N
N

N

HAL

open science

Purpose-Based Policy Enforcement in Actor-Based
Systems
Shahrzad Riahi, Ramtin Khosravi, Fatemeh Ghassemi

» To cite this version:

Shahrzad Riahi, Ramtin Khosravi, Fatemeh Ghassemi. Purpose-Based Policy Enforcement in Actor-
Based Systems. Tth International Conference on Fundamentals of Software Engineering (FSEN), Apr

2017, Teheran, Iran. pp.196-211, 10.1007/978-3-319-68972-2 13 . hal-01760856

HAL Id: hal-01760856
https://inria.hal.science/hal-01760856
Submitted on 6 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-01760856
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Purpose-based Policy Enforcement in
Actor-based Systems

Shahrzad Riahi, Ramtin Khosravi, and Fatemeh Ghassemi

School of Electrical and Computer Engineering,
College of Engineering, University of Tehran,
Tehran, Iran
{sh.riahi, r.khosravi, fghassemi}Qut.ac.ir

Abstract. Preserving data privacy is a challenging issue in distributed
systems as private data may be propagated as part of the messages trans-
mitted among system components. We study the problem of preserving
data privacy on actor model as a well known reference model for dis-
tributed asynchronous systems. Our approach to prevent private data dis-
closure is to enforce purpose-based privacy policies which control the ac-
cess and usage of private data. We propose a method to specify purposes
based on workflows modeled by Petri nets in which transitions corre-
spond to message communications. We first use model checking to verify
whether the actor model behaves conforming to the purpose model. Then,
the satisfaction of the policies are checked using data dependence anal-
ysis. We also provide a method to evaluate the effectiveness of policies
through checking of private data disclosure in the presence of privacy
policies. Since these checks are performed statically at design time, no
runtime overhead is imposed on the system.

Keywords: Actor-based systems, Privacy, Purpose, Data disclosure,
Formal Verification, Rebeca

1 Introduction

Actor [1] is a well known model for concurrent and distributed systems, in which
objects (called actors) encapsulate data and communicate via asynchronous mes-
sage passing. In such systems, data of an actor can flow among other actors
through message passing. Since the actors can send private data to each other
as part of the transmitted messages, in systems where privacy is a concern, it
is essential to protect private data from disclosure. Actor model can be used
for modeling real world distributed systems, so disclosure of private data in the
model indicates the privacy violation in the real world. Solove [2] classifies differ-
ent types of privacy violations in four classes: information collection, information
processing, information dissemination, and invasions.

Our concern in this paper, is the third case which is affected by actor commu-
nication model. A special form of information dissemination is disclosure, which,

2 Purpose-based Policy Enforcement in Actor-based Systems

according to [3], means “making private information known outside the group
of individuals expected to know it”. In actor-based systems, if there is no suffi-
cient control on the transmitted messages and their included data, disclosure of
private data may happen.

A useful method to prevent private data disclosure would be to enforce
system-wide privacy policies which control the access and usage of these data
in the system. In this way, private data are used only as intended. The purpose
of using a private data is an important aspect of privacy protection. Purpose
refers to the intention behind accessing or using data items. In other words,
as stated in [4], “purposes often refer to an or a set of abstract actions”. For
example, patient’s health record can be accessed for the purpose of treatment, re-
search, insurance, and so on. To incorporate purpose in privacy policies, privacy
constraints can be explained as access or usage control policies which contain
purpose. This type of privacy policies is called purpose-based policies. Based
on [5], [12], and [6], purpose-based policies can be categorized in two groups:
data-centric and rule-centric policies. Data-centric policies focus on data and
specify the purposes for which a data item can be used. A Rule-centric policy
specifies that a subject can perform an action on a private data item with a
certain purpose.

How the purpose of using a data item or performing an action is identified,
is an important part of data-centric and rule-centric policy enforcement. Most
existing work on specification and enforcement of purpose, do not consider se-
mantics for purposes. Some work like [11], [12] and [6] consider that “an action
is for a purpose if and only if the action is part of a plan for achieving that
purpose”, and define the purpose semantics using formalisms based on plan-
ning. Nevertheless, to the best of our knowledge, there is no work that specifies
and enforces purposes for actor-based systems. We consider the idea of planning
for specification and enforcement of purpose for actor-based systems and model
plans using workflows (Sect. 4).

In this paper, we focus on avoiding disclosure of private data in the actor-
based systems by enforcing purpose-based policies at system design time. We
assume that the actor-based system is modeled by Rebeca modeling language.
Rebeca [13] (Reactive Objects language) is an actor-based modeling language,
with a formal foundation, that is used to model concurrent and distributed
systems. It is important to note that our method does not depend on the choice
of the language and can be tailored to any kind of actor-based modeling or
programming language with the assumption that the messages are delivered in
the order they are sent.

