L. Ballan, A. Taneja, J. Gall, L. J. Gool, and M. Pollefeys, Motion Capture of Hands in Action Using Discriminative Salient Points, 2012.
DOI : 10.1007/978-3-642-33783-3_46

M. Bray, E. Koller-meier, P. Müller, L. Van-gool, and N. N. Schraudolph, 3D hand tracking by rapid stochastic gradient descent using a skinning model, 1st European Conference on Visual Media Production (CVMP), p.6, 2004.

I. M. Bullock, S. Member, J. Z. Zheng, S. D. Rosa, C. Guertler et al., Grasp Frequency and Usage in Daily Household and Machine Shop Tasks, IEEE Transactions on Haptics, vol.6, issue.3, 2013.
DOI : 10.1109/TOH.2013.6

M. Camplani and L. Salgado, Efficient spatio-temporal hole filling strategy for Kinect depth maps, Three-Dimensional Image Processing (3DIP) and Applications II, p.14, 2012.
DOI : 10.1117/12.911909

C. Castellini, T. Tommasi, N. Noceti, F. Odone, and B. Caputo, Using object affordances to improve object recognition. Autonomous Mental Development, IEEE Transactions, issue.5, 2011.

C. Choi, A. Sinha, H. Choi, J. Jang, S. et al., A collaborative filtering approach to real-time hand pose estimation Computational Modeling for the Computer Animation of Legged Figures, Proceedings of the 19, 1985.

S. Gupta, R. Girshick, P. Arbeláez, M. , and J. , Learning Rich Features from RGB-D Images for Object Detection and Segmentation, European Conference on Computer Vision (ECCV, p.17, 2014.
DOI : 10.1007/978-3-319-10584-0_23

A. Janoch, S. Karayev, Y. Jia, J. T. Barron, M. Fritz et al., A Category-Level 3D Object Dataset: Putting the Kinect to Work, Consumer Depth Cameras for Computer Vision, 2013.
DOI : 10.1007/978-1-4471-4640-7_8

C. Keskin, F. K?raç, Y. E. Kara, and L. Akarun, Hand Pose Estimation and Hand Shape Classification Using Multi-layered Randomized Decision Forests, European Conference on Computer Vision (ECCV, pp.12-13, 2012.
DOI : 10.1007/978-3-642-33783-3_61

S. Khamis, J. Taylor, J. Shotton, C. Keskin, S. Izadi et al., Learning an efficient model of hand shape variation from depth images, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.2540-2548, 2015.
DOI : 10.1109/CVPR.2015.7298869

C. Li and K. M. Kitani, Pixel-Level Hand Detection in Ego-centric Videos, 2013 IEEE Conference on Computer Vision and Pattern Recognition, p.14, 2013.
DOI : 10.1109/CVPR.2013.458

P. Li, H. Ling, X. Li, and C. Liao, 3D Hand Pose Estimation Using Randomized Decision Forest with Segmentation Index Points, 2015 IEEE International Conference on Computer Vision (ICCV), pp.819-827, 2015.
DOI : 10.1109/ICCV.2015.100

D. R. Martin, C. C. Fowlkes, M. , and J. , Learning to detect natural image boundaries using local brightness, color, and texture cues. Pattern Analysis and Machine Intelligence, IEEE Transactions, issue.2, 2004.

S. Melax, L. Keselman, and S. Orsten, Dynamics based 3D skeletal hand tracking, Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, I3D '13, p.13, 2013.
DOI : 10.1145/2448196.2448232

Z. Mo and U. Neumann, Real-time hand pose recognition using low-resolution depth images, Computer Vision and Pattern Recognition, pp.1499-1505, 2006.

A. W. Moore, A. J. Connolly, C. Genovese, A. Gray, L. Grone et al., Fast Algorithms and Efficient Statistics: N-Point Correlation Functions, Mining the Sky, 2001.
DOI : 10.1007/10849171_5

M. Muja and D. G. Lowe, Scalable Nearest Neighbor Algorithms for High Dimensional Data. Pattern Analysis and Machine Intelligence, IEEE Transactions, vol.5, p.8, 2014.

M. Oberweger, G. Riegler, P. Wohlhart, and V. Lepetit, Efficiently Creating 3D Training Data for Fine Hand Pose Estimation, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.4957-4965, 2016.
DOI : 10.1109/CVPR.2016.536

M. Oberweger, P. Wohlhart, and V. Lepetit, Hands Deep in Deep Learning for Hand Pose Estimation, Computer Vision Winter Workshop (CVWW, vol.12, issue.16, pp.13-14, 2015.

