
performance. To do so, we synthesize a variety of training
sets for a deep model (Oberweger et al. 2015a) and test on
the NYU test set. Clearly, real training data (blue) outper-
forms our generic synthetic training set (cyan), as described
in Sec. 3.1). By �tting our synthesis model's geometry to
the test-time users we obtain a modest gain (red). However,
the largest gain by far comes from synthesizing training data
using only \realistic" poses, matching those from the NYU
training set. By additionally modeling sensor noise (Gupta
et al. 2014) we obtain the magenta curve. Finally, we almost
match the real training data (yellow vs. blue) by augmenting
our synthetic models of real-poses with out-of-plane rotations
and foreshortening.

17. Feix, T., Romero, J., Ek, C. H., Schmiedmayer,
H., and Kragic, D. (2013). A Metric for Comparing
the Anthropomorphic Motion Capability of Arti�cial
Hands. Robotics, IEEE Transactions on. 5

18. Felzenszwalb, P. F., Girshick, R. B., McAllester,
D., and Ramanan, D. (2010). Object detection with
discriminatively trained part-based models. Pattern
Analysis and Machine Intelligence, IEEE Transac-
tions on. 7



18 James Steven Supan�ci�c III et al.

19. Girard, M. and Maciejewski, A. A. (1985). Com-
putational Modeling for the Computer Animation of
Legged Figures.ACM SIGGRAPH Computer Graph-
ics. 6

20. Gupta, S., Girshick, R., Arbel�aez, P., and Malik, J.
(2014). Learning rich features from RGB-D images
for object detection and segmentation. In European
Conference on Computer Vision (ECCV). Springer.
6, 14, 17

21. Intel (2013). Perceptual computing SDK. 5, 6, 9,
10, 13, 14, 16

22. Janoch, A., Karayev, S., Jia, Y., Barron, J. T.,
Fritz, M., Saenko, K., and Darrell, T. (2013). A
category-level 3d object dataset: Putting the kinect
to work. In Consumer Depth Cameras for Computer
Vision. Springer London. 8

23. Keskin, C., K�ra�c, F., Kara, Y. E., and Akarun,
L. (2012). Hand pose estimation and hand shape
classi�cation using multi-layered randomized decision
forests. In European Conference on Computer Vision
(ECCV) . 1, 5, 6, 7, 8, 10, 12, 13, 14, 16, 17

24. Khamis, S., Taylor, J., Shotton, J., Keskin, C.,
Izadi, S., and Fitzgibbon, A. (2015). Learning an ef-
�cient model of hand shape variation from depth im-
ages. InProceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 2540{
2548. 15

25. Li, C. and Kitani, K. M. (2013). Pixel-Level Hand
Detection in Ego-centric Videos. Computer Vision
and Pattern Recognition (CVPR) . 1, 14

26. Li, P., Ling, H., Li, X., and Liao, C. (2015). 3d
hand pose estimation using randomized decision for-
est with segmentation index points. In Proceedings
of the IEEE International Conference on Computer
Vision, pages 819{827. 6

27. Martin, D. R., Fowlkes, C. C., and Malik, J. (2004).
Learning to detect natural image boundaries using lo-
cal brightness, color, and texture cues.Pattern Analy-
sis and Machine Intelligence, IEEE Transactions on.
2

28. Melax, S., Keselman, L., and Orsten, S. (2013). Dy-
namics based 3D skeletal hand tracking.Proceedings
of the ACM SIGGRAPH Symposium on Interactive
3D Graphics and Games - I3D '13. 1, 6, 13

29. Mo, Z. and Neumann, U. (2006). Real-time hand
pose recognition using low-resolution depth images.
In Computer Vision and Pattern Recognition, 2006
IEEE Computer Society Conference on, volume 2,
pages 1499{1505. IEEE. 5

30. Moore, A. W., Connolly, A. J., Genovese, C., Gray,
A., Grone, L., Kanidoris II, N., Nichol, R. C., Schnei-
der, J., Szalay, A. S., Szapudi, I., et al. (2001). Fast
algorithms and e�cient statistics: N-point correlation

functions. In Mining the Sky. Springer. 8
31. Muja, M. and Lowe, D. G. (2014). Scalable Near-

est Neighbor Algorithms for High Dimensional Data.
Pattern Analysis and Machine Intelligence, IEEE
Transactions on. 5, 8

32. Oberweger, M., Riegler, G., Wohlhart, P., and Lep-
etit, V. (2016). E�ciently creating 3d training data
for �ne hand pose estimation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, pages 4957{4965. 2, 3, 4, 11, 12

33. Oberweger, M., Wohlhart, P., and Lepetit, V.
(2015a). Hands Deep in Deep Learning for Hand
Pose Estimation. Computer Vision Winter Workshop
(CVWW) . 1, 3, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17

