
HAL Id: hal-01760858
https://inria.hal.science/hal-01760858

Submitted on 6 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Quality-Aware Reactive Programming for the Internet
of Things

José Proença, Carlos Baquero

To cite this version:
José Proença, Carlos Baquero. Quality-Aware Reactive Programming for the Internet of Things. 7th
International Conference on Fundamentals of Software Engineering (FSEN), Apr 2017, Teheran, Iran.
pp.180-195, �10.1007/978-3-319-68972-2_12�. �hal-01760858�

https://inria.hal.science/hal-01760858
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Quality-Aware Reactive Programming for the
Internet of Things

José Proença? and Carlos Baquero??

HASLab, INESC TEC and Univ. of Minho, Portugal
{jose.proenca,cbm}@di.uminho.pt

Abstract. The reactive paradigm recently became very popular in user-
interface development: updates – such as the ones from the mouse, key-
board, or from the network – can trigger a chain of computations or-
ganised in a dependency graph, letting the underlying engine control
the scheduling of these computations. In the context of the Internet
of Things (IoT), typical applications deploy components in distributed
nodes and link their interfaces, employing a publish-subscribe architec-
ture. The paradigm for Distributed Reactive Programming marries these
two concepts, treating each distributed component as a reactive compu-
tation. However, existing approaches either require expensive synchro-
nisation mechanisms or they do not support pipelining, i.e., allowing
multiple “waves” of updates to be executed in parallel.
We propose Quarp (Quality-Aware Reactive Programming), a scalable
and lightweight mechanism aimed at the IoT to orchestrate components
triggered by updates of data-producing components or of aggregating
components. This mechanism appends meta-information to messages be-
tween components capturing the context of the data, used to dynamically
monitor and guarantee useful properties of the dynamic applications.
These include the so-called glitch freedom, time synchronisation, and
geographical proximity. We formalise Quarp using a simple operational
semantics, provide concrete examples of useful instances of contexts, and
situate our approach in the realm of distributed reactive programming.

Keywords: Reactive programming, component-based systems, pervasive sys-
tems, distributed systems, failure.

1 Introduction

Reactive programming is a paradigm that uses functions defined over streams of
data, rather than the more traditional functions over values. Data sources are
producers of data streams, and functions produce new streams based on their in-
put streams. Producing a new value triggers a wave of functions that process the
? FCT grant SFRH/BPD/91908/2012 and H2020 project 732505 LightKone (2017-19).
?? Project “TEC4Growth - Pervasive Intelligence, Enhancers and Proofs of Con-

cept with Industrial Impact/NORTE-01-0145-FEDER-000020” is financed by the
NORTE 2020 and through the European Regional Development Fund (ERDF).

new values. This paradigm became especially popular among developers of user-
interfaces and reactive web pages [1,2,3,4], helping to manage the dependencies
between updates (from the mouse, keyboard, network, etc.) and the display.

Recent attempts bring this paradigm to a distributed setting [5,6,7], carry-
ing new challenges. Consider, for example, a twitter message (a tweet) being
posted, consequently activating two independent services: one to make the tweet
available, and one to notify all subscribers. Currently it is possible for a twitter
client to be notified without the tweet being made available, leading to a glitch
– a temporarily inconsistent state. In (non-distributed) reactive programming
this is typically solved by scheduling the client execution after the executions of
both the twitter data feeds and the notification engine. However, in a distributed
setting some different, and leaner, coordination approach is required.

Distributed reactive programming [8] can attempt to fix this problem by
adding extra constraints to ensure that all processing occurs on globally coordi-
nated rounds. While this is simple and accurate, strong coordination does not
scale well as more and more components need to agree on an order of execution,
and faster components may have to wait for slower ones to catchup. Distributed
systems are prone to regular failures on message transmission and transient
partitions [9], calling for weaker coordination among components. In networks
of low-resource devices such as the ones used by the LooCI middleware [10],
common in the IoT, computation and communication is kept to a minimum to
preserve energy, and it is often unrealistic to assume reliable communication.

This paper proposes Quarp – quality aware reactive programming – a more
flexible approach to source coordination that rethinks on the amount of out-of-
synchrony that qualifies as a genuine glitch, i.e. one that induces incorrect results.
For instance, when combining slow varying data sources, such as environmental
temperature, sensible outputs can still be derived when measurements are a few
seconds apart. Reducing the synchronization requirements makes the overall
system more resilient and fault tolerant. The key to this is to associate meta-
data to data emitted by a source, and to assume a realistic network infrastructure
where messages are eventually delivered, but can transiently be lost or received
out of order. A tradeoff is to allow data loss, and still be able to progress when
data goes through with sufficient synchronization quality. The alternative, of
trying to act on all data, can easily stall all activity in complex deployments.

The key contributions of this paper are the formalisation of a core reactive
language tailored for the IoT, that: (1) measures the quality of incoming mes-
sages; (2) can guarantee properties such as glitch-freedom; (3) supports more
relaxed notions such as “data sources are located nearby” and “glitch-freedom
with an error margin” ; and (4) can be used in lightweight nodes since it does
not rely on heavy computations or complex coordination protocols.