Having the system model, a set of data-centric policies, a set of rule-centric
policies, and the description of the purposes, we first model the purposes in a
manner suitable for actor systems and then check whether the system satisfies
the given policies. We use a two-step mechanism for purpose-based policy en-
forcement. In the first step (called purpose enforcement), we verify whether the
system works exactly based on the defined purposes (Sect. 5) and in the sec-
ond step (called policy enforcement), data-centric and rule-centric policies are

Purpose-based Policy Enforcement in Actor-based Systems 3

checked (Sect. 6). We use model checking for purpose enforcement and data
dependence analysis for policy enforcement. In addition to purpose and pol-
icy enforcement, we introduce another method, called data disclosure analysis,
which determines each actor in the system can access which private data of other
actors (Sect. 7). So it can be used as an evaluation of the effect of purpose-based
policies on avoiding data disclosure.

If the purpose enforcement or policy enforcement step determines that the
model does not behave according to the intended purpose model or policies, we
guide the modeler to correct the model by providing counterexamples. But if
data disclosure happens, despite the system satisfies the purpose-based policies,
the purposes and policies must be reviewed.

2 Related Work

The existing methods for specifying and enforcing purpose can be categorized in
three groups: self-declaration, role-based approach, and action-based approach.

In the self-declaration approach (e.g. [8], [14]), the subject (i.e. initiator of
an access request) explicitly expresses the purpose of its action. This approach
is based on trusting the requester to honestly declare its purpose of action. But
this approach is unable to detect if a malicious user claims a false purpose. In
role-based approach (e.g. [10], [7], [9]), the purpose is identified based on the
subject’s role in the system. This approach cannot exactly identify the purpose
of an action, because members of the same role may practice different purposes
in their actions.

The main problem of these two approaches is that they do not consider that
the purpose of an action may be determined by “its relationships with other
interrelated actions” [6]. Action-based approaches consider that “an action is
for a purpose if and only if the action is part of a plan for achieving that pur-
pose” [6]. Tschants et. al. [11] define the purpose semantics using a formalism
based on planning and using a modified version of Markov Decision Processes
to model this planning. With this formal semantics, they automate auditing
for purpose restrictions. Jafari et. al. [12] use a modal logic language to define
purpose semantics. They present a model-checking algorithm for evaluating pur-
pose constraints in a workflow-based information system (which is modeled by
a workflow formalism based on Petri nets) and use this model checker for en-
forcing purpose-based policies using a workflow reference monitor. Masellis et.
al. [6] define semantics of purpose-aware policies based on a first-order temporal
logic and design a runtime monitor for enforcing purpose-aware policies. They
consider that the semantics of a purpose is its associated workflow and specify
workflows using Linear-Time Temporal Logic (LTL).

We use the same idea that the semantics of a purpose is its associated work-
flow. [11] uses Markov Decision Processes, [12] a modal logic language, and [6]
Linear-Time Temporal Logic, as the formalism for purpose semantics, but we
formalize purposes using an interpretation of Petri nets tailored for actor sys-
tems (why we have chosen Petri nets is explained in Section 4). Another dif-

4 Purpose-based Policy Enforcement in Actor-based Systems

ference with previous work is that [6] uses run-time monitoring for enforcing
purpose-aware policies, [11] tries to audit purpose restrictions, and [12] uses
a workflow reference monitor to enforce purpose-based polices. We use model
checking and data dependence analysis for purpose-based policy enforcement.
This is performed statically at design time, so no runtime overhead is imposed
on the system. This way, we can make sure that all the actors do nothing that
violates the purpose-based policies and there is no disclosure of private data in
this system.

3 Preliminaries

3.1 Running Example

In this section we describe an educational institute as the running example which
will be used throughout this paper. We consider students request this institute
for two purposes: educational consulting (called Consulting purpose) and class
registration (called Registration purpose). This system includes five actors: stu-
dent which requests the system for one of the two purposes, and four employees
(Em1, Em2, Em3 and Em4) with different responsibilities. We consider Contact-
Info (including student’s name and phone number), EduRec (including student’s
educational record), and CPersonal (including student’s complete personal in-
formation) as private data of student. We assume that if an employee knows a
student’s private data item without permission, then she can abuse it.

3.2 System Model in Rebeca

A Rebeca [13] model consists of a set of reactive classes (called rebec) which
are concurrently executed and communicate via asynchronous message passing.
Each rebec has three main parts: known rebecs (rebecs which can be receivers of
this actor sending messages), state variables, and message servers. Each rebec has
a FIFO queue to automatically receive messages. When a message is taken from
the queue, the corresponding message server is executed atomically. We define a
new type of state variables, called private data, and assume that each actor has
its own private data (e.g. postal code, medical records, telephone number, and
so on). Fig. 1 shows an incomplete portion of our running example modeled in
Rebecal.

