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Preface

Runtime verification (RV) is a lightweight, yet rigorous, formal method for the
monitoring and analysis of the runtime behaviour of software and hardware sys-
tems. RV complements classical exhaustive verification techniques (such as model
checking and theorem proving) with a more practical approach that analyses a
single execution trace of a system. At the price of a limited execution coverage,
RV can give very precise information on the runtime behaviour of the monitored
system. RV is now widely employed in both academia and industry both before
system deployment, for testing, verification, and debugging purposes, and after
deployment to ensure reliability, safety, robustness and security.

The interest on this field of research has grown since 2001 when the first
international workshop on RV was organized. This venue has occurred each year
since then, becoming a conference in 2010. In 2014, we have initiated the in-
ternational Competition on Runtime Verification (CRV) with the goal to foster
the comparison and evaluation of software runtime verification tools. In the
same year, a European scientific network for the COoperation in Science and
Technology (COST) on ”Runtime Verification beyond Monitoring (ARVI)” was
approved and funded within the European framework programme Horizon 2020.
ARVI currently includes the participation of scientists from 26 European coun-
tries and Australia. In 2016, together with other partners of ARVI, we have also
started to organize the first of a series of Schools on RV. Our aim is to train
the researchers from academia and industry introducing them first to the basic
concepts and then to the advanced topics of this exciting research area.

The idea of this book originated from the need to have an handbook for
students to support their training with several tutorials on di↵erent aspects of
RV. The volume has been organized into seven chapters and the topics covered
include an introduction on runtime verification, dynamic analysis of concurrency
errors, monitoring events that carry data, runtime error reaction and prevention,
monitoring of cyber-physical systems, runtime verification for decentralized and
distributed systems and an industrial application of runtime verification tech-
niques in financial transaction systems.

November 30, 2017 Ezio Bartocci
Ylies Falcone
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Introduction to Runtime Verification

Ezio Bartocci1, Yliès Falcone2, Adrian Francalanza3, and Giles Reger4
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2 Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP,

Laboratoire d’Informatique de Grenoble, F-38000 Grenoble, France
3 University of Malta, Msida MSD2080, Malta

4 University of Manchester, Manchester, UK

Abstract. The aim of this chapter is to act as a primer for those wanting to learn about Runtime Verification
(RV). We start by providing an overview of the main specification languages used for RV. We then introduce
the standard terminology necessary to describe the monitoring problem, covering the pragmatic issues of
monitoring and instrumentation, and discussing extensively the monitorability problem.

1 Introduction

The field of Runtime Verification (RV) has been, and is still, referred to by many names such as runtime mon-
itoring, trace analysis, dynamic analysis etc. The term verification implies a notion of correctness with respect
to some property. This is somewhat different from the term monitoring (the other popular term) which only
suggests that there is some form of behaviour being observed. Some view the notion of monitoring as being
more specific than that of verification as they take it to imply some interaction with the system, whereas ver-
ification is passive in nature. At this early point in this chapter we would like to note that the community is
not in agreement about the various meanings of certain terminology, such as the difference between runtime
verification and runtime monitoring. We take a popular interpretation in this chapter, but the reader will most
likely encounter alternative views in the literature.

RV is a lightweight, yet rigorous, formal method that complements classical exhaustive verification tech-
niques (such as model checking and theorem proving) with a more practical approach that analyses a single
execution trace of a system. At the price of a limited execution coverage, RV can give very precise information
on the runtime behaviour of the monitored system. The system considered can be a software system, hard-
ware or cyber-physical system, a sensor network, or any system in general whose dynamic behaviour can be
observed. The archetypal analysis that can be performed on runtime behaviour is to check for correctness of
that behaviour. This is also the main activity considered in this chapter. However, there are many other analyses
(e.g., falsification analysis [22]) or activities (e.g., runtime enforcement [81]) that can be performed, as it will be
discussed elsewhere in this handbook. RV is now widely employed in both academia and industry both before
system deployment, for testing, verification, and debugging purposes, and after deployment to ensure reliability,
safety, robustness and security.

The RV field as a self-named community grew out of the RV workshop established in 2001, which became a
conference in 2010 and occurs each year since then. In 2014, we have initiated the international Competition on
Runtime Verification (CRV) [17, 23] with the aim to foster the comparison and evaluation of software runtime
verification tools. In the same year, a European scientific network for the COoperation in Science and Technol-
ogy (COST) on Runtime Verification beyond Monitoring (ARVI) was approved and funded within the European
framework programme Horizon 2020. ARVI currently includes the participation of scientists from 26 European
countries and Australia. In 2016, together with other partners of ARVI, we have also started to organize the first
of a series of Schools on RV. However, it is worth noting that the research on monitoring techniques has been
around for a very long time and it is present in other communities where it is not referred to in the same terms
as it is here, even if the process is the same.

In this chapter we introduce the field of RV covering the basic concepts and the standard notions of mon-
itoring. We have not attempted to make a full survey of all related work, but we refer to the main relevant
literature [78, 101, 113, 141].



When considering how to check whether the runtime behaviour of a system conforms to some specification
there are three necessary steps to be taken:

1. Specifying (Un)Desired System Behaviour. Section 2 considers how system behaviour can be abstracted in
terms of events and traces and how specification languages can be used to describe properties of such traces.

2. Generating a Monitor from a Specification. Section 3 considers the monitoring problem and various issues
that must be dealt with during monitoring.

3. Connecting a Monitor to a System. Section 4 considers how various instrumentation approaches can be
used to extract the information necessary for monitoring from a running system.

We are also interested in the question of what can and cannot be monitored; this is addressed in Section 5.
Even though this question seems more theoretical, it determines what sorts of properties can be handled with
runtime verification. We provide an overview of all the chapters of this handbook in Section 6 and we conclude
in Section 7.

2 Formal Specification of the System Behaviour

This section introduces the reader to different formal approaches to describe the expected behaviour of a system.
We start by presenting various abstractions enabling to reason about the system behaviour at different level of
detail. We then present some specification languages after having discussed first some general properties of
these formalisms.

Example 1 (Traffic Lights). Throughout this section we choose as our running example a traffic light system.
This system consists of three lights of different colors: green, red, yellow. We then consider how to specify the
expected behaviour of such a system using different formalisms.

2.1 The Abstract Notion of Behaviour

When we consider the behaviour of a system we are referring to the way the system changes over time, by up-
dating some internal state, taking some internal or external action, or affecting the environment in some way. We
typically describe this behaviour in terms of the observations we can make about it. There are two general kinds
of observations we can make: either we inspect some snapshots of the current state of the system at a particular
time, or we record certain actions or state changes made by the system (where the system in question may
include the environment). Below we describe how we will abstract systems in terms of the observations (events)
we can make about them over time (giving a trace) and how we describe behaviour using these abstractions.

Events. We will call any kind of observation about the system an event. In the simple case an event is a name
for something that can happen, for example lightTurnsGreen, lightBrightnessIs80 or pedestrianButtonPressed.
In the more complex case an event could be structured, containing data values of interest. We do not cover this
complex case here but it is discussed in Chapter 3. Note that we make a distinction between events as syntactic
elements and what they denote semantically. For example, an event temperatureLimit may correspond to a
sensor detecting that the temperature is at or above 20�C. We separate the representation of this event and the
process of recording/detecting and reporting it (Section 4 describes how we practically observe systems).

In this presentation events are discrete atomic entities, but there are two alternative views that are taken in
various work. Firstly, some work considers an event as having a duration, i.e., a start and end time. This can
be easily translated into the setting where events are atomic by introducing associated start and end events. For
example, we might have the event lightGreen at one level of abstraction, but lightGreenOn and lightGreenOff
at another level of abstraction. Secondly, in languages specified over continuous time events can be viewed
as signals that can be queried for a value. We discuss this setting in more detail later. Where an alternative
interpretation of event is being taken we will be explicit in the text.

We will call a system’s observable events of interest its alphabet. We stress of interest as there are potentially
an infinite number of different ways of describing an event but typically we are only interested in a small (at
least usually finite) set of such events.



It is clear that the choice of events is fundamental in how much information we have about a system and the
properties we can describe. Events can be defined at different levels of abstraction, be about internal or external
behaviour, may cover the whole system or one specific part, and may not correspond directly with existing
components or actions defined in the system. The choice of events is part of the specification process and will
depend on what the end goal is.

We note that this choice of abstracting systems in terms of events rather than states is a distinction that is
different from (but compatible with) the work of model checking. As with many things, not all work in RV uses
the event abstraction and some work may view an execution as a sequence of observed states.

Traces. We use events to abstract a particular observation about a system. We abstract the behaviour of a single
run of a system as a trace, which is a (finite) sequence of events (or sets of events) [130]. Clearly, an observable
trace of a system must be finite, but it is sometimes useful to think about the possible infinite behaviours of a
system. As discussed later, when viewing a trace as a finite prefix of some possible infinite behaviour we can ask
whether the finite prefix can be extended to some acceptable infinite trace. Another key choice in structuring
a trace is whether each point in the trace consists of a single event or a set of events. The single event view
is often more straightforward, but it does not easily allow for settings where multiple observations may occur
concurrently (and it does not make sense to coalesce them) or the exact ordering of events within a particular
time frame is unclear (or unhelpful to enforce). This choice may seem arbitrar.y but it has an impact on the
interpretation of specifications as those languages assuming a single event at a time implicitly include extra
axioms, i.e., seeing one event precludes seeing any other. Finally, different approaches treat the notion of time
differently. The order of events in a trace gives a qualitative notion of time, but it does not immediately capture
any quantitative distance (in time) between events. We discuss the different approaches for embedding time into
traces later.

Properties and Specifications. A property of a system can be abstractly described as a (possibly infinite) set of
traces. A specification is a concrete (textual) object describing a property and therefore it denotes a set of traces.
We have chosen to distinguish properties from specifications as the distinction can be important. However, this
distinction is not universal in the literature. Note that the full behaviour, or intended behaviour, of a system may
be given as a property. However, this will always be restricted by the event abstractions chosen and it is usually
not the aim to describe total behaviour but key behaviour at a level of abstraction that is useful.

Using this separation we can have many specifications for a single property, but a property is unique and
independent of a specification language. If the specification language is ambiguous (e.g., English) then the
specific property being described may not be clear. Dealing with such ambiguities is a common issue in the
specification process. Generally we expect a specification language to be unambiguous, at least in terms of
the traces its specifications denote. We note that most work in the area conflate the notions of property and
specification, and we may do so here. This is due to the fact the specification is the only object that exists
concretely and it is often used to represent its underlying property.

A somewhat alternative distinction that some make between property and specification is that a property
describes a unit of behaviour whilst a specification may capture many properties.

Much of the activity of RV considers explicit properties captured in some specification language. However,
there are also many implicit properties covered by the field. A notable example of an implicit property is dead-
lock avoidance (see Chapter 2). When monitoring this property the property itself is not written in a specification
language; instead specific ad-hoc algorithms are written to detect a violation of the property. Other examples of
implicit properties are memory safety and bounds checking.

2.2 General Specification Language Features

In the following we discuss general features of specification languages used for runtime verification. We do not
aim to present a taxonomy of languages, but instead aim to introduce some general concepts and terminology
that is helpful when discussing such languages. See [102] for a more in-depth discussion of such features.



Executable versus Declarative. In some specification languages (e.g., state machines) the specification is di-
rectly executable whereas in other languages (e.g., temporal logic) it is more common to generate an exe-
cutable object (monitor) from the specification. Languages where specifications are executable tend to have
more straightforward monitoring algorithms. However, executable specifications also tend to be more low-level
(operational) and less able to capture properties at a high level of abstraction. For example, it is usually more
straightforward to combine specifications written declaratively, e.g., if the temporal logic formula j1 represents
the normal behaviour of a traffic light system and formula j2 represents some special behaviour to be seen if a
special emergency event occurs then the total behaviour should be j1 _ (emergency! j2). With automata this
would either require monitoring mechanisms to allow the monitoring of multiple automata, or a construction on
the automata leading to a complex automata that is difficult to read.

Prefix Closure. Consider the property that the yellow light is never on immediately after the red light. We might
try to specify this using the regular expression

((green | yellow)⇤red+green)⇤

but under the standard semantics this does not accept the trace green yellow red. Our intention is for all pre-
fixes of the describe language to be accepted. Such properties are safety properties and are common in system
specification. Some specification languages assume prefix-closure, although most do not.

When Language 6= Property. Typically, a concrete specification denotes a set of traces. Sometimes, for usability
reasons, it might be useful for this language to not directly describe the property being specified, but be implicitly
related to it. Therefore, this is less a feature of a language and more a feature of its usage. We give two examples
here:

1. Polarity. A specification may capture good (desired, positive) behaviour or bad (undesired, negative) be-
haviour. Consider again the above property that the yellow light is never on immediately after the red light.
Any trace not satisfying this property would match the regular expression

(red | green | yellow)⇤ red yellow

which is, arguably, easier to read. When good behaviour is described a match represents validation of the
desired property, whereas matching a specification describing bad behaviour represents a violation of that
property.

2. Suffix Matching. Consider again the above property, the expression (red | green | yellow)⇤ represents all
possible traces and is, in some sense, redundant. In the interests of readability it would be more concise to
simply write the expression

red yellow

and let it be understood that matching this expression against the suffix of a trace violates the desired
property.

Finite versus Infinite. Some specification languages are more suited to specifying sets of finite traces (e.g.,
state machines) whereas other are more suited to specifying sets of infinite traces (e.g., temporal logic). As
observations at runtime are necessarily finite this often leads to a mapping from a semantics over infinite traces
to one over finite traces.

Time. As mentioned above, a totally ordered trace gives a qualitative notion of time, but not a quantitative one.
Specification languages whose specifications denote such traces also only capture this qualitative notion of time.
Notice that this qualitative notion is fragile as properties making use of this make assumptions about the level
of abstraction events will be recorded at. Consider the property that the green light should be followed by the
red light. Unless we are careful, the following two traces would not satisfy this property:

t1 = green green red t2 = green pedestrianButtonPressed red



1 2 3
green yellow

red

(green yellow red)⇤(green | green yellow | e)

⇤(green!�yellow^yellow!�red^ red!�green)

Fig. 1. Illustrating the traffic light sequence property using a state machine, regular expression, and linear temporal logic
formula.

Furthermore, if we want to check that the green light is on for 30 seconds it would be necessary to sample
this light at a particular frequency and count the number of events seen. As discussed below, there are various
methods for integrating quantitative notions of time into a specification language. Most commonly this is via
explicit clocks in executable languages, or explicit intervals in declarative ones. With this quantitative notion
one can now say how long the green light should be on and how soon the red light should come on once it goes
off.

Data and Quantification. A specification language may view events as atomic symbols or as structures con-
taining data. Languages that consider data may do so in various ways, but this tends to be dependent on the
underlying formalism. Temporal logics may be extended by standard notions of quantification [71, 55, 25],
quantification over the active domain [28, 98, 145], or (more recently) with freeze quantifiers [21, 20, 65, 26].
An alternative approach is the use of parametric trace slicing [54, 131] to add a form of data quantification
to a range of otherwise propositional formalisms (e.g., regular expressions and state machines). Specification
languages making use of state machines often include the idea of transitions being labelled with guards and
assignments [61, 12]. Finally, some formalisms, such as stream languages [83] and rule systems [16], have data
manipulating features as standard. Chapter 3 considers such languages in more detail.

2.3 Specific Specification Languages

This section focusses on particular (families of) specification languages used for runtime verification. Figure 1
formalises a typical light sequence property of traffic lights in various basic languages described in this section.

Temporal Logic The most common family of specification languages used for runtime verification is temporal
logic with the most basic and usual variant being linear temporal logic (LTL) [128].

Linear Temporal Logic (LTL). Future-time LTL introduces two basic modal operators: Next is written �j and
means that j is true at the next point of the trace; and Until is written j1 U j2 and means that j1 is true from
the current point of the trace until j2 is true. These operators are used to define two (often more frequently used)
operators: Always is defined as ⇤j ⌘ j U false and means that j should be true on every step of the trace
from the current one onwards; and Eventually is defined as ⌃j ⌘ ¬⇤¬j and means that j is true at some point
in the trace from the current point onwards. Some variations of LTL also introduce a notion of Weak Until that
does not require j2 to eventually hold, only that j1 holds until it does (i.e., this may be infinitely often).

Past-time LTL has symmetric operators looking into the past e.g., Previous (•) as the dual of Next and Since
(S ) as the dual of Until. However, things are not quite this simple due to the finite nature of the past. It is
typical to introduce a notion of Weak Previous (•̂) that is always true at the first state; it is then possible to define
•j = ¬•̂¬j . It is common to consider a setting where both future-time and past-time operators are available.

In the runtime verification setting it is typical to consider finite traces only. As LTL has an infinite trace
semantics it is necessary to provide an alternative finite trace semantics to deal with the end of trace. There are
two main approaches to this:

– Providing an alternative semantics ensuring that ⇤j is true at the end of a trace and ⌃j is false. One way
of achieving this is to add the dual of Weak Previous i.e., Weak Next and set up the semantics to preserve
the identify ⇤j = j ^ �̂j . However, it is more common to define an alternative semantics directly without
introducing �̂ (see, for example, the early work in [132]).



– The finite trace is a finite prefix of some infinite trace. The truth of a formula on this finite prefix is defined
by the possible extensions of that prefix i.e., it is true if all extensions make it true. This necessitates a
multi-valued verdict domain. This idea is captured in LT L3 [29] where a third verdict ? is given where some
extensions are failing and some succeeding. This is called impartiality and means that some formulas (e.g.,
⇤a) can never be satisfied (there are always bad extensions) and dually some can never be violated (e.g.,
⌃a). These ideas relate to the notion of monitorability, discussed later.

There is an additional dimension that crosscuts both approaches, that of anticipation. The general idea is that
if every extension of a finite trace leads to a single verdict then this verdict should be given to that finite trace.
In the case where a purely finite trace semantics is given, the notion of anticipation is often captured by splitting
the verdict domain into two forms of verdicts: strong verdicts reflecting an anticipatory result (all extensions)
and weak verdicts reflecting the verdict to be given if the trace were to finish at the current point [16, 12].

Interval Temporal Logic. In LTL formulas are given over states or events i.e., distinct points in time. An alter-
native view, taken by interval temporal logic [50, 148], is to reason over intervals, i.e. pairs of points in time.
Formulas in this logic may then use binary relations comparing intervals e.g. whether their start/end points are
ordered, or whether one interval overlaps with, or is contained within, another. This presentation is generally
not strictly more expressive than LTL as translations have been given into LTL [133].

Variants with Time. Standard temporal logics take a qualitative view of time i.e. they place an ordering on
events but do not relate those events to the quantitative time line they occur within. There exist variants of LTL
that add a notion of quantitative time via the extension of the underlying model (trace) with timestamps and
an extension of the language constructs. Two notable variants are metric temporal logic [146] and timed LTL
[31] which both use the notion of intervals to talk about ranges of time points. In MTL, temporal operators are
annotated with discrete time intervals, e.g. j U[3,7] y states that y should hold between 3 and 7 time units from
now and until then j should hold. MTL also contains the notion of congruences that allow one to state that a
formula should hold periodically with respect to an absolute time. In TLTL there are the additional constructs
Ca 2 I, indicating that the time since a last occurred lies within the interval I, and Ba 2 I, indicating that the time
until a next occurs lies within the interval I. Whilst these variants of LTL alter the model of traces to include
information about time and extend temporal operators to make use of this, they remain inherently regular.

More Expressive Variants. We consider further extensions of LTL that increase the expressiveness of the logic
as examples of how more complex properties could be captured. There is a rich literature in extending LTL in
various ways and this discussion is not meant to be exhaustive.

The first is CaReT [3] which extends LTL with a (context-free) language of calls and returns. The language
is extended with reserved symbols call and ret annotated with labels for the modules being entered or exited.
The temporal operators are then separated into global and abstract forms where the abstract versions reason over
the so-called abstract successors of the current position which skips behaviour belonging to nested calls.

Next, one may consider adding fixed-point operator to the language, as is done in Eagle [14, 96]. As ex-
amples, the maximum fixed point equation ux.a^ x and minimum fixed-point equation µx.a_�x capture the
behaviour of ⇤a and ⌃a respectively. Such equations allow behaviour to be defined recursively, which allows
context-free behaviour to be captured. In the Eagle setting, the difference between minimum and maximum
fixed points is most important when given a finite trace semantics, as it clearly defines what should happen at
this boundary.

In [39] Bollig et al. introduce frequency Linear-time Temporal (fLTL) which replaces U with U c where c
is a rational number between 0 and 1. The formula j U c y means that j holds with frequency c until y holds,
meaning that when c = 1 this coincides with the standard interpretation of Until. The effect of this addition is
that fLTL can capture non context-free properties.

As a more exotic example of an expressive variant of LTL is given by Baader et al. [11] who describe a
runtime verification approach for a temporal description logic that combines LTL with the ALC description
logic. As well as allowing description logic axioms to replace axioms, this approach considers the idea of
reasoning with incomplete information about the trace.



Signal Temporal Logic. Another important temporal logic in the runtime verification domain is the setting
where the trace is not a discrete sequence of events but a collection of signals where a signal is a function from
a set of real time points to a value domain. This a setting typically assumed in hardware monitoring and comes
with its own rich set of specification languages. The standard such language is Signal Temporal Logic [120]
which includes signal predicates of the form f (x1[t], . . . ,xn[t]) > 0 where f is some function and xi[t] is the
value of the ith signal at time t. One can use such predicates to define operators to capture the rising and falling
edges of a signal. A further defining feature of this logic is the lack of next operator, due to a dense interpretation
of time meaning that there is no notion of next state. A consequence of this is that Until is typically interpreted
with the left operand holding for all times after the current point (up until the right operand holds).

Spatial Temporal Logics. As we live in the Internet of Things era where interacting software and hardware
components are generally spatially distributed (i.e., smart grids, robotics teams), temporal logics may be not
sufficient to capture also topological spatial requirements. For this reason, in the past five years, there has been
a great effort to extend STL for expressing not just temporal, but also spatiotemporal requirements. Examples
include Spatial-Temporal Logic (SpaTeL) [97], the Signal Spatio-Temporal Logic (SSTL) [19, 124] and the
Spatio-Temporal Reach and Escape Logic (STREL) [18].

Hyperproperties. A growing area of interest in RV is that of hyperproperties i.e., properties on sets of traces
rather than on single traces. There have been various extensions of standard temporal logics to this setting [57]
and some have been considered in the context of runtime verification.

Regular Expressions A popular declarative language for describing sets of strings in computer science is
the regular expression. These have received attention in the runtime verification community, but less attention
than temporal logics. We do not spend time describing regular expressions (which should be familiar), but
note that they are sometimes used alongside the notion of suffix-matching for violations (e.g., in the work of
tracematches [2]). Later we point out work that combines regular expressions and temporal logic as they
are declarative approaches with different advantages. Whilst regular expressions have been extended with a
quantitative notion of time [7] and to handle data words [114], such extensions have not received much interest
in runtime verification.

State Machines Whilst temporal logic and regular expressions are important declarative languages for speci-
fication they require monitor synthesis techniques to produce an executable monitor, which is usually described
as some form of state machine. Conversely, state machines have the advantage of being directly executable. As
for regular expressions, we do not cover the standard definition of a state machine here, but note that various
runtime verification approaches make use of this formalism e.g. [61]. Such approaches do not necessarily agree
on exact semantics, but follow the same approach. Areas where approaches may differ include the semantics
of completion (what to do if no transition exists), the introduction of various special states, and whether states
have explicit output. They may also extend state machines with clocks [61] or deal with extended finite state
machines [12]. Some approaches [127] also deal with UML state charts as a state machine representation.

Beyond Regular The previous languages were typically regular in nature (with some exceptions). There are
also more expressive languages available. This space has not been as well explored, which perhaps suggests that
the need for more expressive specification languages is not there, or that such languages have not been accepted
for other reasons such as usability.

Grammars and String Rewriting. The obvious non-regular language is that of context-free grammars. The key
application for such expressiveness is to capture the notion of calls and returns in programs (which can already
be handled in the above CaReT logic). A generalised form of grammar is a string rewriting system, which allows
arbitrary rewrite rules on strings. Such systems are Turing-complete. JavaMOP [121] includes both context-free
grammars and string-rewriting systems as so-called plugin languages.



Rule Systems. Another powerful formalism is the rule system. In this setting, conditional rules are used to
rewrite a set of facts i.e. by adding and removing facts from the set. By predicating a rule on a particular fact,
it is then possible to use rules to effectively turn other rules on and off. This setting was first explored in the
RuleR system [16] and has been continued in the recent work on LogFire [100].

Stream Languages. An alternative approach is to view the trace as one or more streams and to define stream
equations over these streams to produce new streams, which may themselves be the subject of further stream
equations. This approach makes computing values (rather than verdicts) over traces straightforward. An early
example in this space is LOLA [83].

Other Approaches. The above covers the more standard runtime verification approaches. However, there have
been various other languages utilised in the field that have received only a little attention. For example, Calder
and Sevegnani [45] have utilised a process algebra to perform runtime verification of wireless networks, and
Majma et al. [119] make use of coloured petri-nets in their runtime verification of a pacemaker. Recent work [89]
makes use of Hennessy-Milner Logic with recursion (µHML) to describe monitors and explore the monitoring
problem in general.

Combinations Some specification approaches consider combinations of various languages previously de-
scribed. Such work aims to find good compromises between the various advantages and disadvantages of dif-
ferent languages.

Mixing temporal logic and regular expressions. A popular combination is to add regular expressions to temporal
logic. Such a combination typically increases expressiveness (as LTL is star-free regular) and make the language
more suitable for expressing certain properties involving sequences of events. Examples of combinations include
Sugar/PSL [86], RLTL [112], SALT [33], LDL [64], and MDL [27].

Many in One. TraceContract [15] provides an internal Scala DSL that supports temporal logic, rule systems,
and state machines. As previously mentioned, the JavaMOP tool [121] includes the notion of plugin languages
which allows users to describe instrumentation in one common language and then use different specification
languages over declared events. Supported plugin languages include finite state machines, extended regular
expressions, context free grammars, past and future linear temporal logic, CaReT, and string rewriting systems.