M. Oberweger, P. Wohlhart, and V. Lepetit, Training a Feedback Loop for Hand Pose Estimation, 2015 IEEE International Conference on Computer Vision (ICCV), pp.3316-3324, 2015.
DOI : 10.1109/ICCV.2015.379

E. Ohn-bar and M. M. Trivedi, Hand Gesture Recognition in Real Time for Automotive Interfaces: A Multimodal Vision-Based Approach and Evaluations. Intelligent Transportation Systems, IEEE Transactions, vol.2, issue.1 3, 2014.

E. Ohn-bar and M. M. Trivedi, Hand Gesture Recognition in Real Time for Automotive Interfaces: A Multimodal Vision-Based Approach and Evaluations, IEEE Transactions on Intelligent Transportation Systems, vol.15, issue.6, pp.2368-2377, 2014.
DOI : 10.1109/TITS.2014.2337331

I. Oikonomidis, N. Kyriazis, and A. Argyros, Efficient model-based 3D tracking of hand articulations using Kinect, Procedings of the British Machine Vision Conference 2011, pp.12-16, 2011.
DOI : 10.5244/C.25.101

Y. Pang and H. Ling, Finding the Best from the Second Bests - Inhibiting Subjective Bias in Evaluation of Visual Tracking Algorithms, 2013 IEEE International Conference on Computer Vision, p.10, 2013.
DOI : 10.1109/ICCV.2013.346

A. Pieropan, G. Salvi, K. Pauwels, and H. Kjellstrom, Audio-visual classification and detection of human manipulation actions, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, p.3, 2014.
DOI : 10.1109/IROS.2014.6942983

P. Premaratne, Q. Nguyen, and M. Premaratne, Human computer interaction using hand gestures, p.15, 2010.

C. Qian, X. Sun, Y. Wei, X. Tang, and J. Sun, Realtime and Robust Hand Tracking from Depth, 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2008.
DOI : 10.1109/CVPR.2014.145

Z. Ren, J. Yuan, and Z. Zhang, Robust hand gesture recognition based on finger-earth mover's distance with a commodity depth camera, Proceedings of the 19th ACM international conference on Multimedia, MM '11, 2011.
DOI : 10.1145/2072298.2071946

G. Rogez, M. Khademi, I. Supancic, J. Montiel, J. M. And-ramanan et al., 3D Hand Pose Detection in Egocentric RGB-D Images, European Conference on Computer Vision (ECCV, pp.12-16, 2014.
DOI : 10.1007/978-3-319-16178-5_25

G. Rogez, I. Supancic, J. And-ramanan, and D. , First-person pose recognition using egocentric workspaces, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), p.14, 2015.
DOI : 10.1109/CVPR.2015.7299061

G. Rogez, J. S. Supancic, and D. And-ramanan, Understanding Everyday Hands in Action from RGB-D Images, 2015 IEEE International Conference on Computer Vision (ICCV), pp.3889-3897, 2015.
DOI : 10.1109/ICCV.2015.443

URL : https://hal.archives-ouvertes.fr/hal-01237011

J. Romero, H. Kjellstr, and D. Kragic, Monocular real-time 3D articulated hand pose estimation, 2009 9th IEEE-RAS International Conference on Humanoid Robots, 2009.
DOI : 10.1109/ICHR.2009.5379596

O. Russakovsky, J. Deng, Z. Huang, A. C. Berg, and L. Fei-fei, Detecting Avocados to Zucchinis: What Have We Done, and Where Are We Going?, 2013 IEEE International Conference on Computer Vision, 2013.
DOI : 10.1109/ICCV.2013.258

D. Scharstein, A Taxonomy and Evaluation of Dense Two-Frame Stereo, International journal of computer vision, issue.2, 2002.

G. Shakhnarovich, P. Viola, D. , and T. , Fast pose estimation with parameter-sensitive hashing, Proceedings Ninth IEEE International Conference on Computer Vision, 2003.
DOI : 10.1109/ICCV.2003.1238424

T. Sharp, C. Keskin, D. Robertson, J. Taylor, J. Shotton et al., Accurate, Robust, and Flexible Real-time Hand Tracking, Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, CHI '15, p.4, 2015.
DOI : 10.1016/j.tics.2006.05.002

J. Shotton, T. Sharp, A. Kipman, A. Fitzgibbon, M. Finocchio et al., Real-time human pose recognition in parts from single depth images, Communications of the ACM, vol.7, p.12, 2013.