Organisation of the paper. Section 2 introduces the key challenges addressed by
Quarp via a motivating example. Section 3 formalises the semantics of a simple
pseudo-language for reactive programs: first without quality awareness, and later
extended with quality attributes. Section 4 illustrates the generality of Quarp
by exploring different notions of quality useful in reactive programs. Section 5

t1

t2

w1,2

h1

h2

avgt

avgh

feelsLike

wind

wdw
closeWindow

Fig. 1. Application that reacts to sensor values to either notify to close the window or
to produce a feels-like value.

discusses the key advantages and disadvantages of our approach with respect
to existing approaches to distributed reactive programming. Finally, Sections 6
and 7 present related work and main conclusions, respectively.

2 Motivation: composition of reactive IoT components

We use as a running example a simple distributed reactive application in the con-
text of the Internet of Things (IoT), where different sensors produce values that
are aggregated and displayed by different services. This example motivates our
approach and helps explaining the design choices that influenced our framework.

The reactive application in Figure 1 is composed of: data sources (), ob-
servers (), and mixed components (). The data sources t1, t2 represent
temperature sensors, h1, h2 represent humidity sensors, wind represents a wind
sensor, wdw the open/closed status of a window, and w1,2 produces weights that
capture the relevance of each sensor for averaging. The avgt and avgh services cal-
culate the weighted averages of temperatures and humidity values, respectively.
Finally, the observers closeWindow and feelsLike are capable of producing side
effects, namely to send a warning to close a window and to display a feels-like
temperature value, respectively.

This IoT example illustrates some possible challenges that can occur when
managing dataflows triggered by new values being produced by data sources.
Glitches. A glitch can occur, for example, if w1,2 produces a value, triggering
avgt and avgh to recalculate the averages, and later feelsLike updates its value
after receiving a new value from avgt but before receiving from avgh.
Timestamps. Alternatively, the feelsLike observer may chose to inspect the
timestamps for when the original data sources produced the readings, and decide
on whether these are within an acceptable time window.
Geo-location The physical proximity of the sensors could also be considered
when deciding on whether the input values of feelsLike should be taken together.

Context & Quality
The concept of how good are the input parameters of a given service call, with

respect to the original source of the data, is captured in Quarp by what we call
the context of a message, and the quality of a context. Furthermore, we do not
fix upfront what a context and a quality measurement are. Instead, we specify
simple properties of contexts and operations, and properties of operations that
must be defined over contexts and qualities. We also provide concrete examples
of contexts and qualities that we found useful for reactive programs.

As a running example we will focus on glitch-freedom. We will use a simple
context that labels every message with pairs of values, each containing a globally
unique ID of a data source and the value of a local grow-only counter of the
same data source. Every data source component starts by labelling its published
values with a pair with its ID and counter value; every service that aggregates
data, such as avgt, labels its published values with the joint labels of its input
arguments. These labels are used to provide glitch-freedom guarantees, which is
a typical concern in reactive programming. More complex labels, described later
in this paper, can also include location information and wall-clock time sources.

More generally, contexts are expected to form a commutative monoid, i.e., to
be able to be composed via an associative and commutative operator, and their
associated qualities are expected to form a bounded semi-lattice, i.e., to have a
partial order over possible qualities and to have a minimal quality.

Observe that, since every context is expected to have an associated quality,
one could merge the concepts of context and quality, and require this merged
qualified context to form both a commutative monoid and a bounded semi-
lattice. We decided to keep this split for readability. Our notion of context and
quality is inspired in constraint semirings [11], which possess two binary opera-
tors. One is similar to our composition of contexts, and the other is an idempotent
operator that induces a partial order similar to our bounded semi-lattice.

3 Quarp: Quality-Aware Reactive Programming

We formalise the Quarp framework, generalising the notions of context and qual-
ity, and providing different examples of concrete instantiations for contexts and
qualities. Components in a reactive system receive data by their source ends and
publish data on their sink ends. A component is called a data source if it has no
source ends, observer if it has no sink ends, and mixed component otherwise.

This section starts by formalising reactive programs, followed by an extension
with quality-aware semantics and examples of useful quality metrics.

3.1 Basic reactive programs

A reactive program p is formally a set of component definitions, each written as
c ← func(arg), where func is a function with a list of arguments arg, and each
argument a ∈ arg can be either a constant or a component. Our example in
Figure 1 can be written as in Figure 2, where the interpretation of the functions
is expected to be defined elsewhere. In practice, this abstraction of a reactive
program could be derived from the source code of the individual components.

t1← getTemp("North")
t2← getTemp("South")
w12← getWeights()
h1← getHum("North")
h2← getHum("South")
wdw← getWindowStatus()

wind← getWind()
avgt← calc-avg(t1,t2,w12)
avgh← calc-avg(h1,h2,w12)
closeWindow← notifyWindow(wdw,avgt)
feelsLike← publishFL(avgt,avgh,wind)

Fig. 2. Encoding of the program in Figure 1.

Given a program p we say c2 subscribes to c1, written c1 ≺p c2, if p contains
c2 ← func(...,c1,...). We omit p in ≺ when clear from context. In our example
program we say that the avgt component subscribes to the components t1, t2,
and w12, written t1 ≺ avgt, t2 ≺ avgt, and w12 ≺ avgt. Hence ≺ defines a
dependency graph between components, starting from the source components.
Informal runtime semantics Components communicate via a publish-sub-
scribe mechanism, as in our IoT example. A program starts when a source com-
ponent produces a value to be published. For example, when t1 decides to publish
the value 17. It places the value in an output buffer linked to avgt, representing
the (non order-preserving) network communication. In turn, components like
avgt have input buffers, one for each input, storing their last received value.