34. Oberweger, M., Wohlhart, P., and Lepetit, V.
(2015b). Training a feedback loop for hand pose es-
timation. In Proceedings of the IEEE International
Conference on Computer Vision, pages 3316{3324. 6

35. Ohn-Bar, E. and Trivedi, M. M. (2014a). Hand
Gesture Recognition in Real Time for Automotive
Interfaces: A Multimodal Vision-Based Approach
and Evaluations. Intelligent Transportation Systems,
IEEE Transactions on. 1, 2, 3

36. Ohn-Bar, E. and Trivedi, M. M. (2014b). Hand ges-
ture recognition in real time for automotive interfaces:
A multimodal vision-based approach and evaluations.
IEEE transactions on intelligent transportation sys-
tems, 15(6):2368{2377. 5

37. Oikonomidis, I., Kyriazis, N., and Argyros, A.
(2011). E�cient model-based 3D tracking of hand
articulations using kinect. In British Machine Vision
Conference (BMVC). 2, 3, 5, 6, 8, 10, 12, 16

38. Pang, Y. and Ling, H. (2013). Finding the Best
from the Second Bests - Inhibiting Subjective Bias in
Evaluation of Visual Tracking Algorithms. Interna-
tional Conference on Computer Vision (ICCV) . 1,
10

39. Pieropan, A., Salvi, G., Pauwels, K., and Kjell-
strom, H. (2014). Audio-visual classi�cation and de-
tection of human manipulation actions. In Interna-
tional Conference on Intelligent Robots and Systems
(IROS) . 2, 3

40. Premaratne, P., Nguyen, Q., and Premaratne, M.
(2010). Human computer interaction using hand ges-
tures. Springer. 5, 6, 9, 10, 15

41. PrimeSense (2013). Nite2 middleware. Version 2.2.
5, 6, 10, 16

42. Qian, C., Sun, X., Wei, Y., Tang, X., and Sun,
J. (2014). Realtime and robust hand tracking from
depth. In Computer Vision and Pattern Recognition
(CVPR) . 1, 2, 3, 4, 5, 6, 7, 8

43. Ren, Z., Yuan, J., and Zhang, Z. (2011). Ro-
bust hand gesture recognition based on �nger-earth



Depth-based hand pose estimation: methods, data, and challenges 19

mover's distance with a commodity depth camera. In
Proceedings of the 19th ACM international conference
on Multimedia. ACM. 1

44. Rogez, G., Khademi, M., Supancic, III, J., Montiel,
J. M. M., and Ramanan, D. (2014). 3D hand pose
detection in egocentric RGB-D images. CDC4CV
Workshop, European Conference on Computer Vision
(ECCV) . 2, 3, 4, 5, 6, 10, 12, 14, 16

45. Rogez, G., Supancic, III, J., and Ramanan, D.
(2015a). First-person pose recognition using egocen-
tric workspaces. In Computer Vision and Pattern
Recognition (CVPR) . 5, 6, 14

46. Rogez, G., Supancic, J. S., and Ramanan, D.
(2015b). Understanding everyday hands in action
from rgb-d images. In Proceedings of the IEEE In-
ternational Conference on Computer Vision, pages
3889{3897. 14

47. Romero, J., Kjellstr, H., and Kragic, D. (2009).
Monocular Real-Time 3D Articulated Hand Pose Es-
timation. Humanoid Robots, International Confer-
ence on. 6

48. Russakovsky, O., Deng, J., Huang, Z., Berg, A. C.,
and Fei-Fei, L. (2013). Detecting avocados to zuc-
chinis: what have we done, and where are we go-
ing? In International Conference on Computer Vision
(ICCV) . IEEE. 2

49. Scharstein, D. (2002). A Taxonomy and Evaluation
of Dense Two-Frame Stereo.International journal of
computer vision. 2

50. Shakhnarovich, G., Viola, P., and Darrell, T.
(2003). Fast pose estimation with parameter-sensitive
hashing. In International Conference on Computer
Vision (ICCV) . IEEE. 2

51. Sharp, T., Keskin, C., Robertson, D., Taylor, J.,
Shotton, J., Kim, D., Rhemann, C., Leichter, I., Vin-
nikov, A., Wei, Y., Freedman, D., Kohli, P., Krupka,
E., Fitzgibbon, A., and Izadi, S. (2015). Accu-
rate, robust, and exible real-time hand tracking. In
Computer-Human Interaction, ACM Conference on.
2, 4

52. Shotton, J., Sharp, T., Kipman, A., Fitzgibbon, A.,
Finocchio, M., Blake, A., Cook, M., and Moore, R.
(2013). Real-time human pose recognition in parts
from single depth images. Communications of the
ACM. 7, 12

53. Song, S. and Xiao, J. (2014). Sliding Shapes for 3D
Object Detection in Depth Images. European Confer-
ence on Computer Vision (ECCV). 2, 7