S. Song and J. Xiao, Sliding Shapes for 3D Object Detection in Depth Images, European Conference on Computer Vision (ECCV, p.7, 2014.
DOI : 10.1007/978-3-319-10599-4_41

S. Sridhar, F. Mueller, A. Oulasvirta, and C. Theobalt, Fast and robust hand tracking using detection-guided optimization, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), p.7, 2015.
DOI : 10.1109/CVPR.2015.7298941

URL : http://arxiv.org/pdf/1602.04124

S. Sridhar, A. Oulasvirta, and C. Theobalt, Interactive Markerless Articulated Hand Motion Tracking Using RGB and Depth Data, 2013 IEEE International Conference on Computer Vision, 2013.
DOI : 10.1109/ICCV.2013.305

B. Stenger, A. Thayananthan, P. H. Torr, and R. Cipolla, Model-based hand tracking using a hierarchical Bayesian filter. Pattern Analysis and Machine Intelligence, IEEE transactions, issue.6, 2006.

W. C. Stokoe, Sign Language Structure: An Outline of the Visual Communication Systems of the American Deaf, Journal of Deaf Studies and Deaf Education, vol.10, issue.1, p.10, 2005.
DOI : 10.1093/deafed/eni001

X. Sun, Y. Wei, S. Liang, X. Tang, and J. Sun, Cascaded hand pose regression, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.824-832, 2015.
DOI : 10.1109/CVPR.2015.7298683

D. Tang, H. J. Chang, A. Tejani, K. , and T. , Latent Regression Forest: Structured Estimation of 3D Articulated Hand Posture, 2014 IEEE Conference on Computer Vision and Pattern Recognition, p.15, 2014.
DOI : 10.1109/CVPR.2014.490

D. Tang, J. Taylor, P. Kohli, C. Keskin, T. Kim et al., Opening the Black Box: Hierarchical Sampling Optimization for Estimating Human Hand Pose, 2015 IEEE International Conference on Computer Vision (ICCV), pp.3325-3333, 2015.
DOI : 10.1109/ICCV.2015.380

J. Taylor, L. Bordeaux, T. Cashman, B. Corish, C. Keskin et al., Efficient and precise interactive hand tracking through joint, continuous optimization of pose and correspondences, ACM Transactions on Graphics, vol.35, issue.4, pp.143-150, 2016.
DOI : 10.1007/3-540-44480-7_21

J. Taylor, R. Stebbing, V. Ramakrishna, C. Keskin, J. Shotton et al., User-Specific Hand Modeling from Monocular Depth Sequences, 2014 IEEE Conference on Computer Vision and Pattern Recognition, p.15, 2014.
DOI : 10.1109/CVPR.2014.88

J. Tompson, M. Stein, Y. Lecun, and K. Perlin, Real-Time Continuous Pose Recovery of Human Hands Using Convolutional Networks, ACM Transactions on Graphics, vol.33, issue.5, pp.13-14, 2014.
DOI : 10.1145/1531326.1531369

A. Torralba and A. A. Efros, Unbiased look at dataset bias, CVPR 2011, p.3, 2011.
DOI : 10.1109/CVPR.2011.5995347

D. Tzionas, A. Srikantha, P. Aponte, and J. Gall, Capturing Hand Motion with an RGB-D Sensor, Fusing a Generative Model with Salient Points, German Conference on Pattern Recognition (GCPR), Lecture Notes in Computer Science, 2014.
DOI : 10.1007/978-3-319-11752-2_22

V. Vezhnevets, V. Sazonov, and A. Andreeva, A survey on pixel-based skin color detection techniques, Proc. Graphicon, 2003.

?. Sari´csari´c and M. , Libhand: A library for hand articulation, 2011.

C. Wan, A. Yao, V. Gool, and L. , Hand Pose Estimation from Local Surface Normals, European Conference on Computer Vision, pp.554-569, 2016.
DOI : 10.5244/C.22.87

A. Wetzler, R. Slossberg, and R. Kimmel, Rule of thumb: Deep derotation for improved fingertip detection, Procedings of the British Machine Vision Conference 2015, p.4, 2015.
DOI : 10.5244/C.29.33

C. Xu and L. Cheng, Efficient Hand Pose Estimation from a Single Depth Image, 2013 IEEE International Conference on Computer Vision, pp.12-13, 2013.
DOI : 10.1109/ICCV.2013.429

Y. Yang and D. Ramanan, Articulated pose estimation with flexible mixtures-of-parts. Pattern Analysis and Machine Intelligence, IEEE Transactions, issue.7, 2013.

Q. Ye, S. Yuan, K. , and T. , Spatial Attention Deep Net with Partial PSO for Hierarchical Hybrid Hand Pose Estimation, European Conference on Computer Vision, pp.346-361, 2016.
DOI : 10.1109/ICEC.1998.699146

X. Zhu, C. Vondrick, D. Ramanan, and C. Fowlkes, Do We Need More Training Data or Better Models for Object Detection?, Procedings of the British Machine Vision Conference 2012, p.16, 2012.
DOI : 10.5244/C.26.80