3.3 Purpose-based Privacy Policy

The purpose-based policies, including data-centric and rule-centric policies, are
specified in an actor system as below:

! The complete Rebeca code for our running example is accessible from
http://ramtung.ir/privacymodel.zip.

Purpose-based Policy Enforcement in Actor-based Systems 5

reactiveclass Student {
knownrebecs {
Employeel Eml;
Employee3 Em3;
}

statevars {

@Private string ContactInfo;
@Private string EduRec;

}

msgsrv StartConsulting()

{

// prepare consulting request

Eml.ConsultingReq(ContactInfo, EduRec);

}

msgsrv ConsultingResult (string result)

// process consulting result

}

// other message servers

reactiveclass Employeel {

knownrebecs {
Student St;
Employee2 Em2;
Employee3 Em3;

}

msgsrv ConsultingReq(string contact

,string cv) {

//forward consulting request to Em2
Em2.NewConsulting (cv) ;

}
msgsrv provideresult (string result) {
// forward the consulting result,
received from Em2, to St
St.ConsultingResult (result);
}

// other message servers

Fig. 1. An incomplete portion of our running example modeled in Rebeca

. A data-centric policy is defined as a pair of a data item, which is an actor’s
private data item, and the purpose for which it can be used. For example,
(Student’s ContactInfo , Registration) specifies that the ContactInfo of a
student can be used for the purpose of Registration.

2. A rule-centric policy is defined as a tuple of a subject (one of the actors in

the system), a data item (an actor’s private data item), an action, and the

purpose. For example, (Em1 , Student’s EduRec , Send , Consulting) specifies
that Em1 can send the student’s EduRec for the purpose of Consulting.

As we will explain in Section 4, it is sufficient for our analysis to only consider

message sending as actions in an actor-based system, since we do not explic-
itly express the action in a rule-centric policy and assume that all the actions
appeared in the rule-centric policies correspond to sending of messages in the
system. The given data-centric and rule-centric policies for the running example

are presented in Table 1 and Table 2 respectively.

Table 1. Data-centric policies for the

running example

Table 2. Rule-centric policies for the run-
ning example

. . Sender|Actor’s Private Data| Purpose
Actor’s Private Data Purp0§e Eml (Student,EduRec) Consulting
(Student,EduRec) Consult%ng Eml | (Student,ContactInfo) |Registration
(Student, ContactInfo) Cor.lsultl.ng Student| (Student,EduRec) Consulting
(Student,ContactInfo) Reg%strat?on Student| (Student,ContactInfo) | Consulting
(Student,CPersonal) |Registration Student| (Student,ContactInfo) |Registration
Student| (Student,CPersonal) |Registration

As mentioned before, we use workflows to describe purposes in the actor
model. Actions in these workflows are messages communicated among actors in
the system. The workflow of Consulting purpose is defined as follow:

6 Purpose-based Policy Enforcement in Actor-based Systems

1. Student gets her request for educational consulting to Em1l. This request
includes ContactInfo and EduRec of student.

2. Em1 forwards this request to Em2. This request includes student’s EduRec.

3. Em2 queries Em3 for current state of the classes, if needed, and provides the
consulting result.

4. Em1 delivers the consulting result to student.

The workflow of Registration purpose is defined as follow:

1. Student gets her request for registration to Em1. This request includes Con-
tactInfo of student.

2. Em1 forwards this request to Em3 (including student’s ContactInfo).

3. Em3 requests student for complete personal information and queries Em4
for payment information.

4. When Em3 receives both of the student and Em4 responses, the registration
is done.

4 Purpose Model

As mentioned in Section 2, the self-declaration and role-based approaches for
specifying and enforcing purpose, do not assume a semantics for the purpose, so
a major problem is the ambiguity in the interpretation of purposes. Hence, we
use action-based approach and address the mentioned problem by relating the
actions using the workflow-based plan.

Masellis et al. [6] refer to workflow as “collections of activities (called tasks)
together with their causal relationships, so that the successful termination of a
workflow corresponds to achieving the purpose which it is associated to”. There
are various types of workflow definition languages, that can be categorized in
two groups. The first group includes models such as Petri nets [17] and process
algebra [18], which have a proper formal semantics. The second group includes
approaches like Web Services Business Process Execution Language (BPEL)
[19] and the Business Process Modeling Notation (BPMN) [20]. These languages
often have no proper formal semantics [16].

Our goal is to formalize the notion of purpose in a manner suitable for actor
models. According to [15], it is possible to formalize most aspects of privacy poli-
cies by abstracting all activities as communications between actors. Workflows
are normally expressed at the requirements (or business level), which comprise
the tasks and the control flow among the activities in the system. During the
design process, these tasks must be mapped into elements of the system model.
In our case, since the actor model is based on the object-oriented paradigm,
tasks are mapped into methods (message processors) of the actors based on the
principles of data encapsulation. Furthermore, a behavioral model of the purpose
is constructed based on the control flow specified in the workflow, to describe the
order of interactions among the actors. We call this workflow “message flow”.