The program proceeds when the network atomically transfers one of its values
to an input buffer. In our example, the networks transfers the output value 17
to the input buffer of avgt. Previously stored data in this buffer is overwritten,
even if it was not processed yet by avgt, simulating failure in the communication.

Once the avgt service receives a new value, it checks if all its input values are
ready, i.e., if all their associated input buffers are non-empty. This will only be
the case after both t1 and w12 publish values that arrive to avgt. Upon receiving
an update for one of its buffers, avgt calculates an average value based on its
three parameters and places the result in its output buffer, which buffers data
going to two components: closeWindow and feelsLike.

Note that, even though mixed components and observers can only process
parameters when these are updated, these components can decide to ignore
incoming messages, even if all the buffers are non-empty. This effectively mimics
data being lost, since newer messages override previously received ones.
Formal runtime semantics Let C be the set of all components, D the domain
of data produced by components, PX the set of all sets over X, and MX the set
of all multisets over X. The runtime semantics of a reactive program is modelled
by the evolution of so-called input and output buffers.
– Every source and mixed component c ∈ C has exactly one output buffer,

written outc : C →MD, responsible for storing event data values published
by c until they are consumed by its subscribers.

– Every observer and mixed component c ∈ C has exactly one input buffer,
written inc : C → (D∪{−}), used to store the last value used by each input
of c, whereas “−” represents the absence of a value used by a given input.

inc = ∅

〈I,O〉 ?c−→ 〈I,O〉
(src)

outc ∈ O d ∈ outc(c′)

〈I,O〉 ?c′
−−→ 〈I + (c, d, c′), O − (c, d, c′)〉

(rcv)

〈I,O〉 ?c−→ 〈I ′, O′〉 activeI′ (c) evalI′ (c) = d

〈I,O〉 !c,d−−→ 〈I ′, O′ + (c, d)〉
(pub)

Fig. 3. Operational semantics of basic reactive components.

For example, outw12 = {avgt 7→ {17, 19} , avgh 7→ {19}} means that the compo-
nent avgt has pending values 17 and 19 from w12, and avgh has only a pending
value 19 from w12. Regarding input buffers, incloseWindow = {avgt 7→ 18, wdw 7→
open} means that the component closeWindow has previously used the values 18
and open as input from avgt and wdw, respectively, and incloseWindow = {avgt 7→
18, wdw 7→ −} means that closeWindow never received a value from wdw before.

The use of multisets in input buffers instead of sequences captures the lack of
order guarantees in the sending of messages. The state of a reactive program p
is therefore captured by the set of all input and output buffers Ip and Op in p,
written 〈Ip, Op〉. We write I and O to represent the set of all possible input and
output buffers, respectively, and drop the program p in subscript when clear.

Finally the semantics of a reactive program is given by the rules in Figure 3,
labelled by pairs ?c denoting that c is ready to be executed, and !c, d denoting
that c published the value d. The rule (src) represents a source component be-
coming ready to publish a value, the rule (rcv) represents a data value being
delivered to a given component, and the rule (pub) represents a connector pub-
lishing a given data value. These rules use the auxiliary functions activeI, evalI,
O + (c, d), O − (c, d, c′), and I + (c, d, c′), defined as follows.

• activeI : P C. Predicate that says whether a given component c is active by
checking if all its input buffers contain a value. Formally, c ∈ activeI , also written
as activeI(c), holds if for all c′ ≺ c, inc(c′) 6= −, where inc ∈ I.
Example: activeI(avgt) means that avgt is ready to be executed, i.e., inavgt(t1) 6=
−, inavgt(t2) 6= −, and inavgt(w12) 6= −, where inavgt ∈ I.

• evalI : C → D. Function that, given the current buffers I and a connector c
where c ← func(args), (1) calculates args′ by replacing in args all occurrences
of input components c′ by their last received value inc(c′) (where inc ∈ I), and
returns the result of evaluating func(args′).
Example: evalI(avgt) = 17.6 means that the result of evaluating calc-avg(t1,t2,w12),
after replacing t1, t2, and w12 by the values in I, is 17.6.

• O + (c, d) : O and O − (c, d, c′) : O. Functions that add and remove data to
output buffers in O, respectively. Formally, when outc ∈ O then: (1) O+(c, d) =
{outc + d}∪(O\ {outc}), where outc+d = {cout 7→ (M ∪ d) | (cout 7→M) ∈ outc};
and (2) O− (c, d, c′) = {outc − (d, c′)}∪ (O\ {outc}), where (outc− (d, c′))(e) =
if (e = c′) then outc(e)− {d} else outc(e).

• I + (c, d, c′) : I. Function that updates the buffers I by replacing the
previous value of inc′(c) with d. Formally, when inc′ ∈ I then I + (c, d, c′) =
{inc′ + (c, d)}∪(I\ {inc′}), where (inc′+(c, d))(e) = if (e = c) then d else inc′(e).