Translations. As well as combinations of approaches, there are also a number of cases where translations exist
between languages. An early example is the embedding of LTL into the very expressive Eagle logic [13]. Other
examples include the translation of domain specific languages into more standard logics for runtime verification
(e.g. [44]. A recent example is the translation of first-order temporal logic into quantified event automata [131].

2.4 Summary

This section has introduced abstractions and languages for describing system behaviour. One conclusion one
can draw from this section is that there are a vast number of different ways to describe system behaviour and
there is no conclusive silver bullet. Research into specification languages for runtime verification is ongoing and
there are many languages that we have not been able to mention in this short summary.

3 From Specifications to Monitors

So far we have spoken about how to specify desired or undesired system behaviour i.e. a property of a system.
In this section we consider the runtime analysis that checks whether a system satisfies or violates a property. We
begin by discussing the typical monitoring setup
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3.1 The Monitoring Setup

As depicted in Fig. 2, a typical RV monitoring setup consists of three main components, namely the system-
under-scrutiny, the monitor and the instrumentation mechanism. The collective unit encompassing these three
components is then often referred to as the monitored system. The previous section discussed how we abstract a
system being monitored and here we briefly describe what we mean by a monitor and the role of instrumentation
(although practical instrumentation techniques are discussed in Section 4).

Monitors (execution monitors [135]) are computational entities that execute along side a system so as to ob-
serve its runtime behaviour and possibly determine whether a property is satisfied or violated from the exhibited
(system) execution. When sufficient system behaviour is observed, a monitor may reach a verdict (e.g., accep-
tance or rejection). This verdict is normally assumed to be definite, i.e., it cannot be retracted or revised, and
is typically communicated to some higher-level entity responsible for handling monitor detections (e.g., the
user or some other supervising software component). Whereas few guarantees are expected of the system under
scrutiny, in a monitoring setup, monitors are generally considered part of the trusted computing base (TCB)
[135, 110, 87] and should manifest a level of correctness themselves. For instance, the verdicts produced by
monitors should relate, in some sense, to the property being checked for (e.g., a detected violation should only
be flagged by a monitor when the system violates the property being checked) and monitors are also normally
expected to interfere minimally (if at all) with the execution of the system under scrutiny. For this reason, moni-
tors are usually generated by automated synthesis procedures that take a syntactic representation of the property
as input and return the executable code of the monitor as a result. Apart from assisting and expediting monitor
construction, automated monitor syntheses mitigate problems associated with the correctness of the monitor
itself by standardizing monitor code and giving more scope for a formal treatment of their correctness.

Instrumentation is the computational plumbing that connects the execution of a system under scrutiny with the
analysis performed by the monitor. It typically concerns itself with two aspects of the monitoring process. First,
instrumentation determines what aspects of the system execution are made visible (to the monitor) for analysis.
As depicted in Fig. 2, instrumentation records the relevant information from the computation of a running system
(e.g., program variable reads/writes, method/function calls and returns, memory management operations such
as allocations and deallocations, lock acquisitions and releases, and communication operations such as channel
inputs and outputs) and records them as system events. Event recording may either consist of redirecting and
filtering out existing visible system behaviour, or it may involve extracting aspects of system behaviour that
were previously not observable, transforming a black-box system into a grey-box one. The recorded events are
then reported to the monitor in the form of an ordered stream called an execution trace (of events), which would
normally correspond to the same notion introduced in the previous section. Instrumentation usually guarantees
that the event order in the execution trace corresponds to the order in which the respective computational step
occured. However, there are cases such as in distributed settings where only a partial ordering of events can be
reliably reported to the monitor.

Second, instrumentation also dictates how the system and the monitor execute in relation to one another
in a monitoring setup. For instance, instrumentation may require the system to terminate executing before the



monitor starts running, or interleave the respective executions of the system and the monitor that share a common
execution thread. In concurrent settings, the system and monitor typically have their own execution threads, and
instrumentation may dictates how tightly coupled these executions need to be. The instrumentation may either
require that the respective threads to execute synchronously regulated by a global (symbolic) clock [79], or else
allow threads to execute asynchronously to one another and then specify synchronisation points between the
respective executions. The latter organisation may, in turn, impinge on the timeliness of monitor detections in
relation to when the system exhibits a violation to the property being monitored for [48].

Monitoring setups need not necessarily be to confined to the structure and functionality depicted in Fig. 2.
In Monitor-Oriented Programming (MOP) [51, 52], monitoring is envisaged more as a code design principle
advocating for the separation of concerns between the core functionality of a system and ancillary functionality
that deals with aspects such as safety, security, reliability and robustness. Code is thus organised as a layered
architecture where the innermost core consists of the plain-vanilla system, and the outer layers are made up
of monitors observing the execution of the inner layers and reacting to these observations [48]. In MOP, mon-
itors typically do more than just analyse execution traces and raise detections; they may suppress observable
behaviour from the inner-layers or filter stimuli coming from outer layers [82, 115, 37], or inject adaptation
actions affecting the structure and future behaviour of the inner layers [47, 62, 95].

3.2 Monitor Synthesis And Deployment Design Choices

In general, monitoring setups come in various shapes and sizes, and might differ slighly from the clean con-
ceptual view presented in Fig. 2. In what follows, we overview a few of the possible variations commonly
encountered in the literature.

Offline, Online, Synchronous and Asynchronous Monitoring In offline monitoring (or logging) the analysis
is carried out after the system executes. Relevant system events are recorded as an execution trace inside a
permanent data store (e.g., a file) which is then passed on to the monitor for analysis. Since the execution
of the monitor is independent of that of the executing system, an offline analysis is less intrusive and certain
constraints such as low monitor runtime overheads do not apply. Offline monitoring also benefits from the
fact that the captured execution trace typically describes complete executions, which allows for global trace
analyses—these often require backwards traversal [132].

By contrast, online monitoring is performed during system execution. It addresses one of the main disad-
vantages of its offline counterpart, namely that of late detections: a violation to a property is only discovered
once the system execution terminates, potentially missing the opportunity to mitigate the damage resulting from
that violation. Online monitoring operates within tighter constraints such as working with partial executions
(i.e., up to the current execution point), stringent requirements for low overheads and, because of this, the need
to perform the analysis in incremental fashion.

The simultaneous execution of the system and the monitor may be performed in a variety of ways. At one
extreme, synchronous online monitoring instruments the system and monitor to execute in lock-step: every
time the system generates an event, it waits for the monitor to process it before proceeding with its execution
(monitors are by nature passive entities and their execution depends on systems to generate events). At the other
extreme, asynchronous online monitoring detaches the execution of the monitor from that of the system. This
approach is less intrusive on system execution when compared to synchronous monitoring, typically leading to
lower overheads [46], but may still yield a degree of late detections (especially when the underlying platform
does not guarantee fair executions between the monitor and the system). Due to this, cross-breed approaches
that fall on the spectrum in between these two approaches are used to obtain the best of both worlds; consult
[49] for a comprehensive survey on this spectrum of approaches.

Monolithic, Decentralised, Orchestrated and Choreographed Monitor Approaches There are a number of
strategies for synthesising monitors from a particular specification. By far, the most common approach is to syn-
thesise a single monitor that represents the entire specification as one monolithic block (e.g., [32]). Increasingly



however, new synthesis strategies are being explored. For instance, the work in [35, 118, 94, 8, 123] synthe-
sise concurrently executing monitors to better exploit the underlying parallel hardware consisting of multiple
processing units whereas the work in [80, 34, 9, 69, 70] synthesise component-based monitors to better localise
analysis due to multiple event sources and heterogenous hardware. Distribution is another important aspect af-
fecting the monitor synthesis. In general, there are two main strategies for coordinating the monitoring activity
across the various distributed locations. Orchestration relies on a single coordinating entity to gather, order and
analyse events whereas a choreographed approach disseminates these tasks across a number of monitors [92,
58]. Whereas orchestration is typically simpler to synthesise, thus easier to get right, choreography is more
attuned to the characteristics of distributed computing, leading to lower network traffic and a higher degree of
fault tolerance [69]. This topic is discussed further in a dedicated chapter.

Inlining Monitor Code Versus Monitor Code Separation. Monitoring can be either inlined [72, 139, 53] or
consolidated as a separate code unit with events of interest being sent to it (often referred to as outlined). Fig. 2
describes more of a conceptual view rather than the actual implementation, and covers both alternatives. In
multi-threaded settings, inlining of inter-thread monitoring requires a choreographed setup [139, 92] whereas
keeping monitor code separate also affords a centralised orchestrated solution. Monitor inlining tends to yield
lower overheads and is generally more expressive because it has full access of the system code [72]. By con-
trast, having monitoring as a separate unit minimally alters the code of the monitored system (all the decision
branching is performed inside the monitor), is less error-prone (orchestration tends to be easier to program than
monitor choreographies and is harder to tamper with), allows monitor computation to be offloaded to other ma-
chines [59], and facilitates compositional analysis whereby monitors may be more readily treated in isolation
[87, 91, 1, 88].

4 Instrumentation

The term instrumentation refers to the mechanism employed to probe and to extract signals, traces of events
and other information of interest from a software or hardware system during its execution.

The instrumentation is an important phase in runtime verification setup enabling monitors to be hooked on
to the system. The choice of instrumentation techniques depends on the type of system to be monitored. For
example, monitoring hardware system may require probing mixed-analog signals using physical wires, while
for software the instrumentation method is strictly related to the programming language in which the software is
implemented or to the low-level language in which it is compiled (i.e., bytecode, assembly, etc.). In the following
we further explain these concepts in two dedicated sections for hardware and software instrumentation.

4.1 Hardware Instrumentation

The increased level of integration, complexity and functionality of the new generation of analog/mixed-signal
(AMS) and digital system-on-chip (SoC) technology demands for always new efficient and effective methods
to observe and to analyze SoC behaviour both at the physical and at the operational level [4, 5, 105, 106, 126,
134, 136–138].

Due to the complexity of their design, the simulation of such systems is becoming very time-consuming
and expensive. For this reason, simulation is generally complemented with design emulation that uses dedicated
acceleration platforms such as Field Programmable Gate Arrays (FPGAs) to implement the design under test in
hardware. Thus, monitoring the behaviour of an emulated design is an important task supporting the verification
of the pre-silicon design. Fig. 3 shows two examples of hardware instrumentation in such scenarios [105]. In
the first case (a) the emulated design and the monitor are two independent pieces of hardware. They both
share the same source of external clock. The available digital and analog output pins of the emulated design
are hooked with physical wires to the hardware monitor. The analog signals are transformed into digital ones
using an analog-to-digital (ADC) converter. The obtained signals are then processed synchronously using also a
dedicated hardware implementing a monitor. An oscilloscope is employed to observe the verdict of the monitor
at runtime. In the second case (b) both the monitor and the design are implemented using the same hardware.



PHY	BOARD	

PHY	DEVICE	2	

PHY	DEVICE	1	 FPGA	

M
O
N
ITO

R	

O
SCILLO

SCO
PE	

VERDICT	

MUX	
CLK	

EXT	
CLK	
GEN	

CLK	
GEN	

ADC	

DIGITAL	

ANALOG	

ACTIVE	

a)	

FPGA	

SUT	

D1	

D2	

M
O
N
ITO

R	

O
SCILLO

SCO
PE	

b)	

Fig. 3. Monitoring design under test: a) the hardware monitor is external to the design under test sharing the same clock
generator; b) the emulated design is implemented together with the monitor in the same hardware.

However, simulation and emulation are not able to cover all the aspects of the physical hardware and in
particular the software related aspects. In order to check software related problems, large multiprocessor archi-
tectures usually require many cycles of executions. In such cases either simulation or emulation may result in
too complex and expensive tasks to perform. For this reason, modern SoC have embedded test functionalities,
providing a dedicated debug interface [144] called JTAG (also referred as the IEEE Specification 1149.1).

JTAG is a test architecture equipped with a serial interface and other debugging features enabling to sample
snapshots of individual SoC pin signals and to drive specific output signals.

JTAG is nowadays the most popular standard for on-chip instrumentation. Many modern processor architec-
tures such as ARM, x86, MIPS are using JTAG protocol as the foundation for complex data/instruction tracing
and debugging. The JTAG port enables the control over the processor that can be halted, single stepped or
run freely. However, the possibility to halt the processor running real-time applications can introduce delays in
the normal execution altering important timing constraints of the system. For this reason, some designs enable
debuggers to access only registers and data buses without the need of halting the processors.

4.2 Software Instrumentation

Software instrumentation (SI) is a well-established method employed in many applications including software
profiling, performance analysis, optimization, testing and runtime verification. SI consists in adding extra code
to track the execution of particular software components and to output an execution trace that can be monitored.
The two main approaches for software instrumentation are performed either at the source code level [38, 140,
108, 10, 142, 125] or at the binary level [36, 42, 117, 122, 111]. Furthermore, SI can be static or dynamic whether
they occur before (i.e., compilation-/link-time) or at execution time (i.e., tracking dynamically linked libraries).

Source code instrumentation consists in adding manually or automatically extra instructions to the software
source files before the compilation. Nowadays, there are several instrumentation frameworks [38, 140, 108, 10,
142, 125] available for the main popular programming languages such as Java, C and C++, or even mobile
platforms running on Android [74, 75, 68, 63]. For example, aspect-oriented programming (AOP) environments
usually provide static weaving mechanisms that enable to add at compile-time an additional behaviour to the
existing source code without modifying the original source code. The key idea (see Figure 4) is to apply special
instructions and code segments (called advices) contained in a specification file (aspect) that indicate what
methods (called pointcuts) should be handled by the aspect code. For example, it is possible to specify how to
add some additional code to log all the function calls when the function’s name starts with a particular prefix.
An aspect weaver is then the component responsible to process the advice instructions and weave them together
with original source files, generating the final source code that is compiled into an executable. Although in many
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Fig. 4. Example of instrumentation of the Java source code with AspectJ.

AOP frameworks the weaving is generally performed statically at the level of source code, there are also cases
such as in AspectWerkz [41] where the weaving can occur also dynamically at level of bytecode.

SI is generally limited by the execution coverage. This means that if some parts of the instrumented code
are not reachable during the execution, the instrumentation will not provide any information. Furthermore, SI
generally introduces a computational overhead that changes the timing-related behaviour of the instrumented
program. This could be unacceptable in applications where preserving real-time constraints is extremely im-
portant to meet safety critical requirements. In the worst case scenario the overhead of SI may be also the
responsible of timing related Heisenbugs [147, 85], bugs that disappear or are altered in the instrumented pro-
gram. For all these reasons, in the last decade, there has been a great effort to develop new approaches [85, 104,
40, 99, 84, 6] for controlling and mitigating the computational overhead due to SI.

These approaches generally employ sampling-based techniques that reduce the overhead by selecting only a
limited and controlled number of events. However, sampling-based techniques are prone to introduce gaps in the
output trace, leading to uncertainty in the monitoring result. To quantify such uncertainty, a possible approach
(developed in [24, 107, 143]) is to learn statistical models of the monitored system and to use them to fill in
sampling-induced gaps in event sequences, and then computing the probability that the property of interest is
satisfied or violated.



5 Monitorability: What can we monitor?

In this section, we discuss the (notion of) monitorability of properties. Informally, studying the monitorability
of a property consists in determining whether or not a property is monitorable, that is, determining whether it is
worth monitoring that property at runtime. Intuitively, it is worth monitoring a property if, during monitoring,
the monitor can still provide an evaluation (in the form of a verdict) of the current execution and one can avoid
situations in which a monitor would inevitably provide inconclusive verdicts.

When using a formalism to write properties (specifying the expected system behavior), one of the questions
that arise is whether all properties that are expressible in this formalism can be monitored. Thus, the moni-
torability question naturally depends on the specification formalism. Moreover, monitorability also depends on
the nature of the decision procedure implemented by a runtime monitor. At runtime, a monitor tries to assign
a verdict to the current observation s (which is by nature finite) by determining whether s is a model or not
of the monitored property. Hence, when using a formalism with a semantics over infinite sequences (that is,
the models of the properties are infinite executions), monitorability issues arise when relating finite sequences
to infinite ones. To intuitively illustrate this issue, consider the two properties “predicate p always holds” and
“whenever predicate p holds, predicate q holds in the future”. For the first property, suppose that a monitor for
this property has in so far observed an execution wherein all observed states predicate p held. In this situation, a
monitor is useful because one can later obtain a state leading to the falsification of p and a monitor could detect
that an observation wherein p does not hold cannot be extended to the correct infinite correct executions (which
are models of the property) wherein predicate p holds at every position. For the second property, suppose that
a monitor for this property has in so far observed an execution wherein whenever predicate p held, predicate q
held on the next position. Then, suppose that this monitor observes predicate p and receives a certain number of
states where predicate q does not hold. Such a monitor can not determine that this sequence cannot be continued
to a correct execution. What is worse, the monitor can not relate this execution nor any of its continuations to
the infinite ones that are models of the property. Hence, we can see intuitively that it is not worth monitoring
that property and the monitor would be doomed producing inconclusive verdicts.

Based on the above informal description of monitorability, several definitions and visions of monitorable
properties were proposed. In the rest of this section, we first present the definitions and the associated charac-
terisations of monitorable properties. We note recent research efforts extending the notion of monitorability to
decentralised and distributed systems [69]. We focus in the rest of this section to monitorability in the centralised
setting, that is following the setup presented in the earlier sections.

5.1 Definitions of Monitorability

Monitoring to detect bad behaviors. The first definition of monitorability was given by Kim et al. [109]. In
their definition, monitoring is purposed to detect violations of properties. They consider safety properties over
infinite executions. Since for any safety property, any bad (infinite) execution has a finite prefix that cannot be
extended to a correct execution, it is possible to detect any violation of a safety property with a finite sequence.
However, the detection of such bad prefixes should be computable. Hence, a property j ✓ S w is said to be
monitorable if S ⇤ \pref(j) is co-recursively enumerable, where pref(j) is the set of prefixes of j .

Monitoring to detect good and bad behaviors. Pnueli and Zaks later generalised the notion of monitorabil-
ity [129]. The underlying principles behind their definition are twofold: a monitor can be also used to detect
good behaviors, and a monitor should be running only if it has the possibility to reach a verdict. In their defi-
nition, a monitor is purposed to determine whether the current execution leads to infinite continuations that are
models of the monitored property. A monitor can then determine a verdict whenever either every continuation
of the current observation is a model or every continuation is a counter-example of the monitored property.
Moreover, it is worth monitoring as long as the monitor can find a verdict with a possible continuation of the
observed sequence.

More precisely, their definition of monitorability comes as follows. For a property j ✓ S w , and given the
current execution s 2 S ⇤, j is said to be positively determined by s if all (infinite) continuations of s satisfy j .
Conversely, Pnueli and Zaks also define the notion of negative determinacy. Whenever an execution s positively



(resp. negatively) determines a property j , a monitor for j associates verdict > (resp. ?) with s . Then, j is
said to be s -monitorable, if s has a continuation such that j is either positively or negatively determined by
this continuation. Finally, a property is monitorable if it is s -monitorable, for any s 2 S ⇤.

We note that in [66], Diekert and Leucker provide an equivalent topological definition of monitorability.
Given a property to monitor j over some alphabet S and an execution sequence s 2 S ⇤, j is monitorable at s
(alternatively s -monitorable) if every open set Os containing s has a subset SOs such that either SOs ✓ j or
SOs ✓ (S ⇤ \j), which one can understand as s has a continuation that positively or negatively determines j .
And then j is monitorable if it is monitorable at every s 2 S ⇤.

Monitoring with a parameterised verdict domain. The previous definition of monitorability implicitly uses the
3-valued truth-domain {?,?,>} where ? and > are final verdicts (i.e., assigned once and never changed) and
verdict ? is emitted by the monitor for other sequences (i.e., those not allowing it to reach a final verdict). Falcone
et al. argue that in some situations, one may monitor only to detect satisfactions or violations in separation [77].
Hence, they parameterised the definition of monitorability by a truth-domain B that contains at least one final
verdict.

Monitoring with a semantics for finite executions. To account for the situations where the monitored program
stops before the monitor is able to reach a final verdict (i.e., when the last verdict is ?), Falcone et al. introduce
a notion of monitorability taking finite executions into account [77]. The definitions requires the specification
formalism to be endowed with a semantics over finite sequences including verdicts >c and ?c used to indicate
that the property is currently true and currently false, respectively. An execution sequence evaluates to > and
? as in the definition of Pnueli et al. [129], and it evaluates to >c (resp. ?c) as long as no definitive verdict
has been found and the current execution sequence satisfies (resp. does not satisfy) the property. Intuitively, for
a property to be monitorable, the evaluations of the property on correct and incorrect finite executions should
differ so that a monitor is able to detect in a sound manner the situations in which it should emit a final verdict.

Monitoring for a branching-time logic. Francalanza et al. [90, 91] study the problem of monitoring for branching-
time logics and define µ-HML a reformulation of µ-calculus as a branching-time logic with least and greatest
fix-points. Monitorability of a formula in this logic amounts to being able to synthesise a sound monitor that is
able to detect all violations or all satisfactions of the formula. A salient aspect of this body of work is the identi-
fication of a maximally-expressive syntactic subset of the logic whereby any monitorable property is guaranteed
to be expressible within this syntactic subset (similar maximality guarantees are also given in the context of LTL
in [56]). More importantly, the branching nature of the logic considered gives scope for considering monitoring
setups that depart from the classic setup consisting of one system execution generating a single trace, since
alternative setups may extend the set of monitorable properties.

5.2 Characterisations of Monitorable Properties

We now report on the existing characterisations of monitorable properties. Characterising monitorable properties
as a class of properties is important because, when specifying a system, it allows determining the monitorability
of the specified property just by determining the class to which the property belongs (for instance using the
syntactic elements used to construct the property).

Characterisation for the definition in [109]. Kim et al. directly define monitorable properties as the class of
safety properties such that the set of prefixes is co-recursively enumerable.

Characterisation for the definition in [129]. The definition of monitorability in [129] is the most studied one.
Bauer et al. [30, 32] prove that the set of monitorable properties in the sense of [129] is a (strict) superset of the
union of safety and co-safety properties. Falcone et al. [76, 77] prove that the set of monitorable properties in the
sense of [129] is a (strict) super set of the set of obligation properties (which are formed by finite conjunctions
and disjunctions of safety and co-safety properties). They also prove that adding additional verdicts to the
definition of monitorability in [129] does not allow monitoring more properties. Later in [66], Diekert and



Leucker enunciate the same results as in [77] from a topological perspective. They additionally prove that
any countable union/disjunction or any countable intersection/conjunction of monitorable sets/properties is also
monitorable. In [67] Diekert et al. study the complexity of deciding monitorability. They show that i) deciding
whether a Büchi automaton defines a monitorable property is PSPACE-complete, and ii) deciding whether an
LTL formula defines a monitorable property is PSPACE-hard and EXPSPACE-easy.

Characterisation for the definition in [77]. Falcone et al. [77] prove that the set of monitorable properties in
the sense of [77] forms a strict subset of obligation properties. They also prove that the definition in [77] allows
monitoring any (linear-time) property when used with truth-domain {?,?c,>c,>}.

6 Overview of the Handbook

The idea of this book originated from the need to have an handbook for students to support their training with
several tutorials on different aspects of RV. The volume has been organized into seven chapters. This chapter
can be considered a primer to the field and necessary knowledge for the rest of this book.

The second chapter [116] is dedicated to the detection of concurrency errors raised in concurrent program-
ming. The chapter presents how dynamic analysis techniques can be used for the detection and localisation of
data races, atomicity violations, and deadlocks.

The third chapter [103] shows to adapt early-stage runtime verification frameworks wherein events are
names to events that carry date. The chapter shows how adding data to events complexifies the specification
language and the underlying monitoring algorithms. The chapter overviews five specification formalisms and
associated monitoring algorithms.

The fourth chapter [81] presents how runtime monitors can be used to prevent and react to failures to increase
the dependability of systems. For this, it presents the two main techniques for such purposes, namely runtime
enforcement and healing failures, respectively.

The fifth chapter [22] revolves around the techniques for the monitoring of specifications on cyber-physical
systems. The behaviour of cyber-physical systems is modeled by continuous state variables interleaved with
discrete events. The chapter presents state-of-the-art techniques for using qualitative and quantitative moni-
toring techniques either during simulation or when the system is running. The chapter also presents example
applications and compares exiting tools.

The sixth chapter [93] tackles the emerging and important topics of decentralised monitoring and distributed
monitoring. The chapter identifies the distinguishing features of decentralised and distributed systems and clas-
sifies the existing approaches along these features.

The seventh chapter [60] is dedicated to the application of runtime verification to industrial systems and
more particularly on financial transaction systems. This chapter places runtime verification in the development
lifecycle of a software. It interestingly describes some of the properties that can be useful in real-life applica-
tions. Moreover, it reports on some of the lessons learned by the authors and outlines some of the challenges to
address for RV to become an industrial practice.

7 Conclusion

We have provided a brief introduction to the field of runtime verification covering four major topics: how to
specify system behaviour, how to setup monitoring, how to perform instrumentation, and what the limitations
of monitoring are. We refer the reader to the other chapters in this book and other introductions to RV [73, 113,
18] for further details on the topic.
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Abstract. Lots of concurrent software is being developed for the now
ubiquitous multicore processors. And concurrent programming is di�-
cult because it is quite easy to introduce errors that are really hard to
diagnose and fix. One of the main obstacles to concurrent programming
is that threads are scheduled nondeterministically and their interactions
may become hard to predict and to devise. This chapter addresses the na-
ture of concurrent programming and some classes of concurrency errors.
It discusses the application of dynamic program analysis techniques to
detect, locate and diagnose some common concurrency errors like data
races, atomicity violations and deadlocks. This chapter also mentions
some techniques that can help with quality assurance of concurrent pro-
grams, regardless of any particular class of concurrency errors, like noise
injection and systematic testing, and it is closed by some prospects of
concurrent software development.

Keywords: Software Correctness, Quality Assurance, Nondeterminism, Con-
currency Errors, Atomicity Violations, Data Races, Deadlocks, Dynamic Analy-
sis, Noise Injection.