In the case of sequential models, the behavioral model may be expressed as
UML sequence diagrams. However, since actors communicate asynchronously,

Purpose-based Policy Enforcement in Actor-based Systems 7

the underlying behavioral model must be able to clearly express concurrent com-
putation. Hence, we choose Petri nets to describe the global control flow of the
system. Aalst [22] presents several good reasons for using Petri nets to specify
workflows: “formal semantics despite the graphical nature, state-based instead
of event-based, abundance of analysis techniques”.

In addition to the above reasons, there are transformations from workflows
described in modeling languages like BPMN and BPEL to Petri net models ([16]
surveys these transformations). We consider the standard definition of Petri net
[17] that consists of two finite disjoint sets of places and transitions together
with a flow relation. In a Petri net, the places, transitions and flow relations
are graphically represented by circles, squares and directed arcs respectively. We
borrow Definition 1 and Definition 2 from [21]:

Definition 1 (Petri net). A Petri net is a triple (P, T , F) where:

1. P is a finite set of places.
2. T is a finite set of transitions (P and T are disjoint sets).
3. FC(PxT)U(T x P) is a set of arcs (or flow relations)

In a Petri net, places model intermediate states and transitions model tasks.
In [16], the mapping of some workflow patterns to Petri nets are presented. A
Petri net that models a workflow definition is called a workflow net (WF-net).

Definition 2 (WF-net). A Petri net PN = (P, T, F) is a WF-net (workflow
net) if and only if:

1. PN has two special places source and sink. The source place has no input arc
and the sink place has no output arc (a token in the source place corresponds
to a new instance of workflow, and a token in the sink place corresponds to
a completed instance of workflow).

2. If we add a new transition to PN which connects sink place with source place,
then the resulting Petri net is strongly connected.

We specify purposes using message flows, and model the message flows using
a modified version of WF-net, referred to as message flow net (MF-net), in which
transitions are messages.

Definition 3 (Message flow net (MF-net)). A message flow net MFN =
(P, T, F)isa WF-net in which:

1. FEach transition corresponds to a specific message in actor system.
2. Flow relations specify the order in which the actors are allowed to take their
messages.

Each message is modeled as a triple (s,m,r) in which s is the name of the
sender actor, m is the message name, and r is the name of the receiver actor. A
transition (s, m,r) in a MF-net means actor r takes message m from its message
queue (and starts the execution of the corresponding message server) which is
sent by actor s. The MF-net models of Consulting and Registration purposes
specified in running example, are shown in Fig. 2 and Fig. 3 respectively.

8 Purpose-based Policy Enforcement in Actor-based Systems

WaitingForReq Providinginfo ProvidingResult ConsultingCompleted

Em2,Query,Em3

NewReq

St,ConsultingReq,Em1 Em1,NewConsulting,Em2 Em2,ProvideResult,Em1 Em1,ConsultingResult,st

Fig. 2. Consulting purpose in educational institute modeled in MF-net

WaitingForRegReq NeedInfoFrom 5t WaitingFor Stinfo RegisterationCompleted

5t,RegistrationReq,Em1 Em3,RegistrationResult, 5t

Em3,CheckPayment, Emad Emd,PaymentResponse, Em3

Fig. 3. Registration purpose in educational institute modeled in MF-net

5 Purpose Enforcement

As discussed in the previous section, each purpose is modeled by a MF-net.
We add a new actor to the system for each MF-net, called purpose actor or
p-actor, aiming to verify whether the actor system behaves according to the
corresponding purpose. Each p-actor checks the state of the MF-net and decides
whether an execution of a message server conforms to the corresponding purpose.

5.1 Constructing Purpose Actor

Since p-actors are defined to check the conformance of the transmitted messages
to the purposes of the system, when an actor takes a message from its message
queue, a copy of this message, parameterized with its sender and receiver, is
sent to the corresponding p-actor. Therefore, we define one message server in
the p-actor for each message in the MF-net. For simplicity, we assume that a
message can only be part of one purpose.

The state of a MF-net: A state in a MF-net (as in Petri net) is represented
by the distribution of tokens over the places (also referred to as marking). For
keeping the state of the MF-net in the corresponding p-actor, we define an integer
variable for each place that represents the number of tokens in that place. So,
the state of the MF-net is modeled by the values of this set of integer variables
which are the state variables of the p-actor. The variables p1, ..., p, in Fig. 4, are
the variables corresponding to the places of a Petri net.