Example Consider our running example from Figure 1. Initially the input and
output buffers I and O are empty, defined as follows:

I = {inc | c ∈ {avgt,avgh,closeWindow,feelsLike}}
inc = {c′ 7→ − | c′ ≺ c}
O = {outc | c ∈ {t1,t2,w12,h1,h2,wdw,wind,avgt,avgh}}

outc = {c′ 7→ ∅ | c ≺ c′}

A possible trace that triggers the execution of closeWindow without data losses
or re-orderings is, for some Ik and Ok with k ∈ {1, . . . , 6}:

〈I,O〉 !t1,17−−−→ 〈I1, O1〉 !w12,〈0.6,0.4〉−−−−−−−−→ 〈I2, O2〉 !wdw,open−−−−−→ 〈I3, O3〉
!t2,19−−−→ 〈I4, O4〉 !avgt,17.8−−−−−−→ 〈I5, O5〉 !closeWindow,−−−−−−−−−→ 〈I6, O6〉

If a label starting with ? appears in a trace, it represents a trigger that was never
used by a publish rule, i.e., data that was received but not used. After this trace,
the input and output buffers in the state 〈I6, O6〉 should have updated into the
following ones:

inavgt = {t1 7→ 17, t2 7→ 19, w12 7→ 〈0.6, 0.4〉}
incloseWindow = {wdw 7→ open, avgt 7→ 17.8}

outw12 = {avgt 7→ ∅, avgh 7→ 〈0.6, 0.4〉}
outavgt = {closeWindow 7→ ∅, feelsLike 7→ 17.8}

In this final state w12 and avgt published values that were not delivered yet, and
avgt and closeWindow updated their input buffers with their last received values.

3.2 Adding Quality Awareness

We extend sources and mixed components to produce not only streams of data
d1, . . . , dn, but also to: (1) mark each produced data with a context Γ attribute,
written Γ ` d, and (2) to compute a quality value Q = ([Γ]) of contexts used to
filter low-quality messages.

Context We write G to denote the set of all contexts, and QD to denote the set
of data extended with a context. A data value Γ ` d ∈ QD represents a value d ∈
D that was calculated based on sources with context that were combined into
Γ ∈ G via an associative and commutative operator ⊗. Hence, choosing a monoid
(G,⊗) defines what is a context and how are contexts composed.

Quality We write Q to denote the set of all quality values, and the function
([·]) assigns quality values to contexts. Quality values form a bounded join semi-
lattice (Q,⊕), where the partial order is defined in the usual way: (Q1 ≤ Q2)⇔

(Q1⊕Q2 = Q2). We write Q ∈ Q to range over quality values, and ∅Q to denote
the minimal quality. Hence, choosing the semi-lattice (Q,⊕) defines what is a
quality value and their order, and ([·]) defines how to qualify contexts.

Summarising, different reactive behaviours can be attained by using differ-
ent definitions of the context monoid (G,⊗), the semi-lattice (Q,⊕), and the
qualification function ([·]).

Example: Glitch-freedom
We instantiate the structures G and Q, and the operator ([·]) as follows.

– G = P (C × K) are sets of pairs that associate the (globally unique) ID of
source components to the value of a local grow-only counter. Contexts are
combined via set union, i.e., ⊗ = ∪ with identity ∅.

– Q = {⊥,>} are booleans indicating whether data is has glitches (⊥) or not
(>), and ⊕ = ∨ and ∅Q = ⊥. Observe that ⊕ induces the order ⊥ ≤ >.

– ([Γ]) = ∀(s1, k1), (s2, k2) ∈ Γ · s1 = s2 ⇒ k1 = k2 returns true if the context
is glitch-free, i.e., if the same source is always mapped to the same identifier.

The order of the quality lattice is used by the runtime semantics (below), by
allowing only values with a certain minimal quality Qmin to be published, and
discarding the data value otherwise. In this glitch-freedom example, a sensible
Qmin would be >, meaning that only glitch-free values can be published.

Using the IoT running example with this glitch-freedom context, assume this
program starts by t1, t2, and w12 publishing the values 17, 19, and 〈0.6, 0.4〉,
respectively. Using quality-awareness, each of these values are marked with a
context value, e.g., {(t1, 0)} ` 17, {(t2, 0)} ` 19, and {(w12, 0)} ` 〈0.6, 0.4〉. The
service avgt, upon receiving these three values, combines their contexts calcu-
lating {(t1, 0)} ⊗ {(t2, 0)} ⊗ {(w12, 0)}, obtaining Γ = {(t1, 0), (t2, 0), (w12, 0)}.
It then calculates the quality of this context ([Γ]) = >, indicating that the com-
bined context is glitch-free (Qmin ≤ ([Γ])). This gives green light to proceed, i.e.,
avgt will calculate calc-avg(17,19,(0.6,0.4)) = 17.8 and publish Γ ` 17.8 to its
buffer linked to closeWindow and feelsLike.

If, at some point in the execution, feelsLike receives Γ ` 17.8 from avgt and
some value Γ ′ ` v from avgh, it will combine Γ ⊗ Γ ′ and calculate its quality.
This quality will yield > if and only if Γ ′(w12) = 0, i.e., if the only shared
data source of avgt and avgh (w12) has the same associated counter value (0).
Otherwise ([Γ ⊗ Γ ′]) = ⊥ and feelsLike does not publish a new value.

Formal runtime semantics This subsection extends the previous runtime
semantics from Section 3, extending the domain from D to QD. The minimum
quality for publishing a value is a globally defined constant Qmin, such that
Qmin ≤ Q means that the quality Q is good enough for publishing.