1 Introduction

The arrival of multi-core processors into computers, laptops, tablets, phones,
and other devices demands the development of software products that make use
of multi-threaded design to better use the available hardware resources. Modern
programming languages allow programmers to easily create multi-threaded pro-
grams, at the expense of a significant increase in the number and variety of errors
appearing in the code. The basic di�culty is introduced by the conflict between
safety and e�ciency. It is not easy to set up the appropriate synchronisation
among threads ensuring safety and low overhead simultaneously. If the synchro-
nisation is too strict, the performance of the application degrades as the com-
putation power brought by the presence of several computational cores becomes
underused. On the other hand, if the concurrent program is under-synchronised,
some failures may occur, like wrong results and application crashes. As an exam-
ple of what can be the impact of a concurrency error, we refer to the Northeastern
U.S. blackout in August 2003, where a race condition error was identified as one
of the causes [59, 60].
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Creating concurrent programs is more demanding on programmers, since
people usually think in a linear way. It is not easy to imagine the parallel execu-
tion and the possible interactions of dozens of threads, even if the programmer
concentrates on it; on the contrary, programmers think most of the time about
snippets of sequential code despite they may be executed in parallel. Moreover,
errors in concurrency are not only easy to create, but also very di�cult to detect
and diagnose due to the nondeterministic nature of multi-threaded computation.
For instance, the error from Northeastern blackout has been unmasked about
eight weeks after the blackout [60]. Some concurrent errors may manifest rarely
or under special circumstances, making it di�cult to discover them by testing
as well as to reproduce them while debugging.

This chapter is organised as follows. It starts with a discussion on the nature
of concurrent computations and on the errors that can arise from the execution
of concurrent programs, including a motivating example, in Section 2. Di↵erent
concurrency errors are then presented and classified in Section 3. Section 4 de-
scribes various approaches for monitoring the execution of concurrent programs
as monitoring allows one to obtain all the necessary information to perform
an analysis and detect errors. Follows a discussion on the detection of com-
mon classes of concurrency errors, with Section 5 addressing errors related to
atomicity violations, and Section 6 addressing deadlocks. The detection of less
common concurrency errors is discussed in Section 7. Techniques that can help
with quality assurance of concurrent programs, regardless of any particular class
of concurrency errors, like noise injection and systematic testing, are discussed
in Section 8. Section 9 sums up the chapter and provides some prospects for
concurrent software development.

2 Errors in Concurrency

To understand errors in concurrency, one first needs to understand the nature
of concurrent execution. The execution of a concurrent program is performed
simultaneously by several processes (they can be called threads or nodes as well).
All the processes have access to a shared memory that serves as a communication
mean among them.1 Additionally, each process has its own local memory that
can be typically accessed much faster than the shared memory. Although memory
in computers is usually organised in a hierarchy with several levels, each with
di↵erent size, speed, and price per bit, simple di↵erentiation between shared and
local memory of processes is enough to show the basis of concurrent errors.

As the shared memory is usually much slower than the local memory, a typical
scenario of the execution performed by a process is copying data from the shared
memory to its local memory, performing the given computation using the local
memory, and storing the result back to the shared memory. At the first sight,
there is no problem with this operation model, however, this is true only if a single

1 In this Chapter, we concentrate on the shared memory paradigm, leaving behind the
distributed memory and message passing paradigms, which are covered elsewhere in
this book.
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process is working with that particular data in the shared memory. If two or more
processes are operating concurrently over the same data in the shared memory
(perceived by a programmer, for instance, as a shared variable), some problems
may arise. We illustrate this with the help of a very simple concurrent system.

Let us have a shared variable x, initialised to zero, and two threads operating
concurrently on x, one thread adding one to x and the other adding two to x.

x=0 . ( x++ k x+=2 )

What will be the final value of the variable x after this computation ends?
The most obvious answer would be 3. However, it is not necessarily the case if
we take concurrency into account. First, it may happen that incrementing and
adding are not implemented using single instructions. For instance, they can
be implemented by a three steps procedure: 1) loading the value of a shared
variable x from the shared memory to the local memory (e.g., to a processor
register); 2) adding the intended value to the local copy of x; and 3) storing the
new value of x back into the shared memory.

Here is an example in Java bytecode (no knowledge of Java neither of Java
bytecode is required to understand the example):

Thread 1: Thread 2:

load x load x
inc add 2
store x store x

Nothing bad happens if the threads do not interfere with each other while
executing. In the following, Thread 2 starts its work only after Thread 1 com-
pletes its whole execution. On the right-hand side we can see the evolution of
the values of the shared variable x and of its local copies x1 for Thread 1 and x2
for Thread 2. The outcome of the execution is highlighted by a frame.

Thread 1: Thread 2: x x1 x2

load x 0 0
inc 0 1
store x 1 1

load x 1 1
add 2 1 3

store x 3 3

The same outcome is achieved if Thread 1 starts its work after Thread 2
completes its executions. The problem occurs when the executions of these two
threads are interleaved. For instance, the first thread starts executing as in the
previous example, however, the second thread starts and loads the value of the
shared variable x before the first thread stores its result back. Then, the result
of Thread 1 is lost because it is overwritten by Thread 2 when it stores its own
result back to x, as illustrated by the example below.
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Thread 1: Thread 2: x x1 x2

load x 0 0
inc 0 1

load x 0 1 0
store x 1 1 0

add 2 1 2

store x 2 2

Yet another outcome can be seen if the result produced by Thread 2 is over-
written by Thread 1.

Thread 1: Thread 2: x x1 x2

load x 0 0
inc 0 1

load x 0 1 0
add 2 1 1 2
store x 2 1 2

store x 1 1

In this example, we can highlight two issues related to concurrency. First,
programmers usually write code in a more abstract level than what it is actu-
ally executed. When writing code, the programmer does not need to care (and
sometimes does not even know) about the underlying implementation. Rather,
it is quite natural to assume that adding a value to a variable is an atomic op-
eration. Thus, the non-atomicity of some operations is actually hidden from the
programmer and the concurrency errors are not easily visible in the source code.

It is commonly accepted that errors that are not realised by the program-
mer, because they are hidden in less frequent operations or branches of the
source code, can frequently be uncovered by a proper testing activity. And this
raises the second issue. When a code block contains a concurrency related error,
frequently there is a huge number of di↵erent ways this erroneous code block
can interact with the other code blocks of the program, and all but a few of
them will trigger the error. Thus, even when involving the erroneous code block,
the testing procedures most probably will not uncover the error, which will stay
hidden. The error will be uncovered only if one of the low-probable erroneous
interactions is exercised by the testing procedures. And this may happen very
seldom or, in some cases, even never!

The execution order of particular instructions by some given threads is called
thread interleaving. The set of all possible thread interleavings defines the se-
mantics of a concurrent program. In the previous example, there are 20 possible
thread interleavings from which most probably only two are common: one where
thread 1 executes before thread 2 and another where thread 2 executes before
thread 1. These two common interleavings have, moreover, special importance
because they can also be achieved by a sequential execution. Interleavings which



Discovering Concurrency Errors 5

are equivalent to some sequential execution are called serialisable. If all the possi-
ble thread interleavings are serialisable, the multi-threaded program is correct (of
course, provided that the sequential program is correct). This notion of correct-
ness of multiprocess programs called sequential consistency has been introduced
by Lamport in [42]. Obviously, our example is not sequentially consistent be-
cause it can produce results that cannot be obtained by a sequential execution
of the given threads.

3 Classification of Concurrency Errors

In general, we can think of a concurrency error as a behaviour that does not
respect the sequential consistency model, which, in a nutshell, means the be-
haviour/result could not be obtained by a sequential execution (i.e., it is unse-
rialisable). For e�cient handling of concurrency errors, however, one needs to
use the divide-and-conquer strategy and concentrate and deal with only some
particular kinds of such errors at a time.

To classify concurrency errors, we can adopt classification of general pro-
gramming errors and distinguish between safety errors and liveness errors like
we have done in [19]. Safety errors violate safety properties of a program, i.e.,
they cause something bad to happen. They always have a finite witness lead-
ing to an error state, so, they may be seen as easier to detect. Liveness errors
are errors which violate liveness properties of a program, i.e., prevent something
good from happening. To detect them one needs to find an infinite path show-
ing that the intended behaviour cannot be achieved, and thus, it may be more
complicated to detect liveness errors.

In the following, however, we present the classes of concurrency errors rather
with respect to the underlying mechanism that leads to a failure. It allows us later
to address the practical aspects of error detection, focusing on some particular
errors that violate program safety, in the same way.

Atomicity Violation. The first group of concurrency errors we address in this
book chapter is related to wrong atomicity, i.e., some operations unintentionally
interfere with the execution of some other operations. We can define it more
formally as follows.

Definition 1 Atomicity Violation — A program execution violates atomicity
i↵ it is not equivalent to any other execution in which all code blocks which are
assumed to be atomic are executed serially.

We have already seen an atomicity violation in our example above where the
operations of incrementing and adding a value to a shared variable were not
executed atomically. This kind of concurrency errors is, however, usually treated
as a special subclass of atomicity violation called data race or race condition.

Definition 2 Data Race — A program execution contains a data race i↵ it
contains two unsynchronised accesses to a shared variable and at least one of
them is a write access.
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Data races are one of the most common and most undesirable phenomena
in concurrent programs. However, one should note that not all data races are
harmful. Data races that cannot cause application failures are often referred to
as benign data races and are sometimes intentionally left in concurrent programs.
As an example of a benign data race consider two unsynchronised threads, one
thread updating a shared integer variable with the percentage of the completed
work, and another thread reading this shared variable and drawing a progress
bar. Even in the absence of synchronisation between the threads, this program
will behave as expected and, thus, we are facing a benign data race.

Similar to data races with respect to the behaviour scheme, but rather di↵er-
ent regarding their origins, are the so-called high-level data races [4]. For instance,
consider a complex number whose real and imaginary values are protected by
two separate locks. Updating such complex number can never cause a data race
as presented in Definition 2, because the accesses to both parts of the complex
number are always protected by the corresponding lock. Nevertheless, when the
complex number is updated concurrently by two threads, the complex number
may, after both the updates, contain the real part from one of the updates and
the imaginary part from the other. This inconsistency did not occur directly on
the shared variables (the complex number real and imaginary parts) but on the
complex number itself as a whole, which is at the higher level of abstraction and,
therefore, it is called a high-level data race.

Deadlock. Deadlocks are another kind of safety concurrency errors. Actually,
one may see them as a consequence of tackling atomicity violations—to avoid, for
instance, data races, one should use locks to guard accesses to shared resources,
e.g., shared variables. Using locks in a wrong way may, however, cause a deadlock,
which is definitely undesirable because the application stops working.

Despite deadlocks being quite often studied in the literature, the understand-
ing of deadlocks still varies, depending on the specific setting being considered.
Here we stick to the meaning common in the classical literature on operating
systems. To define deadlocks in a general way, we assume that given any state of
a program: (1) one can identify threads that are blocked and waiting for some
event to happen; and (2) for any waiting thread t, one can identify threads that
could generate an event that would unblock t.

Definition 3 Deadlock — A program state contains a set S of deadlocked threads
i↵ each thread in S is blocked and waiting for some event that could unblock it,
but such an event could only be generated by a thread also in S.

Most works consider a special case of deadlocks, namely, the so-called Co↵-
man deadlock [10]. A Co↵man deadlock happens in a state in which four condi-
tions are met: (1) Processes have an exclusive access to the resources granted to
them, (2) processes hold some resources and are waiting for additional resources,
(3) resources cannot be forcibly removed from the tasks holding them (no pre-
emption on the resources), and (4) a circular chain of tasks exists in which each
task holds one or more resources that are being requested by the next task in the
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chain. Such a definition perfectly fits deadlocks caused by blocking lock opera-
tions but does not cover deadlocks caused by message passing (e.g., a thread t1
can wait for a message that could only be sent by a thread t2, but t2 is waiting
for a message that could only be sent by t1).

Order Violation. Order violations form a much less studied class of con-
currency errors than atomicity violations and deadlocks. An order violation is
a problem of a missing enforcement of some higher-level ordering requirements.2

An order violation can be defined as follows.

Definition 4 Order Violation — A program execution exhibits an order viola-
tion if some of its instructions are not executed in the expected order.

Missed Signal. Missed signals are another less studied class of concurrency
errors. The notion of missed signals assumes that it is known which signal is
intended to be delivered to which thread or threads. A missed signal error can
be defined as follows.

Definition 5 Missed Signal — A program execution contains a missed signal
i↵ there is a signal sent that is not delivered to the thread or threads for which
it was intended.

Since signals are often used to unblock waiting threads, a missed signal error
typically leads to a thread or threads being blocked forever and can lead to
a deadlock as well.

Starvation. Starvation is a behaviour that can cover several safety as well as
liveness (or mixed3) errors, such as the already discussed deadlocks and missed
signals, and the to be discussed livelocks and blocked threads. Starvation occurs
when a thread is waiting for an event that never happens. If the probability of
the event is very low but will eventually happen, the thread is not exhibiting
a starvation, but in these cases the performance degradation imposed by the
waiting for the event may become unacceptable and render the solution invalid
as would a starvation situation.

Definition 6 Starvation — A program execution exhibits starvation i↵ there
exists a thread which waits (blocked or continually performing some computation)
for an event that needs not to occur.

2 Some atomicity violations can be, actually, seen as a low-level violations of ordering
expectations and deadlocks, in addition, are often caused by a wrong order of locking
operations. Here, we do not consider atomicity violations and deadlocks as order
violations.

3 Mixed errors are errors that have both finite witnesses as well as infinite ones whose
any finite prefix does not su�ce as a witness.
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Livelock and Non-Progress Behaviour. There are various di↵erent defi-
nitions of a livelock in the literature. Often, the works consider some kind of
a progress notion for expressing that a thread is making some useful work, i.e.,
doing something of what the programmer intended to be done. Then they see
a livelock as a problem when a thread is not blocked but is not making any
progress as well.

Definition 7 Livelock and Non-Progress Behaviour — An infinite program exe-
cution exhibits a non-progress behaviour i↵ there is a thread which is continually
performing some computation, i.e., it is not blocked, but it is not making any
progress either.

Blocked Thread. We speak about a blocked thread appearing within some
execution when a thread is blocked and waiting forever for some event which
can unblock it. Like for a deadlock, one must be able to say what the blocking
and unblocking operations are. The problem can then be defined as follows.

Definition 8 Blocked Thread — A program execution contains a blocked thread
i↵ the thread is waiting for some event to continue, and this event never occurs
in the execution.

The absence of some unblocking event may leave a thread blocked forever.
There may be many reasons for leaving a thread blocked. A common reason is
that a thread that was holding a lock ends unexpectedly, leaving another thread
(or threads) waiting forever for that lock to be released. Another common reason
are missed signals. Blocked threads may also be called orphaned threads [18].

4 Monitoring of Concurrent Program Execution

One of the strategies to find errors in concurrent programs makes use of dynamic
program analysis that, in turn, requires to observe and monitor the execution
of the program under analysis. To monitor the program execution, one needs
to inject additional code into selected locations of the original program, which
when executed will generate observation points for program analysis. There are
several levels at which such additional code can be inserted, including the source
code level, the level of the intermediate code, and the binary level.

From the three approaches above, inserting the monitoring code at the bi-
nary level has a big advantage of not requiring the source code of the program
under analysis. This is particularly important when dealing with proprietary or
legacy libraries whose source files are not available even for the developers of the
program under analysis. Another advantage might be that this kind of instru-
mentation is more precise in that the monitoring code can be inserted exactly
where necessary, and the placement is not a↵ected by any optimisations possibly
made by the compiler. Yet another advantage is getting access to some low-level
information, such as register allocation, which might be important for some
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analyses. All these advantages come at the expense of sometimes loosing access
to various pieces of high-level information about the program (organisation of
complex data objects, names of variables, etc.).

There exist several frameworks for binary instrumentation, which can be used
to insert the execution-monitoring code into a program. They might be divided
into two groups: static and dynamic binary instrumentation frameworks. Static
binary instrumentation frameworks, e.g., PEBIL [44], insert monitoring code to
a program by rewriting the object or executable code of the program before it
is executed, thus generating a new modified version of the original program’s
binary file, which will be executed afterwards. Dynamic binary instrumentation
frameworks, e.g., PIN [49] and Valgrind [55], insert execution-monitoring code
to the program image in memory at runtime, leaving the program’s binary file
untouched.

An advantage of static binary instrumentation is that it does not su↵er from
the overhead of instrumenting the code of a program every time it is executed.
On the other hand, it cannot handle constructions such as self-modifying and
self-generating code, which is not known before the program actually executes.
On the contrary, dynamic binary instrumentation is slower, but it can cover all
the code that is executed by a program. Furthermore, since the binary file of the
program is not modified in any way, the instrumentation is more transparent to
the user who can run some (possibly lengthy) analysis on the program and, at
the same time, use the program as usual. As the dynamic binary instrumentation
changes the in-memory image of the program, it also allows to instrument and
monitor shared libraries without requiring to generate and maintain two versions
of the library, one normal and the other instrumented.

Regardless of which type of the instrumentation approaches is used, there are
some issues that need to be dealt with when analysing multi-threaded programs
at the binary level [21]. One of these problems is the monitoring of function
calls/execution. This is because the monitoring code has to handle cases where
the control is passed among several functions by jumps, and the return is from
a di↵erent function than the one that was called. Another problem is that the
monitoring code must properly trigger notifications for various special types of
instructions such as atomic instructions, which access several memory locations
at once but in an atomic way, and conditional and repeatable instructions, which
might be executed more than once or not at all. Further, some pieces of infor-
mation about the execution of instructions and functions (such as the memory
locations accessed by them), which are crucial for various analyses, may be lost
once the instruction or function finishes its execution, and it is necessary to ex-
plicitly preserve this information for later use. Finally, in order to support various
multithreading libraries, the analysers must be abstracted from the particular
library used.

Inserting additional code needed for monitoring at the intermediate code level
is suitable for programming languages that use intermediate code like Java. It
does not require the source code of the application while it stays at a level of
abstraction that retains more information about the original program, making it
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easier to explain the errors found than if the monitoring code is inserted at the
binary level. One may find useful tools, like RoadRunner [27], which provide an
instrumentation facility and allows one to fully concentrate on the development
of the analyser.

When the source code of the application is available, one may insert moni-
toring code directly into the application source code. Preparation of each such
application for analysis, however, requires some manual work even when aspect-
oriented programming is employed.

5 Detection of Atomicity Errors

In this section, we describe possible ways for detecting atomicity violations. We
start with the detection of data races as a special and very important case of
atomicity violations, and then we follow with the detection of general atomicity
violations, detecting first single and then multiple variable atomicity violations.

5.1 Detection of Data Races

To recall Definition 2, a data race occurs if there are two unsynchronised accesses
to a shared variable within the execution of a concurrent program and at least
one of them is a write access. To be able to identify an occurrence of a data race,
one thus needs to detect (1) which variables are shared by any two given threads,
and (2) whether all pairs of accesses to a given shared variable are synchronised.

As data races are a well-studied concurrency problem, many di↵erent tech-
niques have been proposed to tackle their detection. Dynamic techniques that
analyse one particular execution of a program are usually based on comput-
ing the so-called locksets and/or happens-before relations along the witnessed
execution. Static techniques often either look for particular code patterns that
are likely to cause a data race, or compute locksets and/or happens-before rela-
tions over all executions considered feasible by a static analyser [16, 39, 50, 54].
It is also possible to use type systems to detect and/or avoid data races by
design [23, 25, 73]. One may also consider model checking approach [67]. How-
ever, we discuss dynamic techniques and their principles in the remainder of this
section.

Lockset-based algorithms. The techniques based on locksets build on the
idea that all accesses to a shared variable should be guarded by a lock. A lockset
is defined as a set of locks that guard all accesses to a given variable. Detectors
then use the assumption that, if the lockset associated with a certain shared
variable is non-empty, i.e., all accesses to that variable are protected by at least
one lock, then no data race is possible.

The first algorithm which used the idea of locksets was Eraser [64]. The al-
gorithm maintains for each shared variable v a set C(v) of candidate locks for
v. When a new variable is initialised, its candidate set C(v) contains all possible
locks. Whenever a variable v is accessed, Eraser updates C(v) by intersecting
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C(v) and the set L(t) of locks held by the current thread at the moment. Eraser
warns about a possible data race if C(v) becomes empty for some shared vari-
able v along the execution being analysed. In order to reduce the number of
false alarms, Eraser introduces an internal state s(v) used to identify the ac-
cess pattern for each shared variable v: if the variable is used exclusively by one
thread, if it is written by a single thread and read by multiple threads, or if it
can be changed by multiple threads. The lockset C(v) is then modified only if
the variable is shared, and a data race is reported only if C(v) becomes empty
and s(v) is in the state denoting the case where multiple threads can access v
for writing.

The original Eraser algorithm designed for C programs has been modified
for programs written in object-oriented languages, e.g., [7, 8, 63, 76]. The main
modification (usually called as the ownership model) is inspired by the common
idiom used in object-oriented programs where the creator of an object is actually
not the owner of the object. Then, one should take into account that the creator
always accesses the object first and no explicit synchronisation with the owner
is needed, because the synchronisation is implicitly taken care of by the Java
virtual machine. This idea is reflected by adding a new internal state for the
shared variables. The modification introduces a small possibility of having false
negatives [41, 63], but greatly reduces the number of false alarms caused by the
object-oriented programming idiom.

Locksets-based techniques do not support other synchronisation mechanisms
than locks and thus, if other mechanisms are also used, these techniques may
produce too many false alarms.

Happens-before-based algorithms. The happens-before-based techniques
exploit the so-called happens-before relation [43] (denoted!), which is defined as
the least strict partial order that includes every pair of causally ordered events.
For instance, if an event x occurs before an event y in the same thread, then it is
denoted as x ! y. Also, if x is an event creating some thread and y is an event
in that thread, then x ! y. Similarly, if some synchronisation or communication
means is used that requires an event x to precede an event y, then x ! y. All
notions of synchronisation and communication, such as sending and receiving
a message, unlocking and locking a lock, sending and receiving a notification,
etc., are to be considered. Detectors build (or approximate) the happens-before
relation among accesses to shared variables and check that no two accesses (out
of which at least one is for writing) can happen simultaneously, i.e., without
a happens-before relation between them.

Most happens-before-based algorithms use the so-called vector clocks intro-
duced in [51]. The idea of vector clocks for a message passing system is as follows.
Each thread t has a vector of clocks Tvc indexed by thread identifiers. One posi-
tion in Tvc holds the value of the clock of t. The other entries in Tvc hold logical
timestamps indicating the last event in a remote thread that is known to be in
the happens-before relation with the current operation of t. Vector clocks are
partially-ordered in a point-wise manner (v) with an associated join operation
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(t) and the minimal element (0). The vector clocks of threads are managed as
follows: (1) initially, all clocks are set to 0; (2) each time a thread t sends a mes-
sage, it sends also its Tvc and then t increments its own logical clock in its Tvc

by one; (3) each time a thread receives a message, it increments its own logical
clock by one and further updates its Tvc according to the received vector T 0

vc to
Tvc = Tvc t T 0

vc.
Algorithms [61, 62] detect data races in systems with locks via maintaining

a vector clock Ct for each thread t (corresponding to Tvc in the original ter-
minology above), a vector clock Lm for each lock m, and two vector clocks for
write and read operations for each shared variable x (denoted Wx and Rx, re-
spectively). Wx and Rx simply maintain a copy of the Ct of the last thread that
accessed x for writing or reading, respectively. A read from x by a thread is
race-free if Wx v Ct (it happens after the last write of each thread). A write to
x by a thread is race-free if Wx v Ct and Rx v Ct (it happens after all accesses
to the variable).

Maintaining such a big number of vector clocks as above generates a consid-
erable overhead. Therefore, in [26], the vector clocks from above that were asso-
ciated with variables were mostly replaced by the so-called epochs. The epoch of
a variable v is represented as a tuple (t, c)v, where t identifies the thread that last
accessed v and c represents the value of its clock. The idea behind this optimisa-
tion is that, in most cases, a data race occurs between two subsequent accesses
to a variable. In such cases, epochs are su�cient to detect unsynchronised ac-
cesses. However, in cases where a write operation needs to be synchronised with
multiple preceding read operations, epochs are not su�cient and the algorithm
has to build an analogy of vector clocks for sequences of read operations.

A bit di↵erent detection approach has been introduced in TRaDe [9] where
a topological race detection [31] is used. This technique is based on an exact
identification of objects which are reachable from a thread. This is accomplished
by observing manipulations with references which alter the interconnection graph
of the objects used in a program—hence the name topological. Then, vector
clocks are used to identify possibly concurrently executed segments of code,
called parallel segments. If an object is reachable from two parallel segments,
a race has been detected. A disadvantage of this solution is its considerable
overhead.

Although the algorithms mentioned above exhibit good precision, their com-
putational demands are sometimes prohibitive, which inspired researchers to
come up with some combinations of happens-before-based and lockset-based al-
gorithms. These combinations are often called hybrid algorithms.

Hybrid algorithms. Hybrid algorithms such as [15,24,58,76] combine the two
approaches described above.

In RaceTrack [76], the notion of a threadset was introduced. The threadset
is maintained for each shared variable and contains information concerning the
threads currently working with the variable. The method works as follows. Each
time a thread performs a memory access on a variable, it forms a label consist-
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ing of the thread identifier and its current private clock value. The label is then
added to the threadset of the variable. The thread also uses its vector clock to
identify and remove from the threadset the labels that correspond to accesses
that are ordered before the current access. Hence, the threadset contains solely
the labels for accesses that are concurrent. At the same time, locksets are used
to track locking of variables, which is not tracked by the used approximation of
the happens-before relation. Intersections on locksets are applied if the approxi-
mated happens-before relation is not able to assure an ordered access to shared
variables. If an ordered access to a shared variable is assured by the approxi-
mated happens-before relation, the lockset of the variable is reset to the lockset
of the thread that is currently accessing it.

