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Introduction 

 

Various publications have proposed machine learning approaches to classify and predict  

Alzheimer’s disease (AD) from neuroimaging data (e.g. Rathore et al, 2017; Jie et al, 2015; 

Cuingnet et al, 2013; Young et al, 2013; Fan et al, 2008; Klöppel et al, 2008). The vast 

majority make use of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) public dataset. 

However, such studies usually differ in terms of: i) subsets of subjects; ii) image processing 

pipelines; iii) feature extraction and selection; iv) machine learning algorithms; v) cross-

validation procedures and vi) reported evaluation metrics. These differences make it, in 

practice, impossible to determine which methods perform the best and difficult to assess 

which contributions provide a real classification improvement, e.g. a specific image 

processing or classification algorithm. We propose a framework for the reproducible 

evaluation of machine learning approaches in AD. The main contributions are a framework 

for management of three public datasets: ADNI, the Australian Imaging Biomarker and 

Lifestyle study (AIBL) and the Open Access Series of Imaging Studies (OASIS) and a 

modular set of preprocessing pipelines, feature extraction and classification methods, 



 

together with an evaluation framework that provides a baseline for benchmarking the 

different components. The present work extends that of (Samper-González et al, 2017) by 

including more datasets (AIBL, OASIS), more feature types and more classification 

algorithms. We demonstrate the use of the framework for comparison of different classifiers, 

features and imaging modalities. 

 

Methods 

Despite their incontestable value, AD public datasets such as ADNI and AIBL do not rely on 

community standards for data organization and lack a clear structure. This poses a 

significant setback on their immediate use. We provide code that performs the conversion of 

the data as they were downloaded for ADNI, AIBL and OASIS into Brain Imaging Data 

Structure (BIDS) format (Gorgolewski et al., 2016), which is a community standard. This 

allows direct reproducibility by other groups without having to redistribute the dataset. Tools 

for subject selection according to imaging modalities, duration of follow up and diagnoses 

are provided. 

A T1 MRI processing pipeline was implemented using SPM, involving tissue segmentation, a 

DARTEL group template creation, registration to MNI space, optional smoothing and 

regional parcellation. For PET images, a pipeline performing an optional partial volume 

correction (PVC) step, spatial normalization, computation of standardized uptake value ratio 

(SUVR) maps and parcellation was developed. A BIDS-inspired standardized structure was 

defined for the pipelines’ outputs. 

We proposed an evaluation framework consisting of three layers: i) an input to select the 

imaging modality and the features (regions or voxels); ii) a cross validation method (we 

performed 250 runs of stratified random splits with 70% as training set); iii) a classification 

algorithm (SVM, L2 Logistic regression and Random Forest). Accuracy, balanced accuracy, 

AUC, sensitivity, specificity and subjects predicted class are reported. 

 

Results 

We found that FDG PET provides better classification results than T1 MRI for all the tasks 

and features tested, and that random forest systematically performs worse than SVM and L2 

logistic regression (Fig 1). All the voxel-based classifications results are shown in Fig 2. We 

observed that ADNI trained SVM classifiers generalize well when tested on AIBL and OASIS 

datasets. Of note, they perform better than those trained on AIBL and OASIS, probably 

because of ADNI’s larger number of patients. 

 

  

Conclusions 

We proposed a framework for the evaluation of machine learning algorithms that could prove 

a useful tool for improving comparability and reproducibility in AD classification. The new 

version of the code will be made publicly available at the time of the conference at 

https://gitlab.icm-institute.org/aramislab/AD-ML. 
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