Purpose-based Policy Enforcement in Actor-based Systems 9

The behavior of a MF-net: The behavior of a MF-net is modeled with
conditional statements in the body of each p-actor’s message server. Fig. 4 shows
the description of a simple MF-net behavior. We can model different types of
workflow patterns in this way.

M (int sndr , int revr }{

if(py>=1 && ... && p,>=1 && S_ID = sndr && R_ID ==revr){
p=p—loopp=mp— Lt

p=p' L=t
S.M.R : }

else{ M has been sent out of defined order
t M = true:
¥

}

Fig. 4. Modeling a transition in the purpose actor

We call the conditional statement inside the p-actors’ message servers the
transition condition. It is noticeable that the execution of M in right side of
Fig. 4 is atomic.

5.2 Purpose Verification

For each transition in a MF-net model, one boolean variable (initially false) is
included as a state variable of the corresponding p-actor, and if the transition
condition does not hold, then this boolean variable (e.g. t_M in Fig. 4) is set to
true, representing an error has occurred. So, the property that must be checked
is the invariant property (—ty) A ... A (=ty) (1, ..., tn are the mentioned boolean
variables for the transitions).

We use model checking to verify whether the system satisfies the above in-
variant property. If it is not satisfied, counterexamples are reported for the cor-
rection of the model. We use RMC (Rebeca Model Checker) [24] to model check
our running example. The p-actor for Consulting purpose, is presented in Fig. 5.

We can define multiple instances of one MF-net in its corresponding p-actor
for different instances of its execution, and distinguish them by a workflow ID.

6 Policy Enforcement

Now that we have a system that works exactly according to the defined purposes,
we aim to check whether the data-centric and rule-centric policies hold in the
system. As data is an important aspect of these policies, we need a mechanism
which can trace the flow of data in both actors’ message servers as well as sending
messages to other actors. To achieve this, we use data dependence graph analysis.

10 Purpose-based Policy Enforcement in Actor-based Systems

reactiveclass RegistrationPurpose msgsrv RegistrationReq (int sndr, int rcvr)({
{ if (WaitingForRegReqg > 0 && sndr == StID &&
knownrebeacs{ rovr == EmlID) {
student st; Memberl Eml; WaitingForRegReq = WaitingForRegReq - 1;
Member3 Em3; Member4 Em4; NewReq = NewReq + 1;
} }
statevars{ else
~int WaitingForRegReq; t RegistrationReq = true;
Place int NewReq: }
variables msgsrv NewRegReq(int sndr, int rcvr) {
- int ConsultingCompleted; if (NewReq > 0 && sndr == EmlID &&
rcvr == Em3ID) {
boolean t_RegistrationReqs NewReq = NewReq - 1;
Tmnqdml{ boolean t NewRegReq; NeedInfoFromSt = NeedInfoFromSt + 1;
variables NeedQuery = NeedQuery + 1;
boolean t_RegistrationResult; }
} else
msgsrv initial(){ t NewRegReq = true;
WaitingForRegReq = 1; } B
Initial NewReq = 0;
markmg‘{ . :
ConsultingCompleted = 0; msgsrv RegistrationResult (int sndr, int rcvr){
if (WaitingForBoth > 1 && sndr == Em3ID &&
t_RegistrationReq = false; rcvr == StID){
t_NewRegReq = false; WaitingForBoth = WaitingForBoth - 2:
ConsultingCompleted = ConsultingCompleted + 1:

t_RegistrationResult = false;

WaitingForRegReq = WaitingForRegReg + 1;
} }
e

lse

t_RegistrationResult = true;

b

Fig. 5. Purpose actor for Consulting purpose

6.1 Data Dependence Graph

In [23], a special dependence graph based on Rebeca [13] semantics is introduced
and used as an intermediate graph representation for slicing a Rebeca model.
We modify this dependence graph and use it for verifying data-centric and rule-
centric policies and analyzing the disclosure of private data in the actor systems.

Rebeca Dependence Graph

Rebeca Dependence Graph (RDG) introduced in [23], has three types of nodes,
including reactive class entry, message server, and statement (for Rebeca state
variables and statements) nodes, and four types of edges, including data depen-
dence, control dependence, member dependence, and parameter-in edge/activa-
tion edges. Table 3 presents how [23] models Rebeca features by RDG. Activa-
tion, formal-in and actual-in nodes are of statement nodes which are defined to
model message passing.

In addition to the above dependencies, there is one more dependency called
intra-rebec data dependency. According to [23], “this dependency exists between
the last statement of a message server which is assigning value to a variable and
the first use of that variable in another message server”. In RDG, intra-rebec
data dependency is modeled using data dependence edges.

Purpose-based Policy Enforcement in Actor-based Systems 11

Table 3. Mapping Rebeca features to RDG according to [23]

Rebeca RDG nodes RDG edges
features
Reactive class |A reactive class entry|The reactive class entry node is connected to
node each of its state variables and message servers

by the member dependence edges.