One of the most advanced lockset-based algorithms that also uses the happens-
before relation is Goldilocks [15]. The main insight of this algorithm is that lock-
sets can contain not only locks but also volatile variables (i.e., variables with
atomic access that may also be used for synchronisation) and, most importantly,
also threads. The appearance of a thread t in the lockset of a shared variable
v means that t is properly synchronised for using the given variable. The in-
formation about threads synchronised for using certain variables is then used
to maintain a transitive closure of the happens-before relation via the locksets.
The advantage of Goldilocks is that it allows locksets to grow during the compu-
tation when the happens-before relation is established between operations over
v. The basic Goldilocks algorithm is relatively expensive but can be optimised
by short circuiting the lockset computation (three cheap checks are su�cient for
ensuring race freedom between the last two accesses on a variable) and using
a lazy computation of the locksets (locksets are computed only if the previous
optimisation is not able to detect that some events are in the happens-before
relation). The optimised algorithm has a considerably lower overhead, in some
cases approaching the pure lockset-based algorithms.

A similar approach to Goldilocks but for the Java Path Finder model checker
has been presented in [40]. This algorithm does not map variables to locksets con-
taining threads and synchronisation elements (such as locks), but rather threads
and synchronisation elements to sets of variables. This modification is motivated
by the fact that the number of threads and locks is usually much lower than the
number of shared variables. Such a modification is feasible because model check-
ing allows the method to modify structures associated with di↵erent threads
at once. Methods based on dynamic analysis cannot use this modification and
locksets must be kept using the original relation.

5.2 Detection of Atomicity Violations

Taking into account the generic notion of atomicity, methods for detecting atom-
icity violations can be classified according to: (1) the way they obtain informa-
tion about which code blocks should be expected to execute atomically; (2) the
notion of equivalence of executions used (we will get to several commonly used
equivalences in the following); and (3) the actual way in which an atomicity
violation is detected (i.e., using static analysis, dynamic analysis, etc.).
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As for the blocks to be assumed to execute atomically, some authors ex-
pect the programmers to annotate their code to delimit such code blocks [29].
Some other works come with predefined patterns of code which should typi-
cally execute atomically [32, 48, 66]. Yet other authors try to infer blocks to be
executed atomically, e.g., by analysing data and control dependencies between
program statements [72], where dependent program statements form a block
which should be executed atomically, or by finding access correlations between
shared variables [47], where a set of accesses to correlated shared variables should
be executed atomically (together with all statements between them).

Below, we first discuss approaches for detecting atomicity violations when
considering accesses to a single shared variable only and then those which con-
sider accesses to several shared variables.

Atomicity over one variable. Most of the existing algorithms for detecting
atomicity violations are only able to detect atomicity violations within accesses
to a single shared variable. They mostly attempt to detect situations where two
accesses to a shared variable should be executed atomically, but are interleaved
by an access from another thread.

In [72], blocks of instructions which are assumed to execute atomically are
approximated by the so-called computational units (CUs). CUs are inferred auto-
matically from a single program trace by analysing data and control dependencies
between instructions. First, a dependency graph is created which contains control
and read-after-write dependencies between all instructions. Then, the algorithm
partitions this dependency graph to obtain a set of distinct subgraphs which form
the CUs. The partitioning works in such a way that each CU is the largest group
of instructions where all instructions are control or read-after-write dependent,
but no instructions which access shared variables are read-after-write dependent,
i.e., no read-after-write dependencies are allowed between shared variables in the
same computational unit. Since these conditions are not su�cient to partition the
dependency graph to distinct subgraphs, additional heuristics are used. Atom-
icity violations are then detected by checking if the strict 2-phase locking (2PL)
discipline [17] is violated in a program trace. Violating the strict 2PL discipline
means that some CU has written or accessed a shared variable which another
CU is currently reading from or writing to, respectively (i.e., some CU accessed
a shared variable and before its execution is finished, another CU accesses this
shared variable). If the strict 2PL discipline is violated, the program trace is not
identical to any serial execution, and so seen as violating atomicity. Checking if
the strict 2PL discipline is violated is done dynamically during a program exe-
cution in case of the online version of the algorithm, or on a previously recorded
execution trace using the o↵-line version of the algorithm.

A much simpler approach of discovering atomicity violations was presented
in [48]. Here, any two consecutive accesses from one thread to the same shared
variable are considered an atomic section, i.e., a block which should be executed
atomically. Such blocks can be categorised into four classes according to the
types of the two accesses (read or write) to the shared variable. Serialisability is
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then defined based on analysis of what can happen when a block b of each of the
possible classes is interleaved with some read or write access from another thread
to the same shared variable which is accessed in b. Out of the eight total cases
arising in this way, four (namely, r-w-r, w-w-r, w-r-w, r-w-w) are considered
to lead to an unserialisable execution. However, the detection algorithm does
not consider all the unserialisable executions as errors. Detection of atomicity
violations is done dynamically in two steps. First, the algorithm analyses a set of
correct (training) runs in which it tries to detect atomic sections which are never
unserialisably interleaved. These atomic sections are called access interleaving
invariants (AI invariants). Then, the algorithm checks if any of the obtained
AI invariants is violated in a monitored run, i.e., if there is an AI invariant
which is unserialisably interleaved by an access from another thread to a shared
variable which the AI invariant (atomic section) accesses. While the second step
of checking AI invariants violation is really simple and can be done in a quite
e�cient way, the training step to get the AI invariants can lead to a considerable
slowdown of the monitored application and has to be repeated if the code base
of the application changes (e.g., for a new version of the application).

A more complicated approach was introduced in [24, 69], where atomicity
violations are sought using the Lipton’s reduction theorem [46]. The approach is
based on checking whether a given run can be transformed (reduced) to a serial
one using commutativity of certain instructions (or, in other words, by moving
certain instructions back or forward in the execution timeline). Both [24] and [69]
use procedures as atomic blocks by default, but users can annotate blocks of code
which they assume to execute atomically to provide a more precise specification
of atomic sections for the algorithm. For the reduction used to detect atomic-
ity violations, all instructions are classified, according to their commutativity
properties, into 4 groups: (1) Left-mover instructions L that may be swapped
with the immediately preceding instruction; (2) Right-mover instructions R that
may be swapped with the immediately succeeding instruction; (3) Both-mover
instructions B that are simultaneously left and right mover, i.e., they may be
swapped with both the immediately preceding and succeeding instructions; and
(4) Non-mover instructions N that are not known to be left or right mover
instructions.

Classification of instructions to these classes is based on their relation to
synchronisation operations, e.g., lock acquire instructions are right-movers, lock
release instructions are left-movers, and race free accesses to variables are both-
movers (a lockset-based dynamic detection algorithm is used for checking race
freeness). An execution is then serialisable if it is deadlock-free and each atomic
section in this execution can be reduced to a form R⇤N?L⇤ by moving the in-
structions in the execution in the allowed directions. Here, N? represents a sin-
gle non-mover instruction and both-mover instructions B can be taken as either
right-mover instructions R or left-mover instructions L. Algorithms in both [24]
and [69] use dynamic analysis to detect atomicity violations using the reduction
algorithm described above.
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Other approaches using the Lipton’s reduction theorem [46] can be found
in [28, 68] where type systems based on this theorem are used to deal with
atomicity violations.

Atomicity over multiple variables. The above mentioned algorithms con-
sider atomicity of multiple accesses to the same variable only. However, there
are situations where we need to check atomicity over multiple variables, e.g.,
when a program modifies two or more interrelated variables in several atomic
blocks (such variables can represent, for instance, a point in a three-dimensional
space or the real and imaginary parts of a complex number). Even if we ensure
that all the read and write accesses to these variables are executed atomically,
the program can still have an unserializable execution. This happens when the
boundaries of the atomic block guarding the access to these variables are mis-
defined, and what should be a single atomic block was split into two or more
smaller atomic blocks. The interleaving of these smaller atomic blocks with other
atomic blocks may violate the integrity of the data and expose states that would
never be observed in a sequential execution. Nevertheless, the algorithms and
the detectors discussed above cannot address these multiple-variable atomicity
errors.

In [4], the problem of violation of atomicity of operations over multiple vari-
ables is referred to as a high-level data race. In the work, all synchronised blocks
(i.e., blocks of code guarded by the synchronized statement) are considered to
form atomic sections. The proposed detection of atomicity violations is based on
checking the so-called view consistency. For each thread, a set of views is gener-
ated. A view is a set of fields (variables) which are accessed by a thread within
a single synchronised block. From this set of views, a set of maximal views (maxi-
mal according to set inclusion) is computed for each thread. An execution is then
serialisable if each thread only uses views that are compatible, i.e., form a chain
according to set inclusion, with all maximal views of other threads. Hence, the
detection algorithm uses a dynamic analysis to check whether all views are com-
patible within a given program trace. Since the algorithm has to operate over
a high number of sets (each view is a set), it su↵ers from a big overhead. Dias et
al in [13] adapted this approach to apply static analysis techniques and extended
it to reduce the number of false warnings.

A di↵erent approach is associated with the Velodrome detector [29]. Here,
atomic sections (called transactions) are given as methods annotated by the user.
Detection of atomicity violations is based on constructing a graph of the transac-
tional happens-before relation (the happens-before relation among transactions).
An execution is serialisable if the graph does not contain a cycle. The detection
algorithm uses a dynamic analysis to create the graph from a program trace and
then checks it for a cycle. If a cycle is found, the program contains an atomicity
violation. Since creating the graph for the entire execution is inconvenient, nodes
that cannot be involved in a cycle are garbage-collected or not created at all.
Like the previous algorithm, Velodrome may su↵er from a considerable overhead
in some cases, too.
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The simple idea of AI invariants described in [48] has been generalised for
checking atomicity over pairs of variables in [32, 66], where a number of prob-
lematic interleaving scenarios were identified. The user is assumed to provide
the so-called atomic sets that are sets of variables which should be operated
atomically. In [66] an algorithm to infer which procedure bodies should be the
so-called units of work w.r.t. the given atomic sets is proposed. This is done
statically using dataflow analysis. An execution is then considered serialisable if
it does not correspond to any of the problematic interleavings of the detected
units of work. An algorithm capable of checking unserialisability of execution of
units of work (called atomic-set-serialisability violations) is described in [32]. It
is based on a dynamic analysis of program traces. The algorithm introduces the
so-called race automata, which are simple finite state automata used to detect
the problematic interleaving scenarios.

There are also attempts to enhance well-known approaches for data race
analysis to detect atomicity violations over multiple variables. One method can
be found in [47], where data mining techniques are used to determine access
correlations among an arbitrary number of variables. This information is then
used in modified lockset-based and happens-before-based detectors. Since data
race detectors do not directly work with the notion of atomicity, blocks of code
accessing correlated variables are used to play the role of atomic sections. Access
correlations are inferred statically using a correlation analysis. The correlation
analysis is based on mining association rules [3] from frequent itemsets, where
items in these sets are accesses to variables. The obtained association rules are
then pruned to allow only the rules satisfying the minimal support and minimal
confidence constraints. The resulting rules determine access correlations between
various variables. Using this information, the two mentioned data race detector
types can then be modified to detect atomicity violations over multiple variables
as follows. Lockset-based algorithms must check if, for every pair of accesses
to a shared variable, the shared variable and all variables correlated with this
variable are protected by at least one common lock. Happens-before-based algo-
rithms must compare the logical timestamps not only with accesses to the same
variable, but also with accesses to the correlated variables. The detection can be
done statically or dynamically, depending on the data race detector used.

6 Detection of Deadlocks

As deadlock is connected with circular dependency among threads and shared
resources, the detection of deadlocks usually involves various graph algorithms.
For instance, the algorithm introduced in [57] constructs a thread-wait-for graph
dynamically and analyses it for a presence of cycles. Here, a thread-wait-for graph
is an arc-labelled digraph G = (V,E) where vertices V are threads and locks, and
edges E represent waiting arcs, which are classified (labelled) according to the
synchronisation mechanism used (join synchronisation, notification, finalisation,
and waiting on a monitor). A cycle in this graph involving at least two threads
represents a deadlock. A disadvantage of this algorithm is that it is able to
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detect only deadlocks that actually happen. The following works can detect also
potential deadlocks that can happen but did not actually happen during the
witnessed execution.

In [33], a di↵erent algorithm called GoodLock for detecting deadlocks was
presented. The algorithm constructs the so-called runtime lock trees and uses
a depth-first search to detect cycles in it. Here, a runtime lock tree Tt = (V,E)
for a thread t is a tree where vertices V are locks acquired by t and there is
an edge from v1 2 V to v2 2 V when v1 represents the most recently acquired
lock that t holds when acquiring v2. A path in such a tree represents a nested
use of locks. When a program terminates, the algorithm analyses lock trees for
each pair of threads. The algorithm issues a warning about a possible deadlock
if the order of obtaining the same locks (i.e., their nesting) in two analysed trees
di↵ers and no “gate” lock guarding this inconsistency has been detected.

The original GoodLock algorithm is able to detect deadlocks between two
threads only. Later works, e.g., [2, 6] improve the algorithm to detect deadlocks
among multiple threads. In [2], a support for semaphores and wait-notify syn-
chronisation was added. A stack to handle the so-called lock dependency relation
is used in [38] instead of lock trees. The algorithm computes the transitive clo-
sure of the lock dependency relation instead of performing a depth first search
in a graph. The modified algorithm uses more memory but the computation is
much faster.

Static approaches can be employed also for deadlock detection. A purely
data-flow-based interprocedural static detector of deadlocks called RacerX has
been presented in [16] while a bottom-up data-flow static analysis is used to
detect deadlocks in [70]. Both algorithms produce many false alarms due to the
approximations they use. A combination of symbolic execution, static analysis,
and SMT solving is used in [11] to automatically derive the so-called method
contracts guaranteeing deadlock-free executions.

7 Detection of Other Errors in Concurrency

So far, we have covered detection of data races, atomicity violations, and dead-
locks that are the most common concurrency errors in practice. In this section,
we briefly touch detection of other concurrency errors, such as order violations,
missed signals, and non-progress behaviour.

For detecting order violations one needs to be able to decide if, for a given
execution, the instructions were or were not executed in the right order. There
are only a few detection techniques which are able to detect order violations.
These techniques try to detect that some instructions are executed in a wrong
order by searching for specific behavioural patterns [77] or by comparing the
order of instructions in a testing run with the order witnessed in a series of
preceding, correct program runs [74].

Similarly to order violations, there are just a few methods for detecting missed
signals. Usually, the problem is studied as part of detecting other concurrency
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problems, e.g., deadlocks. There is also an approach that uses pattern-based
static analysis to search for code patterns that may lead to missed signals [37].

It is also possible to use contracts for concurrency [65] to detect some of
the errors mentioned above. A contract for concurrency allows one to enumerate
sequences of public methods of a module that are required to be executed atom-
ically. Even though such contracts were designed to primarily capture atomicity
violations, they are capable of capturing order violations and missed signals as
well. Contracts may be written by a developer or inferred automatically from
the program (based on its typical usage patterns) [65].

There are two methods [12,20] for dynamically verifying that such contracts
are respected at program runtime. In particular, the first method [20] belongs
among the so-called lockset-based dynamic analyses, whose classic example is
the Eraser algorithm for data race detection [64]. Their common feature is that
they track sets of locks that are held by various threads and used for various
synchronisation purposes. The tracked lock sets are used to extrapolate the syn-
chronisation behaviour seen in the witnessed test runs, allowing one to warn
about possible errors even when they do not directly appear in the witnessed
test runs.

While the lockset-based method works well in many cases, it may produce
both false positives and negatives. Some of these problems are caused by the
method itself as lockset-based methods are imprecise in general. However, many
of the problems are caused by the limitations of the (basic) contracts which do
not allow one to precisely describe which situations are errors and which are not.
To address this problem, the notion of contracts for concurrency was extended
in [12] to allow them to reflect both the data flow between the methods (in
that a sequence of method calls only needs to be atomic if they manipulate the
same data) and the contextual information (in that a sequence of method calls
needs not be atomic wrt all other sequences of methods but only some of them).
The paper then proposes a method for dynamic validation of contracts based on
the happens-before relation which utilises vector clocks in a way optimised for
contract validation. This method does not su↵er from false alarms and supports
the extended contracts.

One of the most common approaches for detecting non-progress behaviour
in finite-state programs is to use model checking and search for non-progress cy-
cles [35]. In case of infinite-state programs, a long enough path of non-progress
actions in the state space is often su�cient for proving a non-progress be-
haviour [30]. A similar approach is also used in dynamic techniques where dy-
namic monitoring [34] of an execution is performed in order to find an execution
where no progress action is reached for a long period of time.

8 Boosting Detection of Errors in Concurrency

In this section, we discuss techniques that can help with quality assurance of
concurrent programs regardless of particular class of concurrency errors, namely,
noise injection and systematic testing.



20 João M. Lourenço1, Jan Fiedor2, Bohuslav Křena2, and Tomáš Vojnar2

Noise injection. Noise injection inserts delays into the execution of selected
threads aiming at promoting the occurrence of low-probable interleavings that
otherwise would happen very seldom or even never. This approach allows to
test time-sensitive synchronisation interleavings that could hide latent errors.
Noise injection is also able to test legal interleavings of actions which are far
away from each other in terms of execution time and in terms of the number
of concurrency-relevant events [14] between those actions during average execu-
tions provided that the appropriate noise is injected into some of the threads. In
a sense, the approach is similar to running the program inside a model checker
such as JPF [67] with a random exploration algorithm enabled. However, mak-
ing purely random scheduling decisions may be less e�cient than using some
of the noise heuristics which influence the scheduling at some carefully selected
places important from the point of view of synchronisation only. The approach
of noise injection is mature enough to be used for testing of real-life software,
and it is supported by industrial-strength tools, such as IBM Java Concurrency
Testing Tool (ConTest) [14] and the Microsoft Driver Verifier, where the tech-
nique is called delay fuzzing [1]. A recent tool supporting noise-based testing of
concurrent C/C++ code on the binary level is ANaConDA [12,22].

Systematic testing. Systematic testing of concurrent programs [36, 52, 53, 71]
has become popular recently. The technique uses a deterministic control over
the scheduling of threads. A deterministic scheduler is sometimes implemented
using intense noise injection keeping all threads blocked except the one chosen for
making a progress. Often, other threads which do not execute synchronisation-
relevant instructions or which do not access shared memory are also allowed to
make progress concurrently.

The systematic testing approach can be seen as execution-based model check-
ing which systematically tests as many thread interleaving scenarios as possible.
Before execution of each instruction which is considered as relevant from the
point of view of detecting concurrency-related errors, the technique computes
all possible scheduler decisions. The concrete set of instructions considered as
concurrency-relevant depends on the particular implementation of the technique
(often, shared memory accesses and synchronisation relevant instructions are
considered as concurrency-relevant). Each such a decision point is considered
a state in the state space of the system under test, and each possible decision is
considered an enabled transition at that state. The decisions that are explored
from each state are recorded in the form of a partially ordered happens-before
graph [52], totally ordered list of synchronisation events [71], or simply in the
form of a set of explored decisions [36]. During the next execution of the program,
the recorded scheduling decisions can be enforced again when doing a replay or
changed when testing with the aim of enforcing a new interleaving scenario.

As the number of possible scheduling decisions is high for complex programs,
various optimisations and heuristics reducing the number of decisions to ex-
plore have been proposed. For example, the locality hypothesis [52] says that
most concurrency-related errors can be exposed using a small number of pre-
emptions. This hypothesis is exploited in the CHESS tool [52], which limits the
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number of context switches taking place in the execution (iteratively increasing
the bound on the allowed number of context switches). Moreover, the tool also
utilises a partial-order reduction algorithm blocking exploration of states equal to
the already explored states (based on an equivalence defined on happens-before
graphs). Some further heuristics are then mentioned below when discussing the
related approach of coverage-driven testing.

However, despite a great impact of the various reductions, the number of
thread interleavings to be explored remains huge for real-life programs, and
therefore the approach provides great benefit mainly in the area of unit test-
ing [36, 52]. The systematic testing approach is not as expensive as full model
checking, but it is still quite costly because one needs to track which schedul-
ing scenarios of possibly very long runs have been witnessed and systematically
force new ones. The approach makes it easy to replay an execution where an er-
ror was detected, but it has problems with handling various external sources of
nondeterminism (e.g., input events).

Systematic testing o↵ers several important benefits over noise injection. Its
full control over the scheduler allows systematic testing to precisely navigate the
execution of the program under test, to explore di↵erent interleavings in each
run, and to also replay interesting runs (if other sources of nondeterminism, such
as input values, are handled). It allows the user to get information about what
fraction of (discovered) scheduling decisions has already been covered by the
testing process. On the other hand, the approach su↵ers from various problems,
such as handling external sources of nondeterminism (user actions in GUI, client
requests) as well as with continuously running programs where its ability to
reuse already collected information is limited. In all those problematic cases,
noise injection can be successfully used. Moreover, the performance degradation
introduced by noise injection is significantly lower.

Coverage-driven testing. An approach related to systematic testing is the
approach of coverage-driven testing implemented in the Maple tool [75]. Maple
attempts to influence the scheduling such that the obtained coverage of several
important synchronisation idioms (called iRoots) is maximised. These idioms
capture several important memory access patterns that are shown to be often
related with error occurrences. Maple uses several heuristics to likely increase
the coverage of iRoots. The technique provides lower guarantees of finding an
error than systematic testing, but it is more scalable. The Maple tool [75] limits
the number of context switches to two and additionally gets use of the value-
independence hypothesis which states that exposing a concurrency error does not
depend on data values. Moreover, the Maple tool does not consider interleavings
where two related actions executed in di↵erent threads are too far away from
each other. The distance of such actions is computed by counting actions in one
of the threads, and the threshold is referred to as a vulnerability window [75]. The
approach of Maple does not support some kinds of errors (e.g., value-dependent
errors or some forms of deadlocks). Multiple of the heuristics that Maple uses
are based on randomisation. Maple can thus be viewed as being in between of
systematic testing and noise-based testing.
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9 Conclusions

In this chapter, we have explained problems connected with concurrent execution
of programs on modern multi-core devices, listed common errors that can arise
from concurrency and described possibilities how particular kinds of concurrency
errors can be detected. We have also mentioned noise injection and systematic
testing that can support the discovery of concurrency errors.

Understanding the problems connected with concurrency is the first and in-
evitable step to produce high quality concurrent software. We, however, believe
that detection of concurrency errors followed by their manual elimination by
a programmer is not the only way to handle failures caused by concurrency. In
contrast to many other kinds of software defects, concurrency errors have one
admirable feature emerging from usually huge space of possible thread interleav-
ings which provides us with redundancy that can be employed for automatic
correction of the error. If we are able to automatically detect and localise the
concurrency defect, we can propose a fix to a programmer or heal it fully auto-
matically at runtime because the set of interleavings contains, besides interleav-
ings leading to a failure, also interleavings that lead to a correct outcome. This
is not possible for most of other programmers mistakes because the intended
behaviour of the program cannot be inferred automatically.

For instance, if a data race over a shared variable is detected, it can be healed
by introducing a new lock for guarding this shared variable. That means that
a code acquiring the new lock is inserted before each access to the variable, while
a code releasing the lock is inserted after the access. As a reader can guess, adding
a lock without knowledge of other locking operations can introduce a deadlock
which may be even worse problem than the original data race. Another approach
of healing data races we have studied [41] exploits noise injection technique. As
noise injection can be used for increasing probability of spotting a concurrency
errors by changing probabilities of particular interleavings it can also be used
in an opposite manner to significantly reduce probability of interleavings that
lead to a fault. This approach cannot introduce a deadlock, however, it does not
guarantee that the error is fully covered. Other types of concurrency problems
such as deadlocks [56] and atomicity violations [45] can be covered automatically
as well.

One may also expect that there will be available programming paradigms
like transactional memory [5] in the future that reduce or eliminate chances of
creating concurrency errors.
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Abstract. Very early runtime verification systems focused on monitoring what
we can refer to as propositional events: just names of events. For this, finite state
machines, standard regular expressions, or propositional temporal logics were
sufficient formalisms for expressing properties. However, in practice there is a
need for monitoring events that in addition carry data arguments. This adds com-
plexity to both the property specification languages, and monitoring algorithms,
which is reflected in the many alternative such approaches suggested in the liter-
ature. This chapter presents five different formalisms and monitoring approaches
that support specifications with data, in order to illustrate the challenges and var-
ious solutions.

Keywords: Runtime verification, data rich events, temporal logic, state machines, rule
systems, stream processing.

1 Introduction

Runtime verification (RV) as a field is broadly defined as focusing on processing ex-
ecution traces (output of an observed system) for verification and validation purposes,
ignoring how the traces are generated, in contrast to testing, where test case (input to
observed system) generation is in focus. Of particular interest is the problem of verify-
ing that a sequence of events, a trace, satisfies a temporal property, formulated e.g. as a
state machine or temporal logic formula. Applications cover such domains as security
monitoring and safety monitoring.

We shall distinguish between two variants of this problem: propositional and pa-

rameterised runtime verification, according to the format of events. In the proposi-
tional case, events are atomic without structure, for example simple identifiers, such
as openGate and closeGate. Here we assume a finite (and usually small) alphabet S
of atomic identifiers. This case resembles the classic finite trace language member-
ship of language theory [52], where properties are stated for example as finite state
machines or regular expressions with atomic letters, as in the following regular ex-
pression: (openGate; closeGate)⇤. Similarly, the propositional verification problem has

⇤The research performed by this author was carried out at Jet Propulsion Laboratory, Califor-
nia Institute of Technology, under a contract with the National Aeronautics and Space Adminis-
tration.



been studied in model checking [51], where properties for example are stated in Linear
Temporal Logic (LTL), and where models are infinite traces of atomic propositions.
Very early RV systems supported only this propositional case. Within recent years,
however, emphasis within the research community has been on parameterised runtime
verification, where events carry data. Here events are drawn from an alphabet S⇥D

⇤ for
some possibly infinite value domain D, which includes values occurring in monitored
events, for example reals, strings, objects, etc. This chapter reviews five alternative ap-
proaches to parameterised runtime verification, covering extensions of temporal logic
and automata with quantification, as well as rule-based and stream processing systems.