54. Sridhar, S., Mueller, F., Oulasvirta, A., and
Theobalt, C. (2015). Fast and robust hand track-
ing using detection-guided optimization. In Computer
Vision and Pattern Recognition (CVPR) . 1, 4, 7

55. Sridhar, S., Oulasvirta, A., and Theobalt, C.
(2013). Interactive Markerless Articulated Hand Mo-
tion Tracking Using RGB and Depth Data. Interna-
tional Conference on Computer Vision (ICCV) . 2, 3,
5, 6

56. Stenger, B., Thayananthan, A., Torr, P. H. S., and
Cipolla, R. (2006). Model-based hand tracking using
a hierarchical Bayesian �lter. Pattern Analysis and
Machine Intelligence, IEEE transactions on. 6

57. Stokoe, W. C. (2005). Sign language structure: An
outline of the visual communication systems of the
american deaf. Journal of deaf studies and deaf edu-
cation. 9, 10

58. Sun, X., Wei, Y., Liang, S., Tang, X., and Sun, J.
(2015). Cascaded hand pose regression. InProceed-
ings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 824{832. 2, 6

59. Tang, D., Chang, H. J., Tejani, A., and Kim, T.-K.
(2014). Latent regression forest: Structured estima-
tion of 3D articulated hand posture. Computer Vision
and Pattern Recognition (CVPR) . 1, 2, 3, 4, 6, 7, 8,
10, 11, 12, 13, 15

60. Tang, D., Taylor, J., Kohli, P., Keskin, C., Kim,
T.-K., and Shotton, J. (2015). Opening the black
box: Hierarchical sampling optimization for estimat-
ing human hand pose. In Proceedings of the IEEE
International Conference on Computer Vision, pages
3325{3333. 6

61. Taylor, J., Bordeaux, L., Cashman, T., Corish, B.,
Keskin, C., Sharp, T., Soto, E., Sweeney, D., Valentin,
J., Lu�, B., et al. (2016). E�cient and precise inter-
active hand tracking through joint, continuous opti-
mization of pose and correspondences.ACM Trans-
actions on Graphics (TOG), 35(4):143. 7

62. Taylor, J., Stebbing, R., Ramakrishna, V., Keskin,
C., Shotton, J., Izadi, S., Hertzmann, A., and Fitzgib-
bon, A. (2014). User-speci�c hand modeling from
monocular depth sequences. InComputer Vision and
Pattern Recognition (CVPR) . IEEE. 8, 15

63. Tompson, J., Stein, M., Lecun, Y., and Perlin, K.
(2014). Real-time continuous pose recovery of human
hands using convolutional networks.Graphics, ACM
Transactions on. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 17

64. Torralba, A. and Efros, A. A. (2011). Unbiased
look at dataset bias. In Computer Vision and Pattern
Recognition (CVPR) . IEEE. 2, 3

65. Tzionas, D., Srikantha, A., Aponte, P., and Gall, J.
(2014). Capturing hand motion with an RGB-D sen-
sor, fusing a generative model with salient points. In
German Conference on Pattern Recognition (GCPR),
Lecture Notes in Computer Science. Springer. 2



20 James Steven Supan�ci�c III et al.

66. Vezhnevets, V., Sazonov, V., and Andreeva, A.
(2003). A survey on pixel-based skin color detection
techniques. In Proc. Graphicon. Moscow, Russia. 6

67. �Sari�c, M. (2011). Libhand: A library for hand ar-
ticulation. Version 0.9. 4, 5, 8

68. Wan, C., Yao, A., and Van Gool, L. (2016). Hand
pose estimation from local surface normals. InEuro-
pean Conference on Computer Vision, pages 554{569.
Springer. 6

69. Wetzler, A., Slossberg, R., and Kimmel, R. (2015).
Rule of thumb: Deep derotation for improved �nger-
tip detection. In British Machine Vision Conference
(BMVC) . BMVA Press. 2, 4

70. Xu, C. and Cheng, L. (2013). E�cient Hand Pose
Estimation from a Single Depth Image. International
Conference on Computer Vision (ICCV). 1, 2, 3, 4,
6, 7, 8, 10, 12, 13, 14, 16, 17

71. Yang, Y. and Ramanan, D. (2013). Articulated
pose estimation with exible mixtures-of-parts. Pat-
tern Analysis and Machine Intelligence, IEEE Trans-
actions on. 7

72. Ye, Q., Yuan, S., and Kim, T.-K. (2016). Spatial
attention deep net with partial pso for hierarchical
hybrid hand pose estimation. In European Conference
on Computer Vision, pages 346{361. Springer. 7

73. Zhu, X., Vondrick, C., Ramanan, D., and Fowlkes,
C. (2012). Do we need more training data or bet-
ter models for object detection?. InBritish Machine
Vision Conference (BMVC) . 6, 7, 16


	1 Introduction
	2 Testing Data