Message server |An entry node and a|The existing dependencies within the body of
set of nodes represent-|the message server modeled by data depen-
ing its statements dence edges and control dependence edges.

Message passing |An activation node The activation node is connected to the en-
try node of the related message server by an
activation edge.

Parameters of |Formal-in and actual-|Parameter-in edges connect the formal-in and
the messages |in nodes actual-in nodes.

Modified Rebeca Dependence Graph

We introduce a modified version of Rebeca dependence graph which is suitable
for our policy enforcement. The modified Rebeca dependence graph differs from
the original version [23] in the following ways:

1. For modeling the actors’ private data, we add a new type of node, called
private data node.

2. According to [23], a data dependence edge exists “between two statement
nodes if assigning value to a variable at one statement might reach the usage
of the same variable at another statement”. We categorize assignment of
value to a variable in two cases: reversible and irreversible. In reversible
assignment the operands can be extracted from the result. For example in
a = b x 10 we can extract value of b from the value of a. In irreversible
assignment, the operands cannot be conducted from the result. For example
in a = b mod 3, the exact value of b cannot be conducted from the value of
a. We only use data dependence edges for reversible assignments.

3. We consider the activation nodes, which correspond to send statements, as
a separate type of nodes.

So, in a modified Rebeca dependence graph DDG = {V,E}, V(DDG) =
V-RC U V-MS U V-PD U V-ST U V-AC, and E(DDG) = E-CD U E-DD U
E-MD U E-PI. The description of these sets are given in Table 4 and Table 5.

An incomplete portion of the data dependence graph for our running example
is shown in Fig. 6 (due to space restriction, we eliminate some parts of this

graph).

6.2 Data-centric and Rule-centric Policy Enforcement

For policy enforcement, we first construct the data dependence graph (DDG)
for Rebeca model, and then apply Algorithm 1 to determine whether the system

12 Purpose-based Policy Enforcement in Actor-based Systems

Table 4. DDG nodes Table 5. DDG edges
Name Description
V-RC | Set of reactive class nodes Name Description
V-PD | Set of private data nodes E-CD | Set of control dependence edges
V-MS |[Set of message server nodes E-DD | Set of data dependence edges
V-ST Set of statement nodes E-MD |Set of member dependence edges
V-AC Set of activation nodes E-PI Set of parameter-in edges

satisfies the data-centric and rule-centric policies. This algorithm, gets a data
dependence graph, an actor’s private data item (pv), the sets of data-centric
and rule-centric policies as the inputs. First, the set of all nodes which can affect
the given private data is computed (lines 1-5). To check data-centric policies,
all message servers that have access to pv (possibly passed through a series of
messages or assignments) are selected (lines 6-7). Then, the corresponding pur-
pose of each such message server (determined by FindPurpose(v)), is checked
against the data-centric policies (lines 8-10). To check rule-centric policies, all
send statements that potentially send pv as a parameter (again, possibly indi-
rectly) are selected (lines 11- 12). Then, the permission of such communication is
checked against the rule-centric policies (lines 13-15). For complete data-centric
and rule-centric policy enforcement, this algorithm must be run for all private
data in the system.

Algorithm 1 Purpose-based policy enforcement algorithm

Input: A dependence graph DDG = {V-RCUV-MSUV-PDUV-STUV-AC, E-CD U
E-DD U E-MD U E-PI}, one actor’s private data item in form of (owner , pv), the
set of data-centric policies DCPolicy and the set of rule-centric policies RCPolicy

Output: Does DDG satisfy DCPolicy and RCPolicy for (owner , pv)?

1: S < ReachableFrom(DDG, pv) // Using Depth First Search
2: For each v € S

3: For each u € V(DDG)

4: If ((u,v) € B-CD N uw¢s)

5: S+ SuU{u}

6: For each v € S

7 If (v e V-MS) // If v is a message server node

8: If ((pv, FindPurpose(v)) ¢ DCPolicy){

9: DCPCounterEzample < (pv, FindPurpose(v))

10: Return False }

11: For each v € S
12: If (ve V-AC) // If v is an activation node

13: If ((FindActor(v), pv, FindPurpose(v)) ¢ RCPolicy){
14: RCPCounterEzample «+ (FindActor(v), pv, FindPurpose(v))
15: Return False }

16: Return True

Purpose-based Policy Enforcement in Actor-based Systems 13

Fig. 6 shows an example execution of Algorithm 1. The inputs of this example
are the data dependence graph of our running example, the sets of policies shown
in Table 1 and Table 2, and student’s CPersonal private data item. As shown
in Fig. 6, CPersonal can be used in Query message server with the purpose of
Consulting. As the pair (student’s CPersonal, Consulting) is not a member of
Table 1, the algorithm indicates a violation of the data-centric policy. This vi-
olation occurs because SetMorelnfo message server (with Registration purpose)
assigns CPersonal to a state variable while Query message server (with Con-
sulting purpose) uses this state variable and sends its value to another actor.
Although the actor is eligible to access its own state variable, its access should
be controlled when it contains private data.