As an example consider the following (well studied) data parameterised property,
which we shall name UnsafeMapIterator, and which will be formalised in the different
approaches. The property concerns the use of Java collections, which are part of the Java
library API. The property requires that if a collection is created from a java.util.Map
object (i.e the key set of the map), and then a java.util.Iterator object is created from
that collection, and the original map thereafter is updated, then thereafter the next()
method cannot be called on that iterator. Four events are relevant: create(m,c) records
the creation of collection c from map m; iterator(c, i) records the creation of iterator i

from collection c; update(m) records the update of m; and next(i) records the call of
the next() method on iterator i. More complicated properties can easily be imagined,
requiring computations to be performed, such as counting, etc. Due to lack of space we
shall, however, limit ourselves to this property as a running example.

The chapter presents five formalisms and monitoring approaches, chosen to repre-
sent a broad view of the solution space wrt. logics and algorithms. FOTL [16, 17] is a
first-order temporal logic, with a monitoring algorithm that has roots in approaches for
checking temporal integrity constraints of databases [26]. MMT (Monitoring Modulo
Theories) [34] is a generic framework that allows lifting monitor synthesis procedures
for propositional temporal logics to a temporal logic over structures within some first-
order theory using SMT solving. These first two approaches represent variations of
first-order linear temporal logic, a very important class of candidate logics for runtime
verification. The two systems also represent different interesting monitoring algorithms
for this case. QEA (Quantified Event Automata) [10] are automata supporting quan-
tification over data. The corresponding approach generalises the concept of trace slic-
ing as found in earlier influential RV systems such as TRACEMATCHES [5] and MOP
[25, 62]. Trace slicing likely provides the most efficient monitors among state-of-the-
art systems. LOGFIRE [47] is a rule-based framework interpreting rules working on a
collection of facts. It is implemented using an adaption of the RETE algorithm known
from artificial intelligence. It is furthermore implemented as an internal DSL (an API in
the Scala programming language). LOLA [29] is a stream-based specification language
inspired by Lustre and Esterel. The corresponding approach incrementally constructs
output streams from input streams. This is a rather new approach to monitoring.

The chapter is organised as follows. Section 2 introduces preliminary notation. Sec-
tions 3 to 7 introduce the five different formalisms and monitoring approaches. Sec-
tion 8 further discusses and compares the five approaches. Section 9 presents related
work, while Section 10 concludes the chapter.
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2 Preliminaries

Primitive Types By B we denote the set of Boolean values {true, false} together with
the usual operators such as ¬,^,_,!. By N we denote the set of natural numbers
{0,1,2, . . .} and by R the set of real numbers. We assume a set of event names N , a set
of variable names V , and an infinite domain D of values (data occurring in events).

Non-Primitive Types A power set type is denoted by √(T ), denoting the set of all
subsets of the type T . Tuple types are denoted by T1⇥T2⇥ . . .⇥Tn, containing elements
of the form (v1, ...,vn) for vi 2 Ti.

By S! T we denote the set of total functions from S to T . By S 9 T we denote the
set of partial functions from S to T with a finite domain, also referred to as maps. A map
can be explicitly constructed with the notation: [x1 7! v1, ...,xn 7! vn], with [ ] denoting
the empty map. A map is applied with the same notation as function application: m(xi)
yielding vi. The values for which a map m is defined is denoted by dom(m), resulting
in the set {x1, ...,xn}. One map m1 is overridden by another map m2 with the notation
m1 † m2. That is, if m = m1 † m2 then m(x) = m2(x) if x 2 dom(m2) else m(x) = m1(x).
Maps are expected to be applied to values in their domain.

By T
⇤ we denote the set of finite sequences over T where each sequence element

is of type T . A sequence s of length N is a function of type {n 2 N | n < N}! T .
The length of a sequence s is denoted by |s |. The element at position i 2 N in se-
quence s is denoted s(i) or si. A sequence can be explicitly constructed using the
notation: hv1, . . . ,vni, with h i denoting the empty sequence. A non-empty sequence
s = hv1,v2, . . . ,vni of type T

⇤ can be deconstructed with the functions head : T
⇤ ! T

and tail : T
⇤ ! T

⇤ as follows: head(s) = v1 and tail(s) = hv2, . . . ,vni. We occasionally
write v to represent a sequence hv1, . . . ,vni. Sequences are also referred to as lists.

First-order Logic A signature S = (C,P,ar) consists of finite disjoint sets C and P of
constant and respectively relation (or predicate) symbols, and a arity function ar : P! N.
A term is a constant c 2C or a variable x 2 V .

First-order formulas over the signature S = (C,P,ar) are given by the grammar

j ::= p(t1, . . . , tar(p)) | ¬j | j _j | 9x.j,

where p ranges over P, the tis range over terms, and x ranges over V . As syntactic sugar,
we use standard Boolean constants and connectives such as true, false, ^,!, and the
universal quantifier 8x. The set of free variables of a formula j , that is, those that are
not in the scope of some quantifier in j , is denoted by fv(j). A sentence is a formula
without free variables.

A structure S over the signature S consists of a (finite or infinite) domain D 6= /0
and interpretations c

S 2 D and p
S ✓ D

ar(r), for each c 2 C and p 2 P. Given a
structure with domain D, a valuation is a mapping q : V ! D. For a valuation q ,
x = (x1, . . . ,xn) 2 V n, and d = (d1, . . . ,dn) 2 D

n, we write q [x 7! d] for the valuation
that maps xi to di, for 1  i  n, and leaves the other variables’ valuation unaltered.
We abuse notation and apply a valuation q also to constants, with q(c) = c

S , for all
c 2C. The semantics of first-order formulas is defined as usual. We write (S ,q) |= j
if a formula j is satisfied for some structure S and valuation q .
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Events and Traces An event is a tuple (id,hv1, . . . ,vni) consisting of a name id 2N
and a sequence of values vi 2D. An event is typically written as id(v1, . . . ,vn). The type
of events is denoted by E= N ⇥D

⇤. The type of (event) traces is denoted by E
⇤.

The Monitoring Problem We will focus on the following problem: given some spec-
ification language L , find a procedure M : L ! (E⇤ ! Verdict), that for any speci-
fication j 2L and any trace t 2 E

⇤, computes a verdict M(j)(t) indicating whether
the trace t satisfies the specification j or not. Note, however, that Verdict generally
can be any data domain, including the traditional case of Booleans or some extension
of Booleans. Such a procedure normally processes the trace iteratively, event by event,
keeping state between iterations. A verdict is consequently issued for each new event,
and not just at the end of the trace. Thus, Verdict typically includes a special verdict
with the meaning “unknown verdict” or “no definitive verdict (yet).” We refer to such a
procedure as a monitoring algorithm.

3 Monitoring First-order Temporal Properties

3.1 Overview

First-order temporal logics are natural specification languages for formalising require-
ments of hardware and software systems. In particular, the first-order aspect is well-
suited to capture relations between data and quantify over data. While first-order tem-
poral logics are not widely used in verification because of decidability issues [50], they
do admit efficient monitoring.

In this section we present a monitoring approach for the past-only fragment of first-
order temporal logic (FOTL). The presentation is a stripped-down version, due to lim-
ited space, of the approaches in [16, 17], given for richer logics, which additionally
include future temporal operators, quantitative temporal constraints to express dead-
lines, interpreted functions like arithmetic operators, rigid predicates like inequality,
and SQL-like aggregation operators. In a nutshell, the monitoring algorithm is based
on a translation of formulas in a fragment of FOTL into relational algebra expressions.
The algorithm is implemented in the MONPOLY tool [15].

To get a glimpse of the specification language, we formalise next the UnsafeMap-

Iterator property. To each event we associate a corresponding predicate symbol. Then
the following FOTL formula represents a possible formalisation.

⇤8i.
⇣
next(i)!9m,c.

�
¬update(m)S

�
iterator(c, i)^ ⌅create(m,c)

��⌘

The formula requires that always,5 for any iterator i, if this iterator is used, then there
are a map m and a collection c such that (a) at some previous time point the iterator i

was created from collection c, (b) before that, the collection c was created from the
map m, and (c) since the iterator’s creation, the map m has not been updated.

5Since we restrict ourselves to the past-only fragment of FOTL, the outermost temporal
operator ⇤ (“always”) is not part of our definition of the logic given in Section 3.2. However, we
include it in the formalisation to emphasise that the property must be fulfilled at all time points.
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3.2 Syntax and Semantics

FOTL formulas over the signature S = (C,P,ar) are given by the grammar

j ::= p(t1, . . . , tar(p)) | ¬j | j _j | 9x.j | j | j Sj

where p ranges over P, the tis range over C[V , and x ranges over V . The symbols  
and S denote the “previous” and the “since” temporal operators. Intuitively, the formula
 j states that j holds at the previous time point, while the formula j Sy states that
there is a time point in the past where y holds and from the next time point and onwards
the formula j continuously holds. As syntactic sugar, besides the one for first-order
logic, we use the temporal operator ⌅ (“once”) with ⌅j := trueSj .

A temporal structure over the signature S is a sequenceT = (T0,T1, . . .) of struc-
tures over S such that

(1) all structures Ti, with i� 0, have the same domain, denoted D, and
(2) constant symbols have rigid interpretation: c

Ti = c
T0 , for all c 2C and i > 0.

We call the indices of the elements in the sequenceT time points. In a temporal struc-
ture, predicates may have different interpretations at different time points. As detailed
later, predicates and their interpretations are used to represent events. Recall that there
are no function symbols (beside constants) to be interpreted.

Definition 1. LetT be a temporal structure over the signature S, withT =(T0,T1, . . .),
j a formula over S, q a valuation, and i 2 N. We define the satisfaction relation

(T ,q , i) |= j inductively as follows:

(T ,q , i) |= p(t1, . . . , tar(p)) iff
�
q(t1), . . . ,q(tar(p))

�
2 p

Ti ,
(T ,q , i) |= ¬y iff (T ,q , i) 6|= y,
(T ,q , i) |= y _y 0 iff (T ,q , i) |= y or (T ,q , i) |= y 0,
(T ,q , i) |= 9x.y iff (T ,q [x 7! d], i) |= y , for some d 2 D,
(T ,q , i) |= y iff i > 0 and (T ,q , i�1) |= y,
(T ,q , i) |= y Sy 0 iff for some j  i, (T ,q , j) |= y 0,and

(T ,q ,k) |= y, for all k with j < k  i.

For a temporal structureT , a time point i 2 N, and a formula j with the vector x̄

of free variables, let [[j]](T ,i) :=
�

d 2 D
|fv(j)| ��(T ,q [x 7! d], i) |= j

 
. The set [[j]](T ,i)

consists of the satisfying elements of j at time point i inT . Instead of [[j]](T ,i) we write
[[j]]i whenT is clear from the context.

3.3 Monitoring Algorithm

Setup We assume that property formalisations are of the form ⇤8x.j , where j is an
FOTL formula and x is the sequence of j’s free variables. The property requires that
8x.j holds at every time point in the temporal structureT representing the monitored
system’s behaviour. Moreover, we assume that T has domain D and it is a temporal

database, i.e. the relation p
Ti is finite, for any p 2 P and i 2 N.
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The inputs of the monitoring algorithm are a formula y , which is logically equiva-
lent to ¬j , and a temporal databaseT , which is processed iteratively. That is, at each
iteration i� 0, the monitor processes the structure Ti. The algorithm outputs, again iter-
atively, the relation [[y]]i, for each i� 0. As y and ¬j are equivalent, the tuples in [[y]]i

represent the property violations at time point i. Note that we drop the topmost uni-
versal quantifier, since an instantiation of the free variables x that satisfies y provides
additional information about the violation. Note that the property is satisfied if and only
if the output at each iteration is the empty set.

Remark 1. Given an event trace t , we build a temporal database as follows, assuming
that all events with the same name have the same number of arguments. We also assume
a signature (C,P,ar) with N ✓ P, and arities of predicate symbols matching those of
the corresponding events names. The temporal database T is built as follows: if at
position i, with 0 i < |t| the event e(d1, . . . ,dn) occurs then e

Ti = {(d1, . . . ,dn)} and
p

Ti = /0, for any p 2 P with p 6= e. For all i� |t| we take p
Ti = /0, for all p 2 P.

Note that, since we are considering here the past-only fragment of FOTL, struc-
tures at time points j > i are irrelevant for the evaluation at time point i. Thus, when
monitoring a trace t , the algorithm is stopped after iteration |t|�16.

Example 1. We illustrate this setup on the UnsafeMapIterator property. Consider the
following event sequence:

create(m,c1).create(m,c2).iterator(c1, i1).update(m).iterator(c2, i2).next(i1)

The corresponding temporal database contains the interpretations createT0 = {(m,c1)},
createT1 = {(m,c2)}, and createTi = /0, for i 2 {2,3, . . .}, etc.

Let j be the formula from Section 3.1 (page 4) formalising the UnsafeMapIterator

property with the ⇤ operator and the 8 quantifier stripped off. Furthermore let g(i) be
the consequent of the implication in j and let y(i) := next(i)^¬g(i). We thus have
y(i)⌘ ¬j(i). One can check that [[y]]i = /0, for i 2 {0, . . . ,4}, and that [[y]]5 = {(i1)},
meaning that there are no violations at time points 0 to 4, and there is a violation at time
point 5, for iterator i1.

Remark 2. Note that when encoding event traces as temporal databases, the interpreta-
tion of predicate symbols are always either empty or singleton relations. This need not
be the case in arbitrary temporal databases. For instance, the relations at a time point
could contain the tuples involved in a database transaction.

Monitorable Fragment The computation of [[y]]i is by recursion over y’s formula
structure, using relational algebra operators to compute the evaluation of a formula from

6When considering specifications with a future dimension, see [17], we require that future
operators are bounded: they only look boundedly far into the future; this corresponds to hard-time
specifications, and can be specified with metric temporal constraints; that is in Metric FOTL [53].
Note that the approach thus handles a safety fragment of (Metric) FOTL. Then, to handle a finite
trace, since it is assumed that time is observed by the monitoring algorithm only through event
timestamps, a new dummy event with a sufficiently large timestamp is added at the end of the
trace, and the algorithm is stopped after observing this last event.
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the evaluation of its direct subformulas, possibly from previous time points. Not all
formulas in FOTL are effectively monitorable, since unrestricted use of logic operators
may require infinite relations to be built during evaluation. Thus the algorithm is only
able to deal with formulas from the following monitorable fragment of FOTL, which
consists of the formulas y that satisfy the following conditions:

1. fv(a) = fv(b ), for any subformula of y of the form a _b ;
2. fv(a)✓ fv(b ), for any subformula of y of the form b ^¬a ,7 a Sb , and ¬a Sb ;
3. a subformula of the form ¬a can only appear as part of a subformula of the form

b ^¬a or ¬a SI b .

This set of syntactic restrictions on y ensure in particular that [[y]]i is finite, for any
i2N. Consider for instance the non-monitorable formula y = p(x)_q(y). Given that D
is infinite, there are infinitely many tuples (a,b) 2D2 that satisfy y , at any time point i,
namely all tuples in (p

Ti⇥D)[ (D⇥q
Ti). For example, if p(a) holds at i (i.e. a 2 p

Ti ),
then, for any b 2 D, the formula p(a)_q(b) holds at i, i.e. (a,b) 2 [[y]]i.

The MONPOLY tool implements a set of heuristics to rewrite non-monitorable for-
mulas into monitorable formulas. While these heuristics have proved to be effective in
practice, they are often not necessary as it is usually easy to directly express a domain-
independent formula ¬j as an equivalent monitorable formula y . For instance, for j =
p(x,y)! ⌅(q(x)_ r(y))), the non-monitorable formula y = p(x,y)^¬ ⌅(q(x)_ r(y))
can be rewritten to the monitorable formula (p(x,y)^¬ ⌅q(x))_ (p(x,y)^¬ ⌅r(y)).

Algorithm We start with some definitions. A table is a tuple (R,x), written Rx, where
R ✓ D

k is a relation and x is a sequence of k variables, for some k 2 N. Given tables A

and B and variable sequence x, we denote by sC(A), px(A), A ./ B, A⇤B, and A[B,
the relational algebra operators selection, projection, (natural) join, antijoin, and re-
spectively union applied to tables A and B, where C is a set of constraints of the form
t = t

0, for t, t 0 2C[V . We refer to textbooks on databases, e.g. [4], for their definitions.

Example 2. Let Ahx,yi, Bhy,zi, Chyi be tables with A = {(1,2),(1,4),(3,4)}, B = {(2,5),
(2,6)}, and C = {4}. We have Ahx,yi ./ Bhy,zi = {(1,2,5),(1,2,6)}hx,y,zi, Ahx,yi⇤Chyi =
{(1,2)}hx,yi, sx=3(Ahx,yi) = {(3,4)}hx,yi, and phyi(Ahx,yi) = {2,4}hyi.

Next, the free variables of a formula a are used as attributes of the relation [[a]]i.
We write [[a]]i

x
for the table ([[a]]i)x, where x̄ is the vector of free variables of a . The

following equalities express in our notation the standard correspondence, known as
Codd’s theorem, between first-order logic and relational algebra.

[[a ^b ]]i
z
= [[a]]i

x
./ [[b ]]i

y
[[a _b ]]i

x
= [[a]]i

x
[ [[b ]]i

x

[[a ^¬b ]]i
z
= [[a]]i

x
⇤ [[b ]]i

y
[[9y0.a]]i

x0 = px0 [[a]]i
x

where a and b are monitorable formulas with free variables x and respectively y, z is
the sequence x concatenated with the subsequence of y of variables not in x, and x

0

is the subsequence of x without the variable y
0. For instance, if a = p(x1,x2) and

7Note that here we treat the operator ^ as a primitive.
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b = q(x2,x3), then x̄ = hx1,x2i, ȳ = hx2,x3i, and z̄ = hx1,x2,x3i. We have omitted
the equation for predicates p(t̄), which is straightforward but tedious, and uses the
selection and projection operators. E.g., if x is a variable and a is a constant, then
[[p(x,a)]]ihxi = phxi(s{y=a}(p

Ti

hx,yi)). Note also that when x̄ = ȳ, then the join (i.e. ./) and
antijoin (i.e. ⇤) operations are identical to the set intersection (i.e. \) and respectively
set difference (i.e. \) operations.

We now consider the evaluation of formulas y that have temporal operators as their
main connective. In contrast to the first-order connectives, their evaluation at a time
point depends on the evaluation of their subformulas at previous time points. The eval-
uation of [[y]]i for i > 0 is based on the following equalities:

[[ a]]i
x
= [[a]]i�1

x
[[a Sb ]]i

y
= [[b ]]i

y
[
�
[[a Sb ]]i�1

y
./ [[a]]i

x

�

where a , b , x, and y are as in the previous set of equations. For i = 0, we have
[[ a]]i

x
= /0x and [[a Sb ]]i

y
= [[b ]]i

y
. A similar equality is used for formulas of the form

¬a Sb , replacing the join with the antijoin. To accelerate the computation of [[y]]i, the
monitoring algorithm maintains state for each temporal subformula, storing previously
computed intermediate results. Namely, the algorithm stores between the iterations i�1
and i, when i > 0, the relation [[a]]i�1 and respectively [[a Sb ]]i�1. By storing these rela-
tions, the subformulas a and b need not be evaluated again at time points j < i during
the evaluation of y at time point i.

It is straightforward to translate the previous equalities into a bottom-up evaluation
procedure of [[j]]i, for i 2 N. We note that relational algebra operators have standard,
efficient implementations [42], which can be used to evaluate the right-hand side rela-
tional algebra expressions.

Example 3. We present next a partial run of the algorithm for the property Unsafe-
MapIterator on the event sequence from Example 1. The formulas y and g are as in
Example 1. We also let the subformulas b , b 0, and g 0 be as follows:

y(i) = next(i)^¬9m,c.
�
¬update(m)S

�
iterator(c, i)^ ⌅create(m,c)| {z }

b 0(m,c)

�

| {z }
b (c,i,m)

�

| {z }
g 0(m,c,i)

That is, we have

b 0(m,c) := ⌅create(m,c), g(i) = 9m,c.g 0(m,c, i),
b (c, i,m) := iterator(c, i)^b 0(m,c), y(i) = next(i)^¬g(i).
g 0(m,c, i) := ¬update(m)Sb (c, i,m),

The algorithm computes the set [[y]] j of violations, for j 2N, based on the following
equalities:

[[b 0]] j

hm,ci =

8
<

:
create

T j

hm,ci [ [[b
0]] j�1
hm,ci if j > 0 [[g]] j

hii = phii([[g 0]]
j

hc,i,mi)

create
T j

hm,ci if j = 0 [[y]] j

hii = next
T j

hii ⇤ [[g]] j

hii
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j nextT j updateT j iteratorT j createT j [[b 0]] j [[b ]] j [[g 0]] j [[g]] j [[y]] j

0 /0 /0 /0 {(m,c1)} {(m,c1)} /0 /0 /0 /0
1 /0 /0 /0 {(m,c2)} B /0 /0 /0 /0
2 /0 /0 {(c1, i1)} /0 B {(c1, i1,m)} {(c1, i1,m)} {i1} /0
3 /0 {m} /0 /0 B /0 /0 /0 /0
4 /0 /0 {(c2, i2)} /0 B {(c2, i2,m)} /0 /0 /0
5 {i1} /0 /0 /0 B /0 /0 /0 {i1}

Table 1. Relations computed by the monitoring algorithm for a sample trace.

[[b ]] j

hc,i,mi = iterator
T j

hc,ii ./ [[b
0]] j

hm,ci

[[g 0]] j

hc,i,mi =

(
[[b ]] j

hc,i,mi [
�
[[g 0]] j�1

hc,i,mi⇤update
T j

hc,ii
�

if j > 0
[[b ]] j

hc,i,mi if j = 0

Concretely, the algorithm computes the relations [[a]] j, shown in Table 1, at itera-
tions j 2 {0, . . . ,5}, for a 2 {b 0,b ,g 0,g,y}, where B = {(m,c1),(m,c2)}. We recall
that the relations [[b 0]] j and [[g 0]] j are stored by the algorithm between iterations, while
all other relations are discarded.

4 Monitoring Modulo Theories

4.1 Overview

For propositional temporal logics such as LTL or CaRet [6] monitoring has been stud-
ied extensively and appropriate semantics and monitor synthesis procedures have been
developed [20, 22, 35, 31, 21]. Monitoring Modulo Theories (MMT) is a general frame-
work for lifting any of these logics, their semantics and the corresponding synthesis al-
gorithms from the propositional setting to the setting of data values and data constraints.
To achieve this, it introduces a general notion of temporal logic, capturing many well
known propositional temporal logics such as LTL, RLTL [54] or CaRet [6], and the no-
tion of data logic based on first-order theories to express constraints over data without
any temporal aspects. Next, it combines the two logics into one, temporal data logic,
whose semantics clearly separates the time and data aspects. This separation gives rise
to a monitoring procedure that combines classical monitoring of propositional tempo-
ral properties with SMT solving. In this section we present a simplified version of the
framework, instantiated for a particular data logic, namely the logic of equality con-
straints. We refer to [33, 34] for the general framework and for more details. We note
that the restriction to equality constraints is a significant restriction and also means that
a full SMT solver is not needed. The approach is implemented in the jUnitRV tool [32].

For a brief illustration, consider the UnsafeMapIterator property. Its temporal as-
pect can be modelled naturally using LTL. Its data aspect can be modelled easily using
equality constraints. Combining LTL as a temporal logic and the logic of equality con-
straints as a data logic results in a formalism that is well suited to model our example
property, using for instance the following formula.

8c,m, i.⇤(create(m,c)!�⇤(iterator(c, i)!�⇤(update(m)!�⇤¬next(i))))
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Due to the simplicity of the data aspect in this example the formula does not contain
any explicit first-order constraint. However, the first-order subformulas create(m,c),
iterator(c, i), update(m), and next(i) are seen as atomic propositions for the temporal
logic, and they give raise to equality constraints at run time. For instance, if the event
next(i1) occurs, then the constraint i = i1 is generated.

4.2 Syntax and Semantics

We will define a temporal data logic (TDL) as the extension of a temporal logic (TL)
from the propositional setting to the first-order setting. There are two main differences
between TDL and FOTL from the previous section: first, TDL is parameterised by the
propositional temporal logic, and second, it has a finite not an infinite trace semantics.

We assume that the temporal logic is given over some finite non-empty set AP of
atomic propositions, its models are finite traces over S :=√(AP), and its truth values
are elements of a complete lattice (V,v) (that is, it does not necessarily have a Boolean
semantics).8 Thus, the semantics of a TL formula y is given as a function [[y]] : S ⇤ !V.

To define TDL in terms of TL, we fix a first-order signature S (see page 3), a finite
set X ✓ V of variables, and a finite set F := {c1, . . . ,cn} of first-order formulas over S

with free variables from X . The set F constitutes TL’s set AP of “atomic propositions.”
That is, TDL and TL view the same set differently: TDL considers its elements as
formulas and TL views them as propositions i.e. it is agnostic to their structure.9

A TDL formula j consists of a TL core formula y over AP and a sequence of
preceding global first-order quantifiers binding free variables in y . Formally, the syntax
of TDL formulas j is defined according to the grammar

j ::= 9x.j | 8x.j | y

where x 2 V is a variable and y is a TL formula over F.

Example 4. We illustrate how the formula given in Section 4.1 can be seen as a TDL
formula. We take S = ( /0,{next,update, iterator,create,=},ar), with ar as expected,
X = {m,c, i}, and F = {cr, it,u,n}, where cr := create(m,c), it := iterator(c, i), u :=
update(m), and n := next(i). Then j = 8c,m, i.y , with

y =⇤(cr!�⇤(it!�⇤(u!�⇤¬n)))

TDL formulas are interpreted over finite sequences of first-order structures10 over
the signature S, with the same domain D, and with finite intepretations of predicate
symbols. We also assume that S contains the equality predicate symbol =, interpreted
rigidly, that is, all structures interpret equality in the same way, as expected. The orig-
inal approach from [33] generalises this assumption and presents a setting where data

8A complete lattice is a partial order (M,v) where every subset N ✓ M has a least upper
bound tN and a greatest lower bound uN.