In this extended semantics the output buffer of each component c is now over
QD, i.e., c : C → PQD. The functions activeI , evalI , O + x, O − x, and I + x
are trivially adapted to data values in QD where necessary, and we replace the
rule (pub) by two new rules that publish only when the minimal quality is met.
For example, d ∈ outc(c′) is now written as Γ ` d ∈ outc(c′).

〈I,O〉 ?c−→ 〈I ′, O′〉 activeI′ (c) evalI′ (c) = d
cxtI′ (c) = Γ Qmin≤ ([Γ])

〈I,O〉 !c,(Γ ` d)−−−−−−→ 〈I ′, O′ + (c, (Γ ` d))〉
(pubX)

〈I,O〉 ?c−→ 〈I ′, O′〉 activeI′ (c)
cxtI′ (c) = Γ Qmin� ([Γ])

〈I,O〉 !c,−−−→ 〈I ′, O′〉
(pub7)

Fig. 4. Publishing rules for the quality-aware extension.

The new quality-aware semantics uses the same rules (src) and (rcv) as before
(replacing d by Γ ` d), and the rule (pub) is replaced by the two new rules in
Figure 4, which describe how (and when) components publish data values with
context information. As before, the auxiliary functions used by these rules cxtB

and Qmin are presented below.

• cxtI : C → G. Function that, given an active component c, collects all contexts
from its inputs and returns their combination with ⊗. Formally, when inc ∈ I
then cxtI(c) =

⊗
c {Γ | c′ ≺ c, ∃d ∈ D · inc(c′) = (Γ ` d)}, where

⊗
c ∅ = Γc

(with Γc being the context of the source component c), and
⊗

c {Γ1, . . . , Γn} =
Γ1 ⊗ . . .⊗ Γn (with n > 0).
Example: cxtI(t1) = {(t1, 1)} means that the current context of t1 is {(t1, 1)},
and cxtI(avgt) returns the combined context Γ1⊗Γ2⊗Γ3, where inavgt(t1) = Γ1 `
d1, inavgt(t2) = Γ2 ` d2, and inavgt(w12) = Γ3 ` d3, for some d1, d2, d3 ∈ D.

• Qmin : Q. Globally defined minimum quality required to publish a value.
Example: Following our glitch-freedom example, let Q ∈ {⊥,>} and ⊕ = ∨,
inducing ⊥ ≤ >. Hence, Qmin = > means that, if Qmin ≤ x, then x must be >.

4 Beyond Glitch-Freedom: Modelling Different Contexts

Glitch-freedom is one possible distributed property that can be guaranteed dy-
namically using contexts in reactive programs. This mechanism to discard mes-
sages that violate a minimal quality standard can be applied to a variety of
quality notions. This section presents three of these.

Geographical location The context of a value produced by a data source
is now either (1) a pair of values with the geographical location where the data
value was produced, or (2) the identity context if the notion of location does not
apply. Combining contexts means collecting all possible locations, and they are
ordered by size of the smallest bounding square, i.e., better quality means closer
by locations. More precisely:

– G = P (R×R) – a context is a set of coordinates that influenced the published
value. Here ⊗ = ∪ and ∅ is the identity.

– Q = R≥0 ∪ {∞} – a quality value is a non-negative number measuring the
size of the smallest bounding square that contains all coordinates, ⊕ = min,
and ∅Q = ∞. Observe that smaller square means better quality, hence ⊕
induces a reversed order v, i.e., v1 v v2 iff v2 ≤ v1.

– ([Γ]) = (max(π1(Γ)) − min(π1(Γ)))2 + (max(π2(Γ)) − min(π2(Γ)))2, where
π1 and π2 return the first and second values of the pairs in a given list,
respectively, returns the (square of) the diagonal of the smallest square that
can contain all coordinates.

– ([∅]) = 0, which captures the ideal quality.

Using these definitions of G andQ one needs only to specify a minimal quality
Qmin defining the maximal accepted distance between input sources so a value
can be published. Furthermore, data sources without an associated location (such
as w12) can simply produce the empty context ∅.

In our example, assume we define Qmin = 10 (for some distance unit) and
t1, t2, w12, h1, h2 publish the values, respectively, {(2, 3)} ` 17, {(4, 2)} ` 19,
∅ ` 〈0.6, 0.4〉, {(16, 18)} ` 56, and {(18, 20)} ` 58. In this case, both services avgt
and avgh are able to publish a value with an acceptable quality. For example, avgt
will publish a value with context Γ = {(2, 3), (4, 2)}, which has the associated
quality ([Γ]) = 22 + 12 = 5 (and 10 v 5, i.e., 5 ≤ 10). However, the service
feelsLike is not able to publish a value with the data from these sensors: the
combined context would be {(2, 3), (4, 2), (16, 18), (18, 20)}, which has a quality
of 162 + 182 = 580, wich is worse than the minimal quality 10.
Relaxed glitch-freedom This example relaxes the notion of glitch freedom,
by introducing tolerance with respect to the counters used for glitch freedom. I.e.,
small glitches are ignored and allowed, whereas a small glitch is found whenever
counters from the same source data are close enough. G and Q are defined as
before, and a fix tolerance value is used to assign a quality to contexts.