Reactiveclass entry

Message server entry
Private data
Statement

stped

«——— Data dependency

fffffff Control dependency _

«——— Parameter-in edge, ‘;”’M];h;fif{e’g; -
activation edge T

I
Member dependency |
I

Fig. 6. Applying Algorithm 1 to DDG of running example for the sets of policies shown
in Table 1 and Table 2, and student’s CPersonal private data item. The gray nodes are
nodes which have access to CPersonal private data item.

7 Data Disclosure Analysis

In addition to policy enforcement, we can analyze the disclosure of private data
in an actor system. This analysis needs to determine each actor in the system
can access which private data of other actors. This access can be done in one of
the following forms:

1. Direct receive: the owner of private data directly sends its private data to
another actor.

14 Purpose-based Policy Enforcement in Actor-based Systems

2. Indirect receive: an actor sends private data of another actor to a third actor.

3. Receive by inferring: the actors can infer other actors’ private data based on
some inference rules (these rules are defined based on data model or message
model of the system).

In this paper we only consider the first two forms, and receive by inferring is
remained as our future work.

For data disclosure analysis, we introduce Algorithm 2 based on data de-
pendence graph analysis. In this algorithm, first the set of all nodes which can
affect the given private data item, is computed (lines 2-6), and then the parent
of each message server node in this set, is added to the output set (lines 7-9).
The function Parent(v) returns an actor node which v is a member of it. The
output of this algorithm is the set of actors which can know the input private
data item.

Algorithm 2 Data disclosure analysis algorithm
Input: A dependence graph DDG = {V-RCUV-MSUV-PDUV-STUV-AC, E-CDU
E-DD U E-MD U E-PI}, one actor’s private data item in form of (owner , pv)
Output: ActorsKnownpv (the set of actors which can know pv)
1: ActorsKnownpv < ()
2: S < ReachableFrom(DDG, pv) // Using Depth First Search
3: For each v € S
For each u € V(DDG)
If ((u,v) € B-CD N uw¢S)
S« Su{u}
7: For each v € §
8: If (v e V-MS) // If v is a message server node
9: ActorsKnownpuv < ActorsKnownpv U { Parent(v)}
10: Return ActorsKnownpv

If the result of this algorithm indicates the existence of data disclosure, de-
spite the system satisfies the purpose-based policies, the purposes and policies
must be reviewed.

8 Conclusion and Future Work

In this paper, we provided a way for purpose-based policies enforcement in actor-
based systems with the aim of avoiding disclosure of private data in such systems.
We modeled purposes using Petri nets, and make sure that the system works
exactly according to them by model checking and if needed, correction of the
system model. Then the data-centric and rule-centric policies are checked by
analysis of the data dependence graph of the system. Data disclosure analysis
algorithm has also been introduced, which can be used for evaluating of the
effect of purpose-based policies on disclosure of data. However, this analysis can
be used for each actor model to specify the distribution of data among actors.

Purpose-based Policy Enforcement in Actor-based Systems 15

Using our method, we can statically check that in a distributed asynchronous
system there is no privacy violation. Since we model purposes using workflows,
our method is usable for practitioners. All of our analysis are performed statically
at system design time so, no runtime overhead is imposed on the system.

In future work, we intend to consider receive by inferring, as well as direct
and indirect receive, for data disclosure analysis, which needs to apply required
inference rules in our analysis. We also interest to provide a runtime monitoring
mechanism for purpose-based policy enforcement in actor systems. This extends
the scope of our method to the systems in which policies may change during
time.

References

1. Agha, G.A.: ACTORS - a model of concurrent computation in distributed systems.
MIT Press series in artificial intelligence. MIT Press (1985)

2. Solove, D.J. : A Taxonomy of Privacy. University of Pennsylvania Law Review, Vol.
154, No. 3, pp. 477-560 (2006)

3. Tschantz, M., Wing, J.: Formal Methods for Privacy. In: 2nd World Congress on
Formal Methods, pp. 1-15. Springer-Verlag, Berlin, Heidelberg (2009)

4. Rath, A.T., and Colin, J.N.: Modeling and expressing purpose validation policy
for privacy-aware usage control in distributed environment. Proceedings of the 8th
International Conference on Ubiquitous Information Management and Communica-
tion, ACM New York, NY, USA (2014)