9A one-to-one mapping from F to AP can be defined, but we refrain to do so, for simplicity.
10These relate directly to the notion of event, as in Section 3 (see Remark 1). E.g., the event

create(m1,c1) would be represented as the structure interpreting create as the set {(m1,c1)}.
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constraints can be expressed in a so-called data logic, not only through equality, but
through richer first-order theories; see [34] for details. We let G denote the set of all
such first-order structures, which we call observations.

Finally, to define the TDL semantics, we also need a way to project a sequence of
observations from G into a sequence of letters from S . To this end, we define next, for
a valuation q : V ! D, the projection function pq : G ! S as follows.

pq (g) := {c 2 F | (g,q) |= c}

That is, the projection of a first-order structure g is the set of formulas in F that are
true in that structure for q . Recall that such formulas can be viewed as propositional
symbols in the temporal logic as there is a direct mapping between F and AP.

We define the semantics of a TDL formula j as a mapping [[j]]q : G ⇤ ! V, with
respect to a valuation q : V ! D, as follows:

[[9x.j 0]]q (g) :=
G

d2D
[[j 0]]q [x 7!d](g), [[8x.j 0]]q (g) :=

l

d2D
[[j 0]]q [x 7!d](g),

[[y]]q (g) := [[y]](pq (g))

where y is a TL formula, u and t denote the meet and respectively the join of the lattice
(V,v), and pq is extended to sequences as expected: pq (g1 . . .gn) = pq (g1) . . .pq (gn).
If j is a sentence, that is, it does not contain any free variable, we omit to annotate a
specific valuation q and write [[j]] for its semantics. This is well-defined since valua-
tions of variables that do not occur freely in j do not affect its semantics. Note also that
the [[·]] notation is overloaded; however, its meaning will be clear from the context.

In examples, we use LTL3 [22] as a concrete TL. We recall it briefly: [[y]](s) =
true, if st̄ |= y for any t̄ 2 S w , [[y]](s) = false, if st̄ 6|= y for any t̄ 2 S w , and
[[y]](s) = ? otherwise, where t̄ |= y denoted the standard, infinite trace LTL seman-
tics and V = ({false, true,?},v) with false v ? v true. Other examples of TLs are
RLTL [54], CaRet [6], and versions of LTL with finite trace semantics, see e.g. [37].

Example 5. We illustrate the TDL semantics on the formula from Example 4. To this
end, we recall the trace from Example 1:

create(m1,c1).create(m1,c2).iterator(c1, i1).update(m1).iterator(c2, i2).next(i1)

The sequence g of observations modelling this trace is obtained as in Section 3 (see
Example 1). Table 2 presents the projections s of g obtained for some valuations q ,
and the corresponding verdicts for y on s , where m0, c0, and i0 denote arbitrary values
from D different from m1, from c1 and c2, and from i1 and i2, respectively. As expected,
we have [[j]](g) = false, by taking the meet of all the values [[y]](s).

4.3 Monitoring Algorithm

Preliminaries A symbolic monitor M = (Q,S ,d ,q0,l ,V) is a state machine with
output, where Q is a finite set of states, S and V are as defined in Section 4.2, d :
Q⇥S!Q is a transition function, q0 2Q is the initial state, and l : Q!V is a labelling

11



q0 m =m1^ c = c1

q1 q0

¬
m =m1^ c = c1

q1 m =m1^ c = c2

q1 q0

¬

¬

m =m1^ c = c1

m =m1^ c = c1^ i = i1

q2 q1

¬
m =m1^ c = c2

q1 q0

¬

¬

m =m1^ c = c1

m =m1^ c = c1^ i = i1

q3 q1

¬
m =m1^ c = c2

q1 q0

¬

¬

m =m1^ c = c1

m =m1^ c = c1^ i = i1

q3 q1

¬

m =m1^ c = c2

m =m1^ c = c2^ i = i2

q2 q1

¬

q0

¬

¬

m =m1^ c = c1

m =m1^ c = c1^ i = i1

q4 q1

¬

m =m1^ c = c2

m =m1^ c = c2^ i = i2

q2 q1

¬

q0

¬

¬

create(m1,c1) create(m1,c2) iterator(c1, i1)

update(m1)

iterator(c2, i2)

next(i1)

Fig. 1. Constraint trees built by the monitoring algorithm for a sample trace.

q0

?
start

q1

?

q2

?

q3

?

q4

f

¬cr

cr

¬it

it

¬u

u

¬n

n

true

Fig. 2. Symbolic monitor for the formula ⇤(cr!�⇤(it!�⇤(u!�⇤¬n))).
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q s := pq (g) [[y]](s)

[m 7!m1,c 7! c1, i 7! i1] {cr}. /0.{it}.{u}. /0.{n} false
[m 7!m1,c 7! c1, i 7! i2] {cr}. /0. /0.{u}. /0.{n} ?
[m 7!m1,c 7! c1, i 7! i0] {cr}. /0. /0. /0. /0. /0. ?
. . .
[m 7!m01,c 7! c0, i 7! i0] /0. /0. /0. /0. /0. /0 ?

Table 2. Evaluation of a TL core formula over a trace for various valuations.

function mapping states to verdicts from V. It is assumed that for a given TL, there is a
monitor generation procedure which, for any TL formula y builds a monitor M such
that l (d (q0,s)) = [[y]](s), for any s 2 S ⇤.

A constraint is a quantifier-free first-order formula over a signature that contains no
predicate symbol except equality.11 For instance, x = a^y 6= b is a constraint. Note that
such a constraint r describes the set Qr of valuations q such that rq holds in the theory
of equality. It is easy to see that for any observation (i.e. first-order structure) g and a
first-order formula c , there exists a constraint, denoted ĝ(c), such that (g,q) |= c iff
ĝ(c)q holds, for any valuation q . For instance, if g is the observation corresponding to
the event iterator(c1, i1), then ĝ(c) is c = c1 ^ i = i1 for c = iterator(c, i), while ĝ(c)
is false for c = next(i). Note that Qĝ(c) = {q | (g,q) |= c} and thus ĝ(c) can be used
to represent the set {q | (g,q) |= c}. This property that will be used in the monitoring
algorithm. We also assume a procedure SAT that takes as input a constraint and outputs
whether the constraint is satisfiable or not. We recall that the general framework [34]
considers arbitrary theories, not only that of equality, as presented here. In general, the
SAT procedure is implemented by invoking an SMT solver for the considered theory.

A constraint tree t is a finite, non-empty, full binary tree having constraints as inner
nodes and monitor states as leafs. A tree is denoted either by Inner(r, t1, t2) where r
is a constraint, and t1 and t2 are the root’s left and right subtrees respectively, or by
Leaf(q) where q 2 Q. Each node v in a tree t induces a constraint r(v) defined as the
conjunction of the constraints on the path from the root to the node v.

Algorithm The monitoring algorithm incrementally processes a sequence g of obser-
vations in order to compute the semantics of some given TDL formula j . Let y be
j’s TL core formula. The algorithm uses the symbolic monitor M for y . Intuitively,
the algorithm executes one instance of M for each projection pq (g), with q : V ! D

some valuation. As there are finitely many projections, they partition the set of valua-
tions into a finite number of equivalence classes. The algorithm maintains a mapping
from representatives q of these classes to states q of M , where q = d (q0,pq (g)). The
property that [[y]](pq (g)) = l (q) allows the algorithm to compute the verdict associ-
ated with the current sequence g of observations, by iterating through the verdicts l (q),
for q in the image of the mentioned mapping. Indeed, in case all global quantifiers in j
are universal, the verdict is the meet over all verdicts l (q). In general, when existential
quantifiers are also present, the computation of the verdict is more involved; see [34].

11In the more general framework constraints must contain interpreted predicates only.
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Algorithm 1 The monitoring algorithm.

proc step(t, g) = traverse(g , t, true)

proc traverse(g , t, r)
case t = Inner(r 0, t1, t2): Inner(r 0, traverse(g , t1, r ^r 0), traverse(g , t2, r ^¬r 0))
case t = Leaf(q): split(g , q, F, r , /0)

proc split(g , q, P, r , a)
if P = /0 then Leaf(d (q,a))
else

c , P
0 := choose(P)

t1 := if SAT(r ^ ĝ(c)) then split(g , q, P
0, r ^ ĝ(c), a[{c})) else Empty

t2 := if SAT(r ^¬ĝ(c)) then split(g , q, P
0, r ^¬ĝ(c), a)) else Empty

if t1 = Empty then t2 else if t2 = Empty then t1 else Inner(ĝ(c), t1, t2)

The mapping from equivalence classes of valuations to states q is represented algo-
rithmically by a constraint tree. Namely, for each leaf node v with state q, the constraint
r = r(v) describes the set Qr of valuations. By construction, these sets of valuations
are the equivalence classes mentioned previously. We briefly describe how the algo-
rithm maintains the constraint tree. The initial constraint tree is Leaf(q0). For a new
observation g 2 G and a monitor instance at v, if all valuations in Qr project g to the
same letter a 2 S , then the monitor instance changes its state from q to d (q,a). Other-
wise, if g is mapped to different letters for different valuations in Qr , then Qr is split and
new monitor instances are created. More precisely, if for some c 2 F both r ^ ĝ(c) and
r ^¬ĝ(c) are satisfiable, then there are two valuations q ,q 0 2Qr such that (g,q) |= c
and (g,q 0) 6|= c . It follows that c 2 pq (g) while c 62 pq 0(g), and thus the projections are
different. In this case, a new inner node with constraint ĝ(c) is created. This procedure
is performed for each c 2 F. For each new path to a leaf, the state at the leaf node is up-
dated to d (q,a), where a is the projection corresponding to that path. The pseudo-code
of the procedure that updates the constraint tree is given in Listing 1.

Example 6. Figure 1 shows a run of the algorithm for the UnsafeMapIterator property
on the event sequence from Example 5, using the symbolic monitor given in Figure 2.

5 Parametric Trace Slicing

5.1 Overview

Parametric trace slicing was introduced as an attempt to efficiently monitor properties
with a notion of behaviour being specified for each set of values. The initial focus was
on efficient algorithms and the formal descriptions and relation to quantification came
later. The fundamental idea is to separate monitoring into two parts. The first part slices

a trace with respect to the data values it contains by associating each set of values with
the subtrace of events containing only those values. The second part separately checks
each slice against the same property.
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The idea was first introduced by TRACEMATCHES [5] where regular expressions
are matched against suffixes of a trace slice. The suffix-matching semantics allowed a
simple monitoring algorithm as each potential matching suffix could be monitored sep-
arately. This was later generalised to total matching and called parametric trace slicing

[25, 62] and implemented in the JAVAMOP [56] tool. There are various languages based
on parametric trace slicing and we have chosen to present the concepts using quantified
event automata (QEA) [10, 58]. Work on QEA extend the earlier work on parametric
trace slicing by giving a more general quantifier-based notion of acceptance as well as
using local free (unquantified) variables to allow the per-slice property to reason about
values in the slice (see the AuctionBidding example below).

A QEA for the UnsafeMapIterator property is given below (left). This specifies
three universally quantified variables m, c, and i standing for the map, collection and
iterator in the example. What follows is a state machine describing the required be-
haviour for a single slice of the trace with respect to those variables. In this case the
state machine describes the set of transitions needed to reach a failure state, i.e. it cap-
tures the bad behaviour (this relies on the skip state modifier explained below). A slice
is a projection of a trace obtained by keeping only events that are relevant to a given
instantiation of the quantified variables. Acceptance is defined in terms of which slice
are accepted by the state machine i.e. for universal quantification this is all slices.

The UnsafeMapIterator property is suited (and often used) for parametric trace slic-
ing as, once the slicing has occurred, the underlying property can be treated proposi-
tionally. To demonstrate a case where the slice is not treated propositionally consider an
AuctionBidding property of an auction bidding site where items are listed with a reserve
price and bids are strictly increasing. This is captured by the second QEA below where
transitions are extended with optional guards and assignments. Notice how variables r

and a are not quantified, these are used to store the reserve price and current bid amount
respectively. As these values are used to evaluate the property they must be preserved in
the trace so this can no longer be treated propositionally. Lastly, this second QEA does
not use an explicit failure state but relies on state closure (see later), i.e. it captures
good behaviour.

qea(UnsafeMapIterator) {
forall(m,c,i)
accept skip(start){

create(m,c) ! createdC}
accept skip(createdC){

iterator(c, i) ! createdI}
accept skip(createdI){

update(m) ! updated}
accept skip(updated){

next(i) ! failure}
}

qea(AuctionBidding) {
forall(i)
accept next(start){

list(i,r) do c := 0 ! listed}
accept next(listed){

bid(i,a) if a > c do c := a ! listed
sell(i) if c > r ! sold

}
accept next(sold){}

}

5.2 Syntax and Semantics

In Roşu and Chen’s parametric trace slicing theory [25, 62] there is a strong separation
between the notion of quantification (although they did not call it quantification) which
defines what the slices are, and per-slice acceptance (by so-called plugin languages)
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which decides whether a slice is accepted. We repeat this presentation here with event
automata describing the plugin language.

Basic Definitions An event pattern is an ordered pair of an event name and a list of
parameters where a parameter is a variable in V or value in D. That is, an event pattern
is a tuple (id, p) 2N ⇥ (V [D)⇤, written id(p). When an event pattern only contains
values in D it coincides with the notion of an event as defined in Section 2. We write
N (X) for any event alphabet that contains event patterns using names in N , variables
in X ✓ V , and values in D. Note that N (X) does not contain all such event patterns but
the ones relevant to the monitored property. For instance, for the UnsafeMapIterator

property we have N ({m,c, i}) = {create(m,c), iterator(c, i),update(m),next(i)}.
A valuation q 2 Env = V 9D is a map from variables to values. By abusing valua-

tions to treat them as total functions (by implicit extension with the identify function) we
can apply valuations to event patterns as follows: given an event pattern id(p1, . . . , pn)
let q(id(p1, . . . , pn)) = id(q(p1), . . . ,q(pn)). An event e and an event pattern ep match
if there exists a valuation q such that q(ep) = e. Let matches(e,ep) hold iff e and
ep match and let match(e,ep) be the smallest (wrt v) valuation that matches them
(and undefined if they do not match). Two valuations q and q 0 are consistent, written
consistent(q ,q 0), if for every x in dom(q)\ dom(q 0) we have q(x) = q 0(x). We also
write q1 v q2 iff dom(q)✓ dom(q 0) and q1 and q2 are consistent.

A guard g 2 Guard = Env! B is a predicate on valuations and an assignment

g 2 Assign = Env! Env is a function from valuations to valuations. We do not fix a
guard or assignment language, but use programming language notation in examples.

Trace Slicing Slicing a trace means projecting it to a subtrace, called a slice, with
respect to a valuation, which identifies the relevant events in the trace. An event e is
relevant to a valuation q and event alphabet N (Z) if there is an event pattern in N (Z)
that matches e with respect to q , i.e.

relevant(e,q ,N (Z)) iff 9ep 2N (Z) : matches(e,q(ep))

Trace slicing is then defined as follows. Giving a valuation q , the q -slice of trace t with
respect to event alphabet N (Z) is the trace t #N (Z)

q , defined as follows:

h i #N (Z)
q = h i e.t #N (Z)

q =

(
e.(t #N (Z)

q ) if relevant(e,q ,N (Z)),

t #N (Z)
q otherwise.

Example 7. Consider the AuctionBidding QEA from page 15 and the trace

t = list(b,5).bid(b,1).list(d,2).bid(b,2).bid(d,1).sell(d).bid(b,2)

we compute (for N (Z) = {list(i,r),bid(i,a),sell(i)}) the trace slices

t #N (Z)
[i 7! b] = list(b,5).bid(b,1).bid(b,2).bid(b,2)

t #N (Z)
[i 7! d] = list(d,2).bid(d,1).sell(d)
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Event Automata An event automaton E over the event alphabet N (Z) is a tuple
(N (Z),Q,q0,d ,F) where Q is a finite set of states with q0 2 Q an initial state and
F ✓ Q a set of final states, and d ✓ Q⇥N (Z)⇥Guard⇥Assign⇥Q is a finite set of
transitions between states labelled with an event pattern, a guard, and an assignment.
Furthermore, there are exactly two states that have no outgoing transitions: success
2 F and failure /2 F .

A configuration is a tuple (q,q) 2Q⇥Env. A trace t is in the language of the event
automaton E , written t 2L (E ), if there exists a state q 2 F such that (q0, [ ])

t! (q,q)
for some valuation q , where t! is the transitive lifting of e! defined by

(q,q) e!

8
<

:
(q0,g(q 0)) if

9(q,ep,g,g,q0) 2 d : matches(e,ep)^
q 0 = q †match(e,ep)^g(q 0)

(q,q) otherwise

Quantified Event Automata A quantified event automaton (QEA) over the event al-
phabet N (X [Y ) is a tuple (L ,E ) where L 2 ({8,9}⇥X)⇤ is a sequence of quantifi-
cations and E is an event automata over the same alphabet, with X and Y disjoint sets of
quantified and free variables respectively. The QEA is well-formed if L mentions each
of the variables in X exactly once.

The domain of a (quantified) variable is derived form a trace t by matching against
event patterns in the alphabet as follows:

domt(x) := {match(e,ep)(x) | e 2 t ^ ep 2N (X [Y ) ^ matches(e,ep)^
x is a parameter of ep}.

A trace t is accepted by the QEA if t |=[ ] L .E where |=q is defined as

t |=q (8x)L 0.E iff for all d in domt(x) we have t |=q†[x 7!d] L 0.E
t |=q (9x)L 0.E iff for some d in domt(x) we have t |=q†[x 7!d] L 0.E
t |=q h i.E iff t #N (X[Y )

q 2L (E (q))

where E (q) denotes the instantiation of the event automaton as expected i.e. by replac-
ing variables by values in event patterns, guards and assignments. Informally, checking
acceptance using this definition consists of building valuations q of quantified variables,
slicing the trace with respect to q , checking per-slice acceptance, and finally combining
the results to produce a verdict.

To describe QEA textually we rely on the (not formally defined) language used
earlier where a state and its transitions may be written as

[accept] [next/skip](state){
id(p1, . . . , pn) if [guard] do [assign] ! state list

}

The optional accept modifier captures if the state is in F . The next/skip modifiers
refer to the implicit closure of the state, i.e. what should happen when a transition for
an event does not exist; next closes to a failure state and skip introduces self-looping
transitions. The below semantics assumes skip. Each transition starting at the state is
given with (optional) guards and assignments.
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Algorithm 2 A basic monitoring algorithm for QEA.
1: M [[ ] 7! {(q0, [ ])}]
2: for event e 2 t do

3: New {q | 8(xi 7! vi) 2 q : 9ep 2N (X [Y ) : (xi 7! vi) 2match(e,ep) ^ xi 2 X}
4: for q 2 dom(M) sorted from largest to smallest do

5: Extensions 
�

q † q 0 | q 0 2 New ^ consistent(q ,q 0) ^ relevant
�
e,q † q 0,N (X [Y )

� 

6: for qExt 2 Extensions do

7: if q = qExt or qExt /2 dom(M) then

8: C {(q,qfree) | 9c 2M(q) : c
e!E (qExt ) (q,qfree) ^ dom(qfree)\X = /0}

9: M M † [qExt 7!C]

Example 8. We can now complete the example given in Example 7 by computing the
configurations reached by each slice to obtain the following runs:

(start, [ ])
list(b,5)����! (listed, [r 7! 5,c 7! 0])

bid(b,1)����!

(listed, [r 7! 5,a 7! 1,c 7! 1])
bid(b,2)����! (listed, [r 7! 5,a 7! 2,c 7! 2])
bid(b,2)����! (failure, [r 7! 5,a 7! 2,c 7! 2])

and

(start, [ ])
list(d,2)����! (listed, [r 7! 2,c 7! 2])

bid(d,1)����!

(listed, [r 7! 2,a 7! 1,c 7! 2])
sell(d)���! (failure, [r 7! 2,a 7! 1,c 7! 2]).

As domt(i) = {b,d} and both runs reach the failure state, we conclude that t 6|=
8i.AuctionBidding. The two runs fail as we cannot satisfy the guard needed to take a
transition and as the state modifier is next this leads to implicit failure (not directly
captured in the above semantics).

5.3 Monitoring Algorithm

The semantics introduced previously is non-incremental; it is necessary to first extract
the domains of quantified variables before slicing and checking the trace. To address
this we introduce an incremental algorithm and discuss optimisations.

A Basic Incremental Algorithm Algorithm 2 presents a basic incremental algorithm
for monitoring QEA. This assumes a QEA described using the notation discussed pre-
viously. The algorithm maintains a mapping M from valuations (of quantified variables)
to sets of configurations. The valuations may be partial with respect to quantified vari-
ables in X as the events building a full valuation may appear incrementally. The algo-
rithm does not show how M can be used to determine a verdict but this follows the
definition of acceptance above; in the case of pure universal quantification all config-
uration sets must contain a final state. This gives a verdict for the current trace prefix,
which can be lifted to a four-valued domain providing anticipatory results [10].
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Event Updates to M Using q 2 dom(M)

create(m1,c1) ([m 7!m1,c 7! c1] 7! createdC) [ ]
create(m1,c2) ([m 7!m1,c 7! c2] 7! createdC) [ ]
iterator(c1, i1) ([m 7!m1,c 7! c1, i 7! i1] 7! createdI) [m 7!m1,c 7! c1]
update(m1) ([m 7!m1,c 7! c1] 7! createdC) [m 7!m1,c 7! c1]

([m 7!m1,c 7! c2] 7! createdC) [m 7!m1,c 7! c2]
([m 7!m1,c 7! c1, i 7! i1] 7! updated) [m 7!m1,c 7! c1, i 7! i1]

iterator(c2, i2) ([m 7!m1,c 7! c2, i 7! i2] 7! createdI) [m 7!m1,c 7! c2]
next(i1) ([m 7!m1,c 7! c1, i 7! i1] 7! failure) [m 7!m1,c 7! c1, i 7! i1]

Fig. 3. Illustrating the updates to M for the UnsafeMapIterator example.

For each event, the algorithm first computes any potentially new values for vari-
ables in X . Then, for each existing valuation q in M, it tries to extend q with this new
information and update M accordingly. Key to this approach is the way in which M is
iterated over; from the largest valuations to the smallest (wrtv). This ensures that when
a new valuation is added it extends the largest existing consistent valuation; this is the
principle of maximality. Maximality is ensured by the check on line 7 i.e. if this check
fails then qExt has already been added, possibly earlier in this iteration by extending a
larger valuation.

The set C computed on line 8 is the set of new configurations for qExt . This uses
!E (q) i.e. the transition relation for the instantiated event automaton E (q). Importantly,
a transition cannot be taken if it captures quantified variables; this may be possible as
qExt can be partial with respect to X .

Example 9. Figure 3 considers the UnsafeMapIterator QEA from page 15 which
has the alphabet N (X [Y ) = {create(m,c), iterator(c, i),update(m),next(i)} for X =
{m,c, i} and Y = /0. We use the running trace from page 6 and use single states to rep-
resent configurations as the property is deterministic without free variables. The table
gives the valuation q 2 dom(M) used to make the update; note that new valuations fol-
low the previously described notion of maximality. The final event produces a valuation
in the failure state, meaning that the trace is rejected.

Indexing Approaches This basic algorithm is still not efficient enough for effective
monitoring as it requires a linear search of M for every event and M can grow very
large. One solution is to use an index to identify the relevant valuations in M. In the
following we describe the value-based indexing approach as, whilst other approaches
exist [57, 59], this is the most prominent approach in the literature and in use in tools.
These alternative approaches also make heavy use of indexing on values and therefore
the approach described here is also the most relevant in general.

Value-based indexing was introduced in the JAVAMOP tool [56] and uses the val-
ues in an event to lookup the valuations in M that the current event is relevant to. As
motivation consider some examples. When considering valuations possibly occurring at
runtime, the event update(c1) is only relevant to valuations that already bind c1, which
could be found via direct lookup. However, to find valuations relevant to iterator(c1, i1)
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we must, e.g., find [m 7!m1,c 7! c1] which does not refer to i1 but refers to more than c1.
Therefore, looking up the valuation or its subparts directly will not suffice.

To implement the necessary lookup a map U : Env 9√(Env) is maintained such
that valuations in M are mapped to by their sub-valuations of interest. It can be complex
to compute which sub-valuations are required and in the worst case all sub-valuations
can be used. Algorithm 2 can be updated to use U by firstly ensuring U is
1. sub-valuation-closed: for any q 2 dom(M), we have q 0 2 dom(U) if q 0 < q ,
2. relevance-closed: for any q 0 2 dom(U) and q 2 dom(M), if q 0 v q then q 2U(q 0).

These two conditions ensure that U can be used to find q given any sub-valuation of q .
Secondly one must ensure that M is
3. union-closed: if two consistent valuations are in dom(M), their union is in dom(M).

This last condition is already ensured by Algorithm 2. If these properties are main-
tained (see e.g. [56], Algorithm C) then it is sufficient to update the configurations for
valuations in {q}[U(q) for each q 2 New i.e. line 4 of Algorithm 2 becomes

for q 2 New [
S

q 02New U(q 0) sorted from largest to smallest do

The amount of work needed to process each event is now bounded by the size of q and
U(q), which are related to the size of X and density of values in t (a pathological case
could lead to U(q) being proportional to the size of t). This is a significant improve-
ment; in certain cases a previously linear complexity becomes constant i.e. where there
is a single quantified variable.

Example 10. After the third event (iterator(c1, i1)) in the above example, U would con-
tain the following mappings:

[ ] 7! {[m 7!m1,c 7! c1], [m 7!m1,c 7! c2], [m 7!m1,c 7! c1, i 7! i1]}
[m 7!m1] 7! {[m 7!m1,c 7! c1], [m 7!m1,c 7! c2], [m 7!m1,c 7! c1, i 7! i1]}
[i 7! i1] 7! {[m 7!m1,c 7! c1, i 7! i1]}
[c 7! c1] 7! {[m 7!m1,c 7! c1], [m 7!m1,c 7! c1, i 7! i1]}
[c 7! c2] 7! {[m 7!m1,c 7! c2]}
[m 7!m1,c 7! c1] 7! {[m 7!m1,c 7! c1, i 7! i1]}
[m 7!m1, i 7! i1] 7! {[m 7!m1,c 7! c1, i 7! i1]}
[c 7! c1, i 7! i1] 7! {[m 7!m1,c 7! c1, i 7! i1]}

On event update(m1), New = {[m 7!m1]}, and U([m 7!m1]) gives the relevant valua-
tions to update. Then on event iterator(c2, i2), New = {[c 7! c2, i 7! i2]} and we add the
required [m 7! m1,c 7! c2, i 7! i2] to M using [m 7! m1,c 7! c2] 2U([c 7! c2]) as we
did before but without searching M.