– G = P (C×K) are the same as before: pairs that associate the globally unique
ID of source components to the value of a local grow-only counter, and
⊗ = ∪. Unlike with strict glitch-freedom, the values in K must have a total
order and there must be a distance dist(k1, k2) defined between counters.

– Q = {⊥,>} are also the same: booleans indicating whether data is (relaxed)
glitch-free (>) or not (⊥).

– ([Γ]) = ∀(s1, k1), (s2, k2) ∈ Γ · s1 = s2 ⇒ dist(k1, k2) ≤ tolerance – returns
true if the distance between counters from the same data source do not differ
more than the pre-defined value tolerance.

In our example, start by defining K to be the natural numbers, dist(k1, k2) =
abs(k1 − k2), and tolerance = 1. This choice means that counters for the same
counter in different arguments can differ up to 1. For example, if feelsLike

receives an argument from avgt whose context maps w12 to a counter value ahead
by 1 from the counter of the previously received argument from avgh, the service
will still react to this input.
Wall-clock difference In some scenarios the hardware platform provides
a highly accurate wall-clock among distributed data sources, guaranteeing that
their internal clock is consistent up to a small error.1 Here one may use a context
1 This is true, for example, for modules using SmartMesh IPTM (http://www.linear.
com/products/smartmesh_ip).

http://www.linear.com/products/smartmesh_ip
http://www.linear.com/products/smartmesh_ip

with a pair of bounds with the smallest and the largest timestamps, and require
their difference to be smaller than a fixed threshold. More precisely:

– G = PTS sets of relevant timestamps. Unlike in the other cases, there is no
reference to the associated data source. As before, ⊗ = ∪.

– Q = R≥0∪{∞} is a positive number denoting the largest time difference be-
tween timestamps. Similarly to geo-location, smaller values represent higher
qualities: ⊕ = min and ∅Q =∞.

– ([Γ]) = max(Γ) − min(Γ), where max(∅) = ∞ and min(∅) = 0, returns the
largest difference between timestamps.

In our example, assume that our tolerance is 5 seconds, i.e., Qmin = 5s, and that
t1, t2, w12, h1, h2 publish the values, respectively, {13:10:20} ` 17, {13:10:21} `
19, ∅ ` 〈0.6, 0.4〉, {13:15:00} ` 56, and {13:15:03} ` 58. This means that tem-
peratures and humidities are published around 5 minutes apart, the update time
of the stamps is neglectable, and pairs of the same kind of sensors are less than
5s apart. Hence, both services avgt and avgh are able to publish a value with an
acceptable quality, but the service feelslike will fail to publish a value because
the combine context will be {13:10:20, 13:10:21, 13:15:00, 13:15:03}, which has an
associated quality of more than 5 seconds.

Combining dimensions Given any two different choices for context G1, G2
and for quality Q1, Q2, these can be merged into a new context monoid G12 and
quality metric Q12 as follows.

– G12 = G1×G2 are pairs with an element from the first context and an element
from the second one.

– Q12 = Q1 × Q2 are again pairs from both qualities, where (q1, q2) ⊕12
(q′1, q′2) = (q1 ⊕1 q

′
1, q2 ⊕2 q

′
2) and ∅Q = (∅Q1, ∅Q2). Observe that (q1, q2) ≤

(q′1, q′2) when q1 ≤ q′1 and q2 ≤ q′2.
– ([(Γ1, Γ2)])12 = (([Γ1])1, ([Γ2])2) simply applies the encodings of each context.

One can easily prove that G12 is indeed a commutative monoid and thatQ is a
bounded semi-lattice. This allows the combination of any set of desired contexts;
for example, one may want to have both glitch-freedom and geographical bounds.

5 Discussion

The Quarp approach for distributed reactive programming takes inspiration in
algorithms for distributed systems that manage eventually consistent structures,
such as CRDTs [12]. It does so by appending extra meta-information to messages
that is used to help local nodes to react appropriately to inputs.

Unlike other approaches to distributed reactive programming (DRP) [6,5,13],
we claim to be more scalable, more dynamic, and better suited for non-reliable
communication. The cost for these desired properties is the possible loss of some
values, as explained below. To support these claims we start by introducing some
existing DRP approaches, and discuss each claim individually.

REScala [5,13] Drechsler et al. present an algorithm to implement distributed
glitch-freedom in reactive programs, called SID-UP, and include a careful com-
parison with other approaches with respect to: (1) the number of steps, each
consisting of a round of messages from a set of components to another set of
components, and (2) the number of messages sent. Their algorithm makes the
strong assumption that rounds are synchronised, i.e., the algorithm does not sup-
port pipelining: a round starts when a set of data sources publish some value,
and it ends when no more messages are pending – a new round can only start af-
ter the previous round finished. The comparison approaches are Scala.React[14],
Scala.Rx,2 and a variation of ELM [2] that supports dynamic updates of the
topology of the reactive program (but does not support pipelining). Their ap-
proach and evaluation focuses exclusively on the performance of a single round,
while Quarp focuses on the performance of multiple (concurrent) rounds, where
pipelining is a must. Dynamic updates to the topology are not problematic in
Quarp because of the lack of a clear notion of round, and because the eventual
loss of messages during reconfiguration is already tolerated by Quarp, effectively
allowing for more unrestricted forms of reconfiguration than SID-UP.