5. Jafari, M., Safavi-Naini, R., Sheppard, N.P.: Enforcing Purpose of Use via Work-
flows. In: Proceedings of the 8th ACM workshop on Privacy in the electronic society
(WPES ’09), pp. 113-116. ACM New York (2009)

6. Masellis, R.D., Ghidini, CH., Ranise, S.: A Declarative Framework for Specifying
and Enforcing Purpose-Aware Policies. In: Foresti, S. (eds.) Security and Trust
Management. LNCS, vol. 9331, pp. 55-71. Vienna, Austria (2015)

7. Masoumzadeh, A., Joshi, J.B.D.: PuRBAC: Purpose-Aware Role-Based Access Con-
trol. In: Meersman, R., Tari, Z. (eds.) On the Move to Meaningful Internet Systems:
OTM 2008. LNCS, vol. 5332, pp. 1104-1121. Springer, Heidelberg (2008)

8. Jawad, M., Alvarado, P.S., Valduriez, P.:Design of PriServ, a privacy service for
DHTs. In: PAIS ’08 Proceedings of the 2008 international workshop on Privacy and
anonymity in information society , pp. 21-25. ACM New York, USA (2008)

9. Byun, J., Bertino, E., Li, N.: Purpose based access control of complex data for
privacy protection. In: Proceedings of the tenth ACM symposium on Access control
models and technologies, pp. 102-110. New York, USA (2005)

10. Ni, Q., Bertino, E., Lobo, J., Brodie, C., Karat, C., Karat, J., Trombeta, A.:
Privacy-aware role-based access control. ACM Transactions on Information and Sys-
tem Security (TISSEC). Vol. 13 ,Issue 3, 24:1-24:31 (2010)

11. Tschantz, M.C., Datta, A., Wing, J.M.: Formalizing and Enforcing Purpose Re-
strictions in Privacy Policies. In: IEEE Symposium on Security and Privacy (SP),
pp. 176-190. IEEE (2012)

12. Jafari, M., Safavi-Naini, R., Fong, P.W.L, Barker, K.: A Framework for Expressing
and Enforcing Purpose-Based Privacy Policies. ACM Transactions on Information
and System Security (TISSEC). Vol. 17, Issue 1, 3:1-3:31 (2014)

13. Sirjani, M., Movaghar, A., Shali, A., de Boer, F.: Modeling and verification of
reactive systems using Rebeca. Fundamenta Informaticae 63, 385410 (2004)

16 Purpose-based Policy Enforcement in Actor-based Systems

14. Kabir, M.E., Wang, H.: Conditional purpose based access control model for pri-
vacy protection. In: Proceedings of the Twentieth Australasian Conference on Aus-
tralasian Database, pp. 135-142, Vol. 92, Australia (2009)

15. Ronne, J.: Leveraging Actors for Privacy Compliance. In: Proceedings of the
2nd edition on Programming systems, languages and applications based on actors,
agents, and decentralized control abstractions (AGERE! 2012), pp. 133-136. ACM
New York, (2012)

16. Lohmann, N., Verbeek, E., Dijkman, R.: Petri Net Transformations for Business
Processes A Surveys. In: Jensen, C., Aalst, W.M.P. (eds.) Transactions on Petri
Nets and Other Models of Concurrency II. LNCS, vol. 5460, pp. 46-63. Springer
Berlin Heidelberg (2009)

17. Reisig, W.: Petri Nets, An Introduction. EATCS Monographs on Theoretical Com-
puter Science, Springer-Verlag Berlin Heidelberg (1985)

18. Baeten, J.C.M., Weijland, W.P.: Process Algebra. Cambridge tracts in theoretical
computer science, vol. 18. Cambridge University Press, Cambridge (1990)

19. Web Services Business Process Execution Language Version 2.0, OASIS Stan-
dard, April 11, 2007, OASIS (2007), http://docs.oasis-open.org/wsbpel/2.0/
0S/wsbpel-v2.0-0S.pdf

20. OMG: Business Process Modeling Notation (BPMN) Version 2.0., Object Man-
agement Group (2011), http://www.omg.org/spec/BPMN/2.0/

21. Aalst, W.M.P.: The Application of Petri nets to Workflow Management. The Jour-
nal of Circuits, Systems and Computers, vol. 8, no. 1, pp. 21-66 (1998)

22. Aalst, W.M.P.: Three Good Reasons for Using a Petri-Net-Based Workflow Man-
agement System. Information and Process Integration in Enterprises, Vol. 428, The
Springer International Series in Engineering and Computer Science, pp. 161-182
(1998)

23. Sabouri, H., Sirjani, M.: Slicing-based Reductions for Rebeca. In: Proceedings of
FACSO08, pp. 209-224. Elsevier ENTCS Post-proceedings (2008)

24. RMC (Rebeca Model Checker) tool (2016), http://www.rebeca-lang.org/wiki/
pmwiki.php/Tools/RMC