As a final note, it is possible to statically (from N (X [Y )) detect which entries in U

may be used e.g. in this example we know we will never query using m and i together.
This information can be used to optimise the entries stored in U .

6 Rule-Based Monitoring

6.1 Overview

Rule systems have been extensively studied within the artificial intelligence community,
and used for example in expert systems. It turns out that with slight modifications these
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systems are applicable to runtime verification. A rule system can abstractly be seen as a
collection of rules, each of the form: c1, . . . ,cn) a, consisting of a list of conditions ci

and an action a. A rule system executes on a rule state, referred to here as the database,
which abstractly can be considered as a set of facts (named data records). A condition
can for example be a fact pattern or the negation thereof. A rule will fire if each pattern
on the left-hand side matches a fact in the database (in the case of negation: no matching
fact exists), in which case the rule right-hand side executes. Multiple occurrences of a
variable on the left-hand side must match the same value. In the case that all conditions
on a rule’s left-hand side match, producing an environment of bound variables, the right-
hand side action is executed, adding and/or deleting facts to and from the database. A
special fact is the error fact.

We here present LOGFIRE [47], a rule-based monitoring framework implemented
as an internal DSL, essentially an API/library, in the SCALA programming language.
The UnsafeMapIterator property can be formulated as follows:12

class UnsafeMapIterator extends Monitor {
val create, iterator, update, next = event
val createdC, createdI, updated = fact

r1: create(m,c) ) createdC(m,c)
r2: createdC(m,c), iterator(c,i) ) createdI(m,i)
r3: createdI(m,i), update(m) ) updated(i)
r4: updated(i), next(i) ) error

}

The property is expressed as a SCALA class that extends a pre-defined class Monitor,
which provides all the LOGFIRE features. The UnsafeMapIterator class defines
four rules, named r1, ..., r4. Each rule name is followed by the symbol ‘:’ followed
by a list of conditions on the left of the ‘)’ symbol, and an action on the right. The
monitored events are create, iterator, update, and next. An event will only be present
in the database long enough to evaluate all the left-hand sides of rules to determine
which can fire, followed by the removal of the event, and execution of the right-hand
sides. Three facts are generated: createdC(m,c) representing that the collection c has
been extracted from the map m, createdI(m, i) representing that the iterator i has been
extracted from the collection of the map m, and updated(i) representing that the iterator
i no longer is safe to iterate over since the corresponding map has been updated.

Rule r1 states that upon observation of a create(m,c) event, a createdC(m,c) fact is
generated. Here m and c are free variables that get bound when the pattern create(m,c)
matches a fact (in this case an event) in the database. These bindings will be passed
to createdC(m,c). Rule r2 states that upon observation of an iterator(c, i) event in the
presence of a createdC(m,c) fact, a createdI(m, i) fact is generated. Similarly for the
two remaining rules, noting that error denotes the error fact. Note that left-hand sides
of rules do not need to refer to events, and can be purely fact-triggered, although this
is not the case for the rules r1, ..., r4. LOGFIRE furthermore allows to mix rule-based
programming and general purpose programming by allowing variables and methods to
be declared and used in monitor classes, and by allowing any SCALA code in conditions
and as actions. In the following, however, focus will be on the pure rule-based fragment
of this language.

12The syntax has been modified slightly from SCALA to a more mathematical notation.
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6.2 Syntax and Semantics

We present the syntax and semantics of an idealised simple rule-based language named
LF illustrating the rule-based capabilities of LOGFIRE13. The syntax of LF is defined
by the following grammar, where id ranges over event and fact names in N (fact names
are assumed included in N ), x over variable names in V , v over values in D, and exp

over expressions (not defined further):

rs ::= p fp ::= id(p)
p ::= id : c) a p ::= x | v

c ::= fp | not(fp) | when(exp) a ::= insert(id(exp)) | remove(id) | error

The above definition uses meta-variables ranging over types as follows: rs 2 RS (Rule
Systems), p 2 R (Rules), c 2 C (Conditions), fp 2 FP (Fact Patterns), p 2 P (Param-
eters), a 2 A (Actions), and exp 2 Exp (Expressions). A rule system rs consists of a
list of rules. A rule p consists of a name, followed by a non-empty list of conditions,
forming the left-hand side of the rule, followed on the right-hand side by a non-empty
list of actions. A condition c can be a fact pattern fp, corresponding to a fact that must
be present in the database; or the negation not(fp) of a fact pattern, requiring that no
matching fact exists; or a filter expression when(exp), which has to evaluate to true on
the names bound so far in the conditions occurring earlier in the rule. A fact pattern
fp consists of a fact name, and a list of parameter patterns. A parameter pattern p can
either be a variable x or a literal value v, such as for example an integer or a string (not
further specified). Finally, an action a can be a fact insertion insert(id(exp)), where the
identifier is the name of the fact and the expression list (an expression can for example
represent a computation, such as x+ 1) evaluates to a list of fact arguments; or a fact
removal remove(id), where the identifier is the name of a fact occurring on the rule
left-hand side; or an error action adding the error fact.

A fact is a tuple (id,hv1, . . . ,vni) consisting of a name id 2N and a sequence of
values vi 2 D. A fact is typically written as id(v1, . . . ,vn). The type of facts is denoted
by F= N ⇥D

⇤. A database is a set of facts of type DB=√(F). Monitored events are
just facts. In order to show intent in later definitions, however, we introduce the type
E = F to represent events. As mentioned above, a rule is evaluated by first evaluating
the left-hand side, resulting in an environment binding free variables occurring in event
and fact patterns to values in the actual event and in actual facts. An environment is
a map of type Env = V 9 D. Finally, when executing a rule, the result is a change
request (D,A) of type CH= DB⇥DB, consisting of a set of facts D to be deleted and
a set of facts A to be added. We will encounter semantic definitions which produce sets
of change requests. For this we need a function merge : √(CH)! CH, which merges
the deleted facts respectively added facts, with the simple definition:

merge(ch) =
⇣[

{D | (D,A) 2 ch},
[
{A | (D,A) 2 ch}

⌘

Definition 2. Let t 2 E
⇤

be a trace and rs 2 RS be a rule system. The relation t |= rs

(t satisfies rs) is defined as: t |= rs iff error /2 T[[rs]]( /0)(t); where the function T[[ ]] :

13Providing a full definition of LOGFIRE would be too space consuming for this presentation.
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RS! DB! E
⇤ ! DB, here applied to the rule system, an initial empty set of facts,

and the trace, is defined in Figure 4.

Function T (Figure 4) is curried, and is applied to a rule system, a database, and a trace,
returning a database with facts deleted and added. Function E evaluates the rule system
against a single event. The special bottom value ? denotes an “error value”. Given a
type T , the type T? denotes T [{?}. Function X evaluates one step of the rule system
against a database, which is assumed to contain the event just submitted. Function Xrec

evaluates the rule system against a database, executing (after the event has been re-
moved) recursively until no rules can fire (? returned from a call of X). Function R

evaluates a single rule against a database. Function LHS evaluates the rule’s conditions
against a database and the environment obtained so-far by evaluating previous condi-
tions of the rule. Function C evaluates a single condition against a database and an
environment. Function Fdb evaluates a fact pattern against a database by matching the
pattern against each fact in the database. A binding id 7! k is introduced, and later
used in the semantics of remove actions of the form: remove(id) (it is assumed that
D contains facts). Function Ffact evaluates a fact pattern against a fact. Function Args

evaluates a list of fact pattern parameters against a list of actual arguments to a fact.
Function Arg evaluates a single fact pattern parameter against a single fact argument.
Function RHS evaluates the right-hand side of a rule, a list of actions, in an environment
generated by evaluating the left-hand side. Function A evaluates a single action in an
environment, returning a change request. Function Exp (not further defined) evaluates
an expression in an environment, resulting in a value.

6.3 Monitoring Algorithm

In principle, the semantics shown in Section 6.2 is sufficient for execution14. However,
it is inefficient in that for each event, we process in function X each rule (rule overhead),
in LHS each condition (condition overhead), and in Fdb each database fact (fact over-
head). In the typical RV case the number of rules and conditions are small and fixed but
the facts grow, resulting in the fact overhead potentially becoming the main source of
inefficiency. These inefficiencies are addressed by the RETE algorithm (although only to
some degree in the case of fact overhead), developed by Charles L. Forgy in the 1970s
[40], and explained in careful detail in [36]. The name Rete means network in Latin,
and reflects the way rules are represented and facts stored by the algorithm. In order to
illustrate the algorithm we shall consider the UnsafeMapIterator example. For illustra-
tion purposes, we shall add a new rule r5 to the rule system, in addition to rule r4, to
reflect that it is also an error to observe a call of hasNext() on an unsafe iterator:

r4: updated(i), next(i) ) error
r5: updated(i), hasNext(i) ) error

The two rules share the prefix updated(i). They (ignoring here the other rules) are
translated into the RETE network shown in Figure 5 (top). This data structure represents
the full structure of the rules, and in addition stores all received events and generated
facts during monitoring. In general, a RETE network consists of four kinds of nodes:

14A Scala version of this semantics has been developed.
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T[[ ]] : RS! DB! E
⇤ ! DB

T[[rs]](db)(t) =
if t = h i then db else

let db
0 = E[[rs]](db)(head(t)) in

if error 2 db
0

then db
0

else

T[[rs]](db
0)(tail(t))

E[[ ]] : RS! DB! E! DB

E[[rs]](db)(e) =
let db

0 = X[[rs]](db[{e}) in

if db
0 =? then db else

Xrec[[rs]](db
0 \{e})

X[[ ]] : RS! DB! DB?
X[[rs]](db) =

let (D,A) =
merge({R[[p]](db) | p 2 rs})

in

if D[A = /0 then ? else

(db\D)[A

Xrec[[ ]] : RS! DB! DB

Xrec[[rs]](db) =
let db

0 = X[[rs]](db) in

if db
0 =? then db else

Xrec[[rs]](db
0)

R[[ ]] : R! DB! CH

R[[id : c) a]](db) =
let Q = LHS[[c]](db)([ ]) in

merge({RHS[[a]](q) | q 2Q})

LHS[[ ]] : C⇤ ! DB! Env!√(Env)
LHS[[c1, . . . ,cn]](db)(q) =

if n = 0 then {q} else

let Q = C[[c1]](db)(q) inS
{LHS[[c2, . . . ,cn]](db)(q 0) | q 0 2Q}

C[[ ]] : C! DB! Env!√(Env)
C[[fp]](db)(q) = Fdb[[fp]](db)(q)

C[[not(fp)]](db)(q) =
let Q = Fdb[[fp]](db)(q) in

if Q = /0 then {q} else /0

C[[when(exp)]](db)(q) =
if Exp[[exp]](q) then {q} else /0

Fdb[[ ]] : FP! DB! Env!√(Env)
Fdb[[id(p1, . . . , pn)]](db)(q) =S

{
let q 0 = Ffact[[id(p1, . . . , pn)]](k)(q) in

if q 0 =? then /0 else

{q 0 † [id 7! k]}
|

k 2 db

}

Ffact[[ ]] : FP! F! Env! Env?
Ffact[[id1(p1, . . . , pn)]](id2(v1, . . . ,vn))(q) =

if id1 6= id2 then ? else

Args[[p1, . . . , pn]](v1, . . . ,vn)(q)

Args[[ ]] : P⇤ ! D
⇤ ! Env! Env?

Args[[p1, . . . , pn]](v1, . . . ,vn)(q) =
if n = 0 then q else

let q 0 = Arg[[p1]](v1)(q) in

if q 0 =? then ? else

Args[[p2, . . . , pn]](v2, . . . ,vn)(q † q 0)

Arg[[ ]] : P! D! Env! Env?
Arg[[p]](v)(q) =

if p 2 V then

if p 2 dom(q) then

if q(p) = v then q else ?
else

q † [p 7! v]
else

if p = v then q else ?

RHS[[ ]] : A⇤ ! Env! CH

RHS[[a]](q) =
merge({A[[a]](q) | a 2 a})

A[[ ]] : A! Env! CH

A[[insert(id(exp1, . . . ,expn))]](q) =
( /0,{id(Exp[[exp1]](q), . . . ,Exp[[expn]](q))})

A[[remove(id)]](q) =
({q(id)}, /0)

A[[error]](q) =
( /0,{error})

Exp[[ ]] : Exp! Env! D

. . .

Fig. 4. Semantics of LF.
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updated(i)

next(i)

a.i=b.i

hasNext(i)
a.i=b.i

updated(i)

r4: error()

r5: error()

Event Rule Added facts

create(m1,c1) r1 createdC(m1,c1)
create(m1,c2) r1 createdC(m1,c2)
iterator(c1, i1) r2 createdI(m1, i1)
update(m1) r3 updated(i1)
iterator(c2, i2) r2 createdI(m1, i2)
next(i1) r4 error

Fig. 5. Top: RETE network for UnsafeMapIterator rules r4 and r5. Bottom: result of applying
algorithm to example trace.

– alpha memories: white rectangular nodes. There is an alpha memory for each kind
of event and fact. When a new event is received or fact generated, it is inserted into
the corresponding alpha memory, which can be viewed as a set of events/facts.

– beta memories: grey rectangular nodes, containing so-called tokens. A token (an
alternative representation of what we called an environment in the semantics) is a
list of events/facts matching a prefix of one or more rules. The left-most •-node
symbolises an initial beta memory (a singular set containing an empty token). This
is introduced to make the behaviour of join nodes (see below) uniform.

– join nodes: round processing nodes, each connected to an alpha memory and a
beta memory, the input nodes, and an output node: a beta memory or an action
node. When a fact or token arrives in a connected input alpha or beta memory: the
other (beta or alpha) memory is searched for matches. The join node contains the
fact pattern of a condition occurring in one or more rules. A match occurs in this
example when the alpha node’s i parameter equals the beta node’s i parameter (in
the graph expressed as a.i = b.i). Each match results in a new token created from
the old token by appending the event/fact from the alpha memory. The new token
is sent to the child beta memory or action node.

– action nodes: downwards arrow shaped nodes deleting and/or adding facts.

Let’s summarise how the algorithm works. When an event is received, it is added
to the appropriate alpha memory. This again triggers the connected child join node to
execute a search in its connected input beta memory for a matching token, each of
which is a list of previous matching facts to a rule prefix. For each such match a new
token is generated by appending the event to the input token. The new extended token
is then sent to the child beta node or action. If the child node is an action it will execute,
and add/remove facts. If the child node is another beta node, then that will again trigger
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its connected child join node to search its connected input alpha node for matches, etc.
Likewise when a fact is added, it is inserted into its appropriate alpha node, and the
process is the same as just described.

The application of the semantics in Figure 4 to our trace is shown in Figure 5. For
each event is shown which rule it causes to fire, and which fact is added to the database
by that rule (in this example no facts are removed). We can illustrate the algorithm using
the RETE network as well. Since the network in Figure 5 is partial and only reflects two
rules, the illustration will be partial as well. When the updated(i1) fact is generated in
the 4th step (in Figure 5), it is inserted in the left-most alpha memory. This triggers
the connected child join node to search its connected input beta memory for matches.
This is the initial beta memory containing an empty token matching everything, and the
updated(i1) fact is thus propagated to the child beta node as the token hupdated(i1)i
(a list containing that fact). The 6th next(i1) event is inserted in the top-most alpha
node, which again causes its child join node to search for matches in its input beta
memory, which now contains the hupdated(i1)i token. This is a match, and the token
hupdated(i1),next(i1)i is sent to the r4 action node, causing an error to be generated.

The RETE algorithm reduces overhead by adding a fact to only the relevant alpha
memory, thereby restricting evaluation to that corresponding condition, restricting eval-
uation to only rules connected to that alpha memory, and restricting evaluation to only
that fact. The RETE algorithm optimises situations where two or more rules have a
common condition prefix, sharing conditions. The RETE algorithm needs a couple of
modifications for runtime verification, however, as described in [47]. First of all, for
each update to an alpha or beta memory, the other memory is searched sequentially for
matches. This is inefficient in the case of large data volumes in these memories. An
indexing approach can address this problem. Second, events need to be handled differ-
ently than facts: they should only be around long enough to trigger rules to execute, but
should be deleted as soon as this objective is reached. This corresponds to the removal
of the event e in the semantic function E in Section 6.2.

7 Stream Processing

7.1 Overview

Runtime verification can be seen as a special case of stream processing, in which the ob-
servable system behaviour is represented by a set of input streams, and the monitored
property is represented by a (Boolean) output stream of verdicts. The LOLA frame-
work [29] was the first to explicitly cast runtime verification as stream computation.
Inspired by functional stream computation languages like Lustre [45] and Esterel [23],
LOLA proposed a minimalistic language in which output streams are specified using
expressions over the same or other streams. These expressions establish dependencies
between the current value of an output stream with values of the same or other streams
at the current, past, or future positions. Evaluation is synchronous, i.e. there is a global
index into all streams representing the current progress of evaluation. Output streams
are not restricted to contain Boolean values and thus the framework goes beyond prop-
erty checking and allows for quantitative analyses to be carried over, such as computing
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statistics over the observed system behaviour. In this rest of this section, we present the
LOLA framework,15 mainly following the presentation in [24].

We start by formalising in LOLA the UnsafeMapIterator property. This property
is somehow unnatural for stream processing, as it considers event streams and not data

streams (i.e. sequences of data values). There are several approaches to encode events as
stream elements, and we use one which allows for fewer intermediary streams. Namely,
we assume that a stream element is a set of tuples of data values. For input streams, these
sets are always singletons, as one element encodes one event. For instance, if at some
position j of the monitored trace the event create(m1,c1) occurs, then, at position j, the
input stream create contains the element {(m1,c1)}, otherwise (if a different event type
occurs at j) it contains the empty set. Note that we assume here four input streams, one
for each event type. The following stream equations specify the property.

createdC = create[ createdC[�1| /0]
createdI = (iterator ./ createdC)[ createdI[�1| /0]
updated = (update ./ createdI)[updated[�1| /0]

ok = next✓/ phii(updated)

The formalisation uses three intermediary streams, and one output stream, namely ok.
Each stream equation represents an equality between the element at the (implicit) posi-
tion j in the stream on the left hand side of the equation and the elements of the streams
occurring on the right hand side of the equation, at positions j

0 obtained from j by an
offset, for any position j in the input streams. The first equation relates, recursively, the
jth element of createdC with the jth element of create and the ( j� 1)th element of
createdC (unless j = 0, see below). In general, the expression s refers to the value of
the stream s at the current position j, and the expression s[�1|v] refers to the value of s

at the position with offset�1 with respect to the current position, that is, j�1, if j > 0,
and otherwise it refers to the value v, i.e. a default value given after the | symbol. LOLA
allows for any computable function to be used for obtaining output stream elements
from input stream elements. In this example we use relational algebra operators (see
also page 7).16 Thus, the stream createdC contains the tuples (m,c) of collections c cre-
ated so far from maps m. Similarly, the streams createdI and updated contain the tuples
(c, i,m) of iterators i created so far from collections c, in turn created from maps m; with
m referring to updated maps in case of the stream updated. Finally, the stream ok is the
Boolean stream representing whether the property is satisfied at the current position,
is computed by checking whether the iterator i (if any) is among those for which the
corresponding map was updated. We end this section by noting the similarity between
this formalisation and the ones QEA and LOGFIRE have used.

7.2 Syntax and Semantics

We assume a finite set of interpreted, typed function symbols f , where f denotes a
computable function of some type T1⇥ · · ·⇥Tk! T . By abuse of notation, we identify

15An implementation can be found at https://www.react.uni-saarland.de/tools/lola/.
16We abuse notation and apply them on unnamed relations, as their attributes are as expected,

e.g. hm,ci for createdC, and hc, i,mi for createdI and updated.
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function symbols with their interpretation. Note that 0-ary function symbols, that is,
constants, are associated with individual values of some type. We also assume a set of
typed stream variables.

A stream of type T is a finite sequence over T . A stream is Boolean if its type is B.
For a finite set Z of stream variables, a stream valuation over Z is a partial function q
over stream variables assigning to each variable z 2 Z, a stream q(z) such that the
streams associated with the different variables in Z have the same length n for some
n� 0. We also say that n is the length of q , which is denoted by |q |.

Stream Expressions Given a finite set Z of stream variables, the set of stream expres-

sions exp of type T over Z is inductively defined by the following syntax:

exp := z | z[`|c] | f (exp1, . . . ,exp
k
)

where z 2 Z is a variable of type T , ` 6= 0 is a non-zero integer, c is a constant of type T ,
k� 0 is a positive integer, f 2F is a function symbol of some type T1⇥ · · ·⇥Tk! T , and
exp1, . . . ,exp

k
are stream expression of type T1, . . . ,Tk, respectively. Informally, z[`|c]

refers to the value of e at the position obtained from the current position offset by `, and
the constant c is the default value assigned to positions from which the offset is after
the end or before the beginning of the stream.

Stream expressions e of type T over Z are interpreted over stream valuations q of
type T over Z. The valuation of exp with respect to q , written [[exp]](q), is the stream of
type T and length |q | inductively defined as follows for all 0 i < |q |:

– [[z]](q)(i) = q(z)(i), for all z 2 Z,

– [[z[`|c]]](q)(i) =
⇢
[[z]](q)(i+ `) if 0 i+ `< |q |,
c otherwise,

– [[ f (exp1, . . . ,exp
k
)]](q)(i) = f

�
[[exp1]](q)(i), . . . , [[exp

k
]](q)(i)

�
.

Example 11. Consider the Boolean stream expression exp := x_x[1|true] over {x}. For
every stream valuation q over {x} such that q(x) 2 (false true)+, i.e. alternating false
and true. The valuation of exp with respect to q is the Boolean stream true|q |, that is,
the sequence of length |q | where each element is true.

Specification Language Given a finite set X of stream variables and a set Y = {y1, . . . ,yn},
with n� 1, of stream variables of type T1, . . . ,Tn respectively, with X \Y = /0, a LOLA
specification E over (input variables) X and (output variables) Y is a set of equations

{y1 = exp1, . . . ,yn = exp
n
}

where exp1, . . . ,exp
n

are stream expressions over X [Y of type T1, . . . ,Tn respectively.
Note that there is exactly one equation for each output variable.

A stream valuation of E is a stream valuation over X [Y . An input (resp. output)
of E is a stream valuation over X (resp. Y ). The LOLA specification E describes a
relation, written [[E]], between inputs qX of E and outputs qY of E, defined as follows:
(qX ,qY ) 2 [[E]] iff |qX |= |qY | and for each equation y = exp of E,

[[y]](q) = [[exp]](q)
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where q = qX [ qY , defined as expected. The stream valuation qX [ qY is a valuation

model of E (associated with the input qX ) if (qX ,qY ) 2 [[E]]. Note that in general, for a
given input qX , there may be zero, one, or multiple valuation models associated with qX .
A LOLA specification E is well-defined iff for each input qX , there is exactly one valu-
ation model of E associated with qX .

A distinction can be made between streams that are meant to represent the output
corresponding to some input and intermediate streams that only facilitate the computa-
tion of the intended output. Such a distinction is not essential here.

Example 12. We present next an alternative formalisation of the UnsafeMapIterator

property. We assume the same input streams as in Section 7.1, namely create, iterator,
update, and next.17 Note that their type is of the form √(T1⇥ . . .⇥Tk), with T1 . . . ,Tk

among Map, Collection, Iterator. The following stream equations specify the property.

created = create[ created[�1| /0]
notupdated =

�
(iterator ./ created)[notupdated[�1| /0]

�
⇤update

ok = next✓ phii(notupdated)

The stream ok is the Boolean stream representing the satisfaction or the violation
of the property at each position in the event sequence, i.e. ok( j) = false iff there is a
violation at position j. The auxiliary stream created of type√(Map⇥Collection) stores
at position j all tuples (m,c) that have appeared in the input stream create up to (and
including) position j. The auxiliary stream notupdated of type √(Map⇥Collection⇥
Iterator) stores at position j all tuples (c, i,m) such that (a) at some previous posi-
tion j

0, the tuples (c, i) and (m,c) appeared in the stream iterator and respectively the
stream created, and (b) between position j

0 and j the tuple (m) has not appeared in the
stream update. In other words, notupdated stores those iterators that are safe to call
next() on (along with the related map and collection objects).

We note the similarity of this LOLA specification with the computation performed
by the FOTL-based monitoring algorithm for the corresponding FOTL specification
(see Example 3 on page 8). Namely, there is a direct correspondence between how the
streams created, notupdated, and ok are computed and how the satisfying elements
of the formulas b 0, g 0, and respectively j are computed. In particular, given the trace
from Example 1 (on page 6), the output streams notupdated and created are given by
the columns [[b 0]] j and respectively [[g 0]] j of Table 1 (on page 9), while for ok we have
ok(i) = true for i 2 {0, . . . ,4} and ok(5) = false.

Well-formed Specifications Note that well-definedness is a semantic restriction on
LOLA specifications. To detect ill-defined specifications, like y = y or y = ¬y, we present
next a syntactic restriction that guarantees well-definedness.

Let E be a LOLA specification over X and Y . A dependency graph for E is a
weighted and directed multi-graph with vertex set X [Y . There is an edge (z,z0,w)
from z to z

0 with weight w iff the expression exp contains z
0[w|c] as a subexpression

17In examples we do not make a distinction between stream variables and their denoted
streams, that is, we identify x and q(x).
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of exp, where exp is z’s expression in E, i.e. (z = exp) 2 E. Intuitively, the edge records
that the value of (the stream denoted by) z at a particular position depends on the value
of z
0, offset by w positions. Note that there can be multiple edges between z and z

0 with
different weights on each edge. Vertices x 2 X have no outgoing edges.