DREAM [6] Is a Java distributed implementation with an acyclic overlay
network of brokers that support publish-subscribe communication. The com-
munication sub-system provides reliable message transmission by buffering and
re-transmission of messages, and in this case the sub-system uses point-to-point
TCP connections to provide basic FIFO properties. Several consistency guar-
anties are provided, ranging from causal consistency to a globally unique order of
delivery by way of a central coordinator. Comparatively to Quarp, the DREAM
approach is more rigid when it comes to dynamic reconfiguration. Reliable mes-
sage delivery can require considerable buffering in the communication subsystem
and can stale system availability when the network is dropping messages. In con-
trast Quarp has much weaker requirements on the communication middleware.
It allows message loss and re-ordering while still enabling the system to progress
when messages get received and the required quality criteria is met.

Scalability in Quarp Our proposed approach can scale up to a large number
of components under the assumption that the size of the contexts does not grow
too much. For example, our glitch-freedom implementation combines the local
counters of all involved data sources, which behaves well with large chains of
dependent components, but may require some attention when the number of de-
pendent data sources is large. Observe that the generality of our approach allows
customisation, e.g., defining the combination of contexts to create abstractions
that hide information regarded as unnecessary. When compared with the above
approaches, Quarp brings a large improvement with respect to the size of sup-
ported applications, since there is no need to either lock every round of data
propagation (as in REScala), nor to require certain nodes to have full knowledge
of the dependency graphs (as in DREAM). This advantage derives from the re-
laxation made that locally found inconsistencies (regarded as low quality inputs)
2 https://github.com/lihaoyi/scala.rx

https://github.com/lihaoyi/scala.rx

do not need to be fully solved, but can simply be blocked and ignored. I.e., when
an issue such as a glitch is found, the input is ignored without guarantees that
future messages will solve this glitch.

Dynamicity in Quarp Support for dynamic updates of the dependency
among components was regarded as a key requirement from REScala. So much
that the evaluation used a modified version of ELM’s propagation algorithm that
adds support for dynamic updates at the cost of losing support for pipelining,
i.e., of allowing multiple rounds to be executing in parallel. In Quarp dynamic
updates are trivially supported, again due to the fact that it accepts the possible
loss of messages as part of the intended semantics.

Failure handling in Quarp Unlike other approaches for distributed reac-
tive programming, Quarp uses the basic assumption that messages can be lost
(and re-ordered). Lost messages are not resent – instead Quarp assumes newer
messages will be more relevant, and does not try to recover from failures. This
approach targets systems such as the Internet of Things, where the cost of main-
taining a reliable communication is often too high or infeasible (due to mobility).
Furthermore, orthogonal approaches to support reliable communication, such as
TCP/IP, can be safely used with Quarp.

6 Related Work

Reactive programming is a form of event-driven programming that deals with
propagating change through a program by representing events as time-varying
values. Its most popular versions are not concurrent, focusing on local reactive
programming on a single network node and dealing with functional transforma-
tions of time-varying values [8]. Several approaches exist on top of object-oriented
languages [15,16], functional languages [2,16], and in the context of web-based
applications [1,2,3]. Most approaches enforce glitch freedom, ensuring that a
node in a dependency graph is updated only after all its antecedents are.

Distributed Reactive Programming (DRP) deals with time-varying inputs,
distributed over multiple network nodes, and with the management of depen-
dencies between concurrent components. In a distributed setting, the problem of
glitch freedom is of crucial importance, since inconsistencies may endure due to
network partitioning. Carreton et al. [17] integrate DRP with the actor model,
but do not support glitch freedom. Drechsler et al. [5] propose an efficient algo-
rithm that enables glitch free DRP for distributed programs with strong network
guarantees, but not considering highly dynamic networks, network failures and
partitioning. Margara and Salvaneschi [6] propose a Java-based framework that
offers multiple layers of consistency each having their impact on performance. It
supports glitch-freedom, but under a significant performance penalty.

Another body of related work on DRP are reactive frameworks or languages
for web programming, such as Meteor,3 Play,4 Flapjax [1], Elm [2], and Re-
3 www.meteor.com
4 www.playframework.com

www.meteor.com
www.playframework.com

act.JS [3]. These are usually two-tier, client-server applications where change
either originates from user interaction with the DOM (e.g., clicking buttons) or
by server acknowledgements. The server and DOM elements are considered the
time-varying values. Even though events may originate on a remote node (the
server), the reactive program actually resides on the client and the distribution
of logic is therefore much simpler than in truly distributed reactive programs.

Quarp proposes a new approach to distributed reactive programming that
allows individual nodes to locally identify glitches. Glitches are not only identified
but also measured, based on meta-information aggregated to events. By selecting
relevant properties over measurements and over such meta-information, tradeoffs
can be made between performance and quality of the produced values. This
approach suits well cyber-physical systems because it avoids global synchronisers
or schedulers, and supports aspects such as dynamic reconfiguration.

Observe that, in the context of the IoT, other formalisations have been pro-
posed, many as calculus of concurrent nodes [18,19]. These focus on how to
accurately describe existing IoT systems and on how to reason about notions
such as behaviour equivalences. Quarp does not explore properties of the pre-
sented formal semantics; instead it experiments with a new approach to think
and design distributed applications for networks of resource-constrained devices:
by separating the concerns of reactive components with dependencies on other
components, from when to decide when data is good enough to be used.