A walk of a graph is a sequence v1,e1,v2, . . . ,vk,ek,vk+1 of vertices and edges, for
k � 1, such that ei = (vi,vi+1,wi), for all i with 1  i  k. The walk is closed iff v1 =
vk+1. The weight of a walk is the sum of weights of its edges.

A LOLA specification specification is well-formed if there is no closed walk with
total weight zero in its dependency graph. Every well-formed LOLA specification is
well-defined [29]. The converse is not true. For instance, the specification y = y^¬y is
well-defined, but not well-formed.

7.3 Monitoring Algorithm

The monitoring algorithm takes as input a LOLA specification E over X and Y , with
E assumed to be well-formed, and an input valuation qX of E, which is processed
iteratively. That is, at the (i+ 1)st iteration, the monitor receives the values of all in-
put streams at position i, namely qX (x)(i), for x 2 X . The goal of the monitoring al-
gorithm is to incrementally compute the output valuation qY . Concretely, the moni-
tor outputs at each iteration the newly computed values qY (y)( j), where y 2 Y and
j 2 {0, . . . , |qX |�1}.

Before presenting the algorithm, we introduce some additional notation. Let XZ be
the set of variables {z j | z 2 Z,0 j  |qX |}, for Z 2 {X ,Y}, and let X := XX [XY .
Given a stream expression exp and a position j 2 {0, . . . , |qX |�1}, we denote by t j(exp)
the following term over X defined inductively over the structure of exp: if exp = z then
t j(exp) = z j, if exp = f (exp1, . . . ,exp

k
) then t j(exp) = f (t j(exp1), . . . , t j(exp

k
)), and if

exp = z[`|c] then t j(exp) = z j+` if 0 j+ `< |qX | and t j(exp) = c otherwise.
The monitoring algorithm maintains two sets of equations:

– A set R of resolved equations zi = c, where zi 2X and c is a constant.
– A set U of unresolved equations yi = t, where yi 2XY and t is a non-ground term

over X .

Initially both stores are empty. At the (i+ 1)st iteration, the values qX (x)(i) for x 2 X

become available and the monitor carries out the following steps:

1. The equation xi = qX (x)(i) is added to R, for each x 2 X .
2. The equation yi = ti(exp) is added to U , for each equation (y = exp) 2 E.
3. The equations in U are simplified as much as possible, using the following rules:

– Partial evaluation rules for function applications, such as 0+a! a.
– If (y j = c) 2 R, then every occurrence of y j in (the terms in) U is substituted

by c and possibly simplified further.
If an equation becomes of the form y j = c, it is removed from U and added to R;
furthermore, qY (y)( j) is set to c.

4. Equations zi�k = c are removed from R, where

k := max({0}[{` | `> 0 and z[�`|c] is a subexpression in E})
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position R U

0 x0 = false, x
0
0 = true y0 = x

0
0_ (x0^ y1)

y0 = true -
1 x1 = false, x

0
1 = false y1 = x

0
1_ (x1^ y2)

y1 = false -
2 x2 = true, x

0
2 = false y2 = x

0
2_ (x2^ y3)

- y2 = y3

6 x6 = true, x
0
6 = false y2 = y3, y3 = y4, y4 = y5, y5 = y6, y6 = x

0
6

y2 = false, y3 = false, y4 = false, -
y5 = false, y6 = false

Table 3. Sample execution of the monitoring algorithm.

Concerning the last step, we have that, for any position j, the position j+k is the latest
future position for which the monitor requires the value of (qX [ qY )(z)( j). Thus the
equation zi�k = c can be safely removed from R at position i. This is important as it
places a bound on the amount of history that needs to be stored. Also, note that the
well-formedness condition ensures that each equation in U is eventually resolved.

Example 13. To illustrate the last point, consider the specification y = y[�3|0]+x. The
value of k for y is 3 and for x is 0. This indicates that for any input stream s , the
equation x j = s( j) can be removed from R at position j itself. Similarly, y j = t( j) can
be removed from R at (or after) position j+3, where t is the output stream.

If in a specification all offsets are negative, that is, the stream expressions only refer
to current or previous stream positions, then at the end of each iteration all equations
are resolved, i.e. U = /0, because all new terms in U can be evaluated and simplified to
constants. The specifications from Section 7.1 and Example 12 fall in this category. We
therefore illustrate next the algorithm on a specification which contains positive offsets.

Example 14. Consider the specification y = x
0 _ (x^ y[1|false]) over {x,x0} and {y},

corresponding to the LTL specification xWx
0 over finite traces, where W denotes the

“weak until” operator. That is, y j stores the satisfaction of xWx
0 on the word encoding

the suffixes of the streams x and x
0 starting at position j. The associated equations are:

y j =

⇢
x
0
j
_ (x j ^ y j+1) if j < n�1,

x
0
j

otherwise (that is, j = n�1)

for 0 j < n, with n the input streams’ length. Let x,x0 be the following input streams.

x false false true true true true true
x
0 true false false false false false false

Table 3 lists the contents of the sets R and U at various stream positions j. For each
position j there are two rows in the table; the first row lists the contents of R and U

after executing steps 1 and 2 of the algorithm, while the second row does the same after
executing steps 3 and 4. At position 0, we add x0 = x(0), i.e. x0 = false, and x

0
0 = x

0(0),
i.e. x

0
0 = true, to R, and y0 = x

0
0 _ (x0 ^ y1) to U . The equation for y0 simplifies to
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y0 = true, and is thus moved to R. At position 1, we have x1 = false and x
0
1 = false in R

and thus we can set y1 = false, which is also added to R. From j = 2 until j = 5, we have
x j = true and x

0
j
= false. At each of these positions the equations y j = y j+1 are added

to U . The set U now contains the equations y2 = y3,y3 = y4, . . . ,y5 = y6. At position 6,
we have x6 = true and x

0
6 = false with the added information that the trace has ended,

i.e. y6 = x
0
6. Thus we set y6 = false and add it to R. This lets us resolve the equations

in U and set y j = false, for all the positions j from 2 to 6.

We end this section by noting that a run of the algorithm on the UnsafeMapIterator

property can be easily simulated by the reader; see the remark from Example 12.

8 Discussion

In this section we briefly discuss and compare the five different approaches outlined.
It is common to compare approaches on expressiveness of the specification languages,
their elegance, and efficiency of monitoring algorithms. However, due to lack of avail-
able complete results, our comparison is inherently subjective, rather than objective
based on concrete data. Hopefully future research and future editions of the runtime
verification competition (CRV) [14, 38, 60] will improve on this situation. Some first
steps in this direction have been taken in [61]. We also compare the approaches in terms
of the type of data structure used to store data values and of the type of produced output.

Expressiveness The FOTL-based approach supports extensions to real-time con-
straints and aggregation operators, which allow for a wide range of practically relevant
properties to be specified in a convenient manner. FOTL specifications are furthermore
compatible with an interpretation over infinite traces, which means that specifications
can be used for model checking purposes as well as for monitoring purposes. MMT
provides a generic framework that allows to use a variety of data algebras with ex-
isting monitoring approaches for temporal logics. This genericity allows for a wide
range of specifications to be expressed. Furthermore, the MMT approach can monitor
any FOTL formula that can be put in prenex normal form—a different kind of restric-
tion than that imposed by the FOTL-based approach. The expressiveness of QEA, LF,
and LOLA depend on the their guard, assignment, expression, and function languages.
Assuming rich such languages, these systems are Turing complete, and therefore more
expressive than temporal logics such as FOTL and TDL. However, it is unclear that full
Turing completeness is required for a practically useful RV specification language. The
extended state machines of QEA allow fundamentally to write programs, assuming a
general guard and assignment language. The rule-based LOGFIRE allows a form of pro-
gramming where arbitrary data can be passed as arguments to facts, thereby simulating
a program state. Added to that is that LOGFIRE is an internal DSL (an API) allowing full
fledged programming in SCALA. The LOLA framework phrases runtime verification as
a stream processing problem. The framework goes beyond property checking and gener-
ally supports computation of any data from traces (quantitative analysis). FOTL, QEA,
and LOGFIRE also support such quantitative analysis. Finally, we note that in LOLA
much of the performed stream computations are not specified within the approach, but
instead through interpreted functions.
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Elegance First-order temporal logics such as FOTL and MMT are quite standard,
and allow for very elegant specifications, compared to the other approaches described
here. Although this should not be a surprise, it is quite a commonly stated opinion
(folklore) that temporal logics are hard to use by practitioners. However, as discussed in
[48], we believe that in many cases a temporal logic specification is the most convenient
form of formalisation, and that temporal logics certainly deserve to be taken seriously
for runtime verification purposes, preferably augmented with other constructs such as
sequencing, scopes, etc. Specifications in the other formalisms are less elegant in the
average case due to the fact that they operate at a lower level of operational abstraction.
For example, in QEA states in state machines have to explicitly named. This issue
could be alleviated by extending the approach to multiple plugins, as is done in the
JAVAMOP work which QEA builds on. Similarly, in LOGFIRE, intermediate facts have
to be named, created, and deleted. One way to look at QEA, LOGFIRE, and LOLA, is as
low-level formalisms to be targets of translations from higher-level logics. For instance,
a translation from FOTL’s monitorable fragment to LOLA seems straightforward.

Efficiency The analysis of the complexity of monitoring algorithms for specifica-
tions with data has not received much attention so far. Of the presented approaches,
we know that the FOTL-based algorithm has polynomial time and space complexity in
the number of data values in the trace (see [17] for details), while LOLA’s algorithm
uses time and space that is linear in the length of the trace under the assumption that
interpreted functions execute in linear time [29].18 We note that under the anticipation
requirement [55] (which asks that a verdict should be output as soon as every extension
of the current trace leads to the same verdict), the monitoring problem often becomes
a hard one because it requires to solve the satisfiability problem for the considered
specification language, which is usually a hard problem for expressive languages (e.g.,
for FOTL it is undecidable). Anticipation is partially supported among the systems pre-
sented here by MMT and QEA. Finally, part of the reason for the scarcity of worst-case
complexity analyses is that such results often offer little insight into the efficiency of
the tools implementing the monitoring algorithms, an aspect that we consider next.

Each of the monitoring approaches presented here has been implemented. There is
not enough data to make thorough comparisons between the performance of these tools.
However, based on the results of the runtime verification competitions, and experimen-
tal evaluation sections in various papers, we can still formulate some observations. The
most efficient tools so far explored in the literature appear to be those based on the slic-
ing approach, which was introduced in systems such as TRACEMATCHES and MOP,
and carried further in MARQ [59]. The key advantage of parametric trace slicing is
that it admits efficient indexing approaches that have a significant impact on monitor-
ing overhead. The generic nature of MMT, which allows to combine any data algebra
with temporal logic, and the use of an SMT solver to check, for each incoming event,
the generated constraints, makes performance an issue. Performance can be improved
significantly by using a dedicated decision procedure instead of a generic solver. Fur-
thermore, on a particular class of properties, namely LTL over tree-ordered ids (and a
particular theory, namely that of equality), the MMT algorithm lent itself to a highly
effective optimisation [30], implemented in the MUFIN tool. LOGFIRE’s implementa-

18This assumption is not satisfied for our formalisations of the UnsafeMapIterator property.
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tion, which uses the RETE algorithm, is rather complex, and does not seem to yield the
same efficient solution for runtime verification as trace slicing. As documented in [47],
however, LOGFIRE performs well compared to other rule systems.

Data Structures We focus here on the general nature of the data structures used
for representing the observed history in the trace at any point during monitoring. With
this perspective three different approaches emerge. Both the FOTL and the LOGFIRE
algorithms store observed data explicitly as data records, that is, tuples of data values.
The FOTL-based algorithm operates with relations (sets of such tuples), which can
also be seen as database tables, while LOGFIRE operates with individual tuples, stored
as facts in a network. The QEA-based algorithm stores a mapping from valuations to
automata states. Valuations can also be seen as data records. Valuations are indexed such
that the relevant ones can be found efficiently. The MMT and LOLA systems approach
the problem differently by storing constraints between variables and data values; their
denotation are the data records stored in the other approaches. As such the five different
algorithms use three main approaches to storage of data during monitoring: data record
collections, indexed mappings, and constraints.

Monitor Output The systems presented yield different forms of output. FOTL
outputs sets of tuples, representing violations. MMT yields a verdict from an arbitrary
truth-value lattice, which can include values like “unknown”. QEA yields a verdict from
a 4-valued Boolean logic.19 LOGFIRE by default only outputs a result (an error trace)
if the specification is violated, but for each event it offers access to the set of all facts
generated so far. LOLA produces a data value at each step during monitoring as part of
an output stream. QEA, LOGFIRE, and to some extent FOTL, also can produce any
form of output from a trace, although these systems were not created for this purpose.

9 Related Work

In the following we discuss some related work, grouping it by the five presented ap-
proaches. As with the FOTL and MMT approaches, a number of other runtime veri-
fication approaches also use formalisms based on extensions of (linear) temporal log-
ics with variables modeling event parameters. All these (linear) temporal logic exten-
sions thus exhibit variable quantification, either implicitly or explicitly. In most ex-
tensions [44, 64, 63, 18, 12, 46, 19], the domain of a quantifier is restricted to the data
appearing at the current position in the trace. When a single event can occur at a posi-
tion in the trace, as in this chapter and in [44, 12], the domain thus consists of at most
one value and quantification has the flavor of the so-called freeze quantification [7].
In all these works, quantification is handled algorithmically by encoding (at runtime)
quantifiers with a finite number of conjunctions (8) and disjunctions (9), one for each
variable instantiation encountered during runtime. The monitoring algorithms are ei-
ther based on a translation from the underlying propositional formulas to automata, as
in [63, 19], or on a syntax-oriented tableaux-like procedure, as in [18, 12, 46]. In con-
trast to the above, in the FOTL and MMT approaches quantification is over the whole
data domain as it is in classic first-order logic. This is also the case with [27], which
presents a similar monitoring algorithm to that in [17].

19Assuming a guard and assignment language such that checking QEA emptiness is decidable.
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The presented FOTL monitoring approach shares similarities with algorithms for
checking temporal integrity constraints of databases and for specifying temporal database
triggers, and in particular with [26], which the approach in [17] extends. The MMT
framework takes an indirect approach for monitoring first-order temporal logics, by
providing a way to lift propositional monitors to the setting of data values. Thus, in
its aim to achieve a temporal logic independent solution, the MMT approach presents
similarities with the MOP framework [25, 56].

Trace slicing was introduced in [5] with a suffix-matching semantics and then ex-
tended to total-matching (which is non-trivial) in the JAVAMOP work [56]. The latter
work also introduces different notions of matching which are difficult to capture in the
quantification framework introduced earlier, for example, on non-total and connected20

bindings. The JAVAMOP language, however, introduces an unnecessary restriction on
expressiveness by enforcing a unique mapping from event names to parameter names,
disallowing an event name to be used with different parameters in a specification. This
prevents, for example, a property like “a lock acquired by a thread t cannot be acquired

by another thread t
0

until first released by t” as here the lock action refers to two dif-
ferent variables. On the other hand, JAVAMOP supports infinite-state specifications as
context-free grammars (CFGs), which are not supported directly by any of the other for-
malisms. CFG properties can be only expressed indirectly, and much less elegantly, in
other formalisms (including QEA and LOGFIRE) by simulating push-down automata.
The work of [8] extends the parametric trace slicing approach with constraints, similar
to the combination of free variables and guards in QEA. The work in [30] introduces
more efficient monitoring algorithm by restricting specifications to those with hierarchi-
cal relationships between quantified variables. Other parametric monitoring approaches,
that like QEA are automata-based, include LARVA [28] and ORCHIDS [43].

The RETE-based LOGFIRE is inspired by the RULER rule system [9, 13] (not based
on RETE), which again was influenced by the EAGLE system [11] (a linear µ-calculus
supporting parametric monitoring with past time, future time, and sequencing opera-
tors). Several RETE-based external rule DSLs exist, such as DROOLS [2] and CLIPS [1].
HAMMURABI [41] (actor-based) and ROOSCALOO [3] (RETE based) are two other in-
ternal SCALA rule DSLs. Unlike LOGFIRE, none of these rule systems treat events spe-
cially. A RETE-based system for aspect-oriented programming with history pointcuts is
described in [49].

The stream-based approach of LOLA resembles synchronous programming langua-
ges such as Lustre [45] and Esterel [23]. The approach was extended in LOLA 2.0 [39]
with two new language features, namely template stream expressions and dynamic
stream generation, which support a notion of slicing similar to that found in QEA.

10 Conclusion

We have described five different formalisms for parameterised runtime verification. The
field of runtime verification is still young and there is no clear agreement on what con-
stitutes a good specification formalism. This is in contrast to the field of e.g. model

20Bindings whose values are explicitly connected by events in the trace.
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checking, where LTL and CTL have become de facto standards. Part of the reason is
possibly data parameterisation, which opens up new doors as to what a specification
language can look like, as this chapter illustrates.
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Abstract. This chapter describes how to use in-the-field runtime techniques to
improve the dependability of software systems. In particular, we first present an
overall vision of the problem of ensuring highly-dependable behaviours at run-
time based on the concept of autonomic monitor, and then we present the two
families of relevant approaches for this purpose. First, we present techniques
related to runtime enforcement that can prevent the system producing bad be-
haviours. Second, we describe healing techniques that can detect if the system
has produced a bad behaviour and react to the situation accordingly (e.g., moving
the system back to a correct state).

Keywords: runtime enforcement, prevention of failures, reaction to failures, self-healing,
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1 Introduction

Fully assessing the quality of software systems in-house is infeasible for several well-
known reasons. For instance, the space of the behaviours and the configurations that
must be validated in-house and their combination might be intractable; many real usage
scenarios might be impossible to reproduce and validate in-house; and the context of
execution of a system might be only partially known, such as for the many software
applications that can be extended directly by their end-users through the installation of
plug-ins, which makes the problem of verifying software in-house extremely hard.

To improve the dependability of software systems, the software running in the field
can be equipped with solutions to prevent, detect, and react to failures. These solutions
attempt to handle the faults that have not been revealed in-house directly in the field,
once they produce observable effects. The range of solutions to cope with failures at
runtime is quite broad. It spans from fault tolerance techniques, which exploit various
forms of redundancy to overcome the impact of failures, to self-healing approaches,
which can automatically heal executions before they produce an observable effect.

In this chapter, we discuss approaches concerning two complementary, although re-
lated, aspects: runtime enforcement techniques, which can prevent a monitored program
from misbehaviouring by enforcing the program to run according to its specification,
and healing techniques, which can react to misbehaviours and failures to restore the



normal execution of the monitored program, possibly completely masking any observed
failure.

Runtime enforcement and healing techniques look at the same problem from the
opposite sides. The former affects executions with the objective of preventing failures,
for instance preventing that a wrong result is ultimately generated by a program. The
latter affects executions with the objective of restoring normal executions once a failure
has been observed, possibly masking the failure to any external observer (e.g., the users
of a system).

Runtime enforcement typically requires a specification of a system, for instance the
specification of a property that must be satisfied by an application, to properly steer
executions. When such a specification is available, it can be extremely effective in pre-
venting failures. However, its effectiveness is limited by the scope and availability of the
specifications. On the other hand, healing techniques often exploit source of informa-
tion alternative to ad-hoc specifications (e.g., program versions, redundancy, and failure
patterns) to be able to remedy to the observed problems. The two classes of solutions
together represent a relevant range of options to deal with failures at runtime.

Of course, the boundaries between enforcement and healing are not always sharp,
and some approaches in one category may have some characteristics present also in
the approaches in the other category, and vice versa. In this chapter, we do not aim
to exhaustively discuss the approaches in the two areas or claim that the distinction
between enforcement and healing is effective in all the cases, but rather we aim to
give a general and coherent vision of these techniques and to provide an initial set of
references for the readers interested in more details. The discussion is mostly informal,
and specific details are provided only when needed.

The chapter is organised as follows. Section 2 presents the concept of autonomic
monitoring, which is exploited to discuss as part of the same conceptual framework both
runtime enforcement and healing techniques. Section 3 discusses techniques to prevent
failures by enforcing the correct behaviours. Section 4 presents techniques to react to
failures by restoring the correct behaviour. Section 5 discusses some open challenges,
and finally Section 6 provides final remarks.

2 Autonomic Monitors

Runtime enforcement and healing techniques have to deal with faults, anomalous be-
haviours and failures. In this chapter, a failure is the inability of a system or component
to perform its required functions within previously specified limits, a fault is an incor-
rect step, process or data definition, and an anomalous behaviour (or a bad behaviour)
is anything observed in the operation of software that deviates from expectations based
on previously verified software products, reference documents, or other sources of in-
dicative behaviour [53]. A fault present in a software may cause anomalous behaviours
and even worse failures.

We present solutions for runtime enforcement and healing referring to the same
high-level software architecture. Since both runtime enforcement and healing repre-
sent specific cases of autonomic computing technologies, we adapt the architecture of
a general autonomic manager proposed by IBM [56] to the case of an Autonomic Mon-
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Fig. 1: General architecture for enforcement and healing at runtime.

itor that can perform enforcement and healing at runtime. The resulting architecture is
shown in Figure 1.

The two main components of the architecture are the Monitored Program and the
Autonomic Monitor. The Monitored Program is coupled with the Autonomic Monitor,
which adds behaviour enforcement and healing capabilities to the monitored program.
The interaction between these two components is possible through Sensors, which are
probes or gauges that collect information about the monitored program, and Effectors,
which are handles that can be used to change the behaviour of the monitored program
according to the decisions taken by the Autonomic Monitor. We consider here the Mon-

itored Program in a general sense, meaning that for instance its configuration or its
environment is included in this definition.

The behaviour of the Autonomic Monitor is determined by a feedback loop that
comprises four phases: Observe, Analyse, Plan, and Execute. These four phases exploit
some Knowledge about the monitored program to work effectively. In particular, the
Observe phase collects information and data from the monitored program using sen-
sors, and filters the collected data until events that need to be analysed are generated
and passed to the analysis phase. The Observe phase can also update the Knowledge
based on the collected information. The Analyse phase performs data analysis depend-
ing on the knowledge and the events that have been produced. Should an action need
to be taken, the control is passed to the Plan phase, which identifies the appropriate
procedures to enforce a given behaviour or to heal the monitored program. The Exe-
cute phase actuates the changes to the behaviour of the monitored program based on
the decision taken by the Plan. The Execute phase also performs the preparation tasks,
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such as locking resources, that might be necessary before the monitored program can
be affected. When the monitored program is modified, the Knowledge can be updated
accordingly.

In this chapter, we describe the enforcement and healing techniques based on:

– the requirements on the monitored program, and on the sensors and effectors that
must be introduced into the monitored program;

– the behaviour of the four phases Observe, Analyse, Plan and Execute that charac-
terise an autonomic monitor, note that some phases might be extremely simple for
some techniques;

– the knowledge about the system that must be provided and updated to let the auto-
nomic monitor work properly.

The following two sections organise the approaches distinguishing between runtime

enforcement and healing techniques.

3 Enforce the Correct Behaviour

We overview some of the research efforts in the domain of runtime enforcement [35,59].
Runtime enforcement is a “branch" of runtime verification focusing on preventing and
reacting to misbehaviours and failures. While runtime verification generally focuses
on the oracle problem, namely assigning verdicts to a system execution, runtime en-
forcement focuses on ensuring the correctness of the sequence of events by possibly
modifying the system execution.

Structure of this section. The rest of this section is organised as follows. Section 3.1
introduces runtime enforcement and presents how it contributes to the runtime quality
assurance and fits into the general software architecture presented in Section 2. Sec-
tion 3.2 overviews the main existing models of enforcement mechanisms. Section 3.3
focuses on the notion of enforceability of a specification, namely the conditions under
which a specification can be enforced. Section 3.4 presents work related to the synthe-
sis of enforcement mechanisms. Section 3.5 discusses some implementation issues and
solutions, and presents some tool implementations of runtime enforcement frameworks.

3.1 Introduction and Definitions

Research efforts in runtime enforcement generally abstract away from implementation
details and more precisely on how the specification is effectively enforced on the sys-
tem. That is, in regard of Figure 1, one generally assumes that sensors and effectors
are available by means of instrumentation and one focuses on the Analyse and Plan
phases instead of the Observe and Execute ones. Moreover, runtime enforcement prob-
lems revolve mainly on defining input-output relationships on sequences of events (see
Figure 2a). That is, the actual execution, made available through the Observe module,
is abstracted into a sequence of events of interest (according to the specification). More
precisely, a runtime enforcement framework shall describe how to transform a (pos-
sibly incorrect according to the specification) input sequence of events into an output
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sequence of events by means of a so-called enforcement mechanism.4 The transforma-
tion is performed according to the given specification which is used to synthesise the
enforcement mechanism.

Before elaborating on the different ways an enforcement mechanism can transform
the input sequence and how the enforcement mechanism can be synthesised (in Sec-
tion 3.2 and Section 3.4 respectively), we relate the implicit assumptions made in
runtime enforcement endeavours to the architecture of a general autonomic manager
(Figure 1). In particular, one should note that the conceptual presentation of the run-
time enforcement problem in Figure 2a abstracts away several architectural setups. We
present some examples of more concrete architectural setups and illustrate them on a
scenario in Example 1. First, an enforcement mechanism can be used for input saniti-

sation (see Figure 2c). In such a case, the mechanism is used to “protect" the system
from its (untrusted) environment. All inputs to the system shall enter first the enforce-

4 We follow the terminology of [40] which generalises previous terminologies used in runtime
enforcement. We use the term enforcement mechanism to encompass definitions of mecha-
nisms dedicated to enforcement described at different abstraction levels. Moreover, using the
term enforcement mechanism allows us to abstract away the architecture of the autonomic
monitor and its placement w.r.t. the monitored system.
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ment mechanism which filters out those that could harm the system or ensure that all
the necessary inputs are provided to the system. Examples of such situations include
using the enforcement mechanism as a firewall (to discard or alter some inputs) or us-
ing it to ensure that the pre-conditions required to use the system are met when, for
instance, the system is supposed to receive inputs from two external parties. Second, an
enforcement mechanism can be used for output sanitisation (see Figure 2d). All outputs
of the system shall enter first the mechanism