7 Conclusion and future work

This paper proposes Quarp – a quality aware approach for distributed reactive
programming. This approach investigates how reactive languages could be used
to program distributed applications for the Internet of Things (IoT), taking into
account the presence of resource-constrained devices, high mobility, and unre-
liable communication. Furthermore, data from sensors have often some redun-
dancy (older values are less important than new ones), making current reactive
paradigm too synchronization heavy, possibly leading to never-ending waits for a
message that has been lost. Our solution is to locally find unwanted inconsisten-
cies, discarding data when they are found. Quarp is general enough to capture a
range of possible inconsistencies, using attributes that must be “good enough” to
be considered consistent. Hence Quarp, by not requiring messages to be always
delivered, provides better performance (no need to agree with neighbours), scala-
bility (large number of components can be executing in parallel), and availability
(the system does not deadlock upon lost messages), while still guaranteeing that
the messages are consistent, for some relaxed notion of consistency.

Our future work is two fold. On one hand we plan to apply Quarp to a con-
crete domain, exploring instances of quality attributes and performing a com-
prehensive evaluation. On the other hand we expect to use our formalisation to
reason about reactive programs, e.g., defining notions of bisimulation to compare
or minimize programs, to prove properties over reactive programs in Quarp.

References

1. L. A. Meyerovich, A. Guha, J. P. Baskin, G. H. Cooper, M. Greenberg, A. Brom-
field, and S. Krishnamurthi, “Flapjax: a programming language for ajax applica-
tions,” in OOPSLA. ACM, 2009, pp. 1–20.

2. E. Czaplicki, “Elm: Concurrent FRP for functional GUIs,” Master’s thesis, Har-
vard, 2012.

3. C. Gackenheimer, “What is react?” in Introduction to React. Springer, 2015, pp.
1–20.

4. B. Reynders, D. Devriese, and F. Piessens, “Multi-tier functional reactive program-
ming for the web,” in Onward! ACM, 2014, pp. 55–68.

5. J. Drechsler, G. Salvaneschi, R. Mogk, and M. Mezini, “Distributed rescala: an
update algorithm for distributed reactive programming,” in OOPSLA. ACM,
2014, pp. 361–376.

6. A. Margara and G. Salvaneschi, “We have a DREAM: distributed reactive pro-
gramming with consistency guarantees,” in DEBS. ACM, 2014, pp. 142–153.

7. G. Salvaneschi, A. Margara, and G. Tamburrelli, “Reactive programming: A walk-
through,” in ICSE (2). IEEE Computer Society, 2015, pp. 953–954.

8. E. Bainomugisha, A. L. Carreton, T. v. Cutsem, S. Mostinckx, and W. d. Meuter,
“A survey on reactive programming,” ACM Comput. Surv., vol. 45, no. 4, pp.
52:1–52:34, Aug. 2013.

9. P. Bailis and K. Kingsbury, “The network is reliable,” Commun. ACM, vol. 57,
no. 9, pp. 48–55, Sep. 2014.

10. D. Hughes, K. Thoelen, J. Maerien, N. Matthys, J. Del Cid, W. Horre, C. Huygens,
S. Michiels, and W. Joosen, “LooCI: The loosely-coupled component infrastruc-
ture,” in proceeding of NCA, 2012, pp. 236–243.

11. S. Bistarelli, U. Montanari, and F. Rossi, “Semiring-based constraint satisfaction
and optimization,” J. ACM, vol. 44, no. 2, pp. 201–236, Mar. 1997.

12. M. Shapiro, N. M. Preguiça, C. Baquero, and M. Zawirski, “Conflict-free replicated
data types,” in SSS, ser. Lecture Notes in Computer Science, vol. 6976. Springer,
2011, pp. 386–400.

13. J. Drechsler and G. Salvaneschi, “Optimizing distributed REScala,” in Workshop
on Reactive and Event-based Languages & Systems (REBLS), 2014.

14. I. Maier and M. Odersky, “Deprecating the Observer Pattern with Scala.React,”
École Polytechnique Fédérale de Lausanne, Tech. Rep. EPFL-REPORT-176887,
May 2012.

15. G. Salvaneschi, G. Hintz, and M. Mezini, “REScala: Bridging between object-
oriented and functional style in reactive applications,” in Proceedings of the 13th
international conference on Modularity. ACM, 2014, pp. 25–36.

16. A. Courtney, “Frappé: Functional reactive programming in java,” in PADL, ser.
Lecture Notes in Computer Science, vol. 1990. Springer, 2001, pp. 29–44.

17. A. L. Carreton, S. Mostinckx, T. V. Cutsem, and W. D. Meuter, “Loosely-coupled
distributed reactive programming in mobile ad hoc networks,” in TOOLS (48),
ser. Lecture Notes in Computer Science, vol. 6141. Springer, 2010, pp. 41–60.

18. I. Lanese, L. Bedogni, and M. D. Felice, “Internet of things: a process calculus
approach,” in SAC. ACM, 2013, pp. 1339–1346.

19. R. Lanotte and M. Merro, “A semantic theory of the internet of things - (extended
abstract),” in COORDINATION, ser. Lecture Notes in Computer Science, vol.
9686. Springer, 2016, pp. 157–174.

	Quality-Aware Reactive Programming for the Internet of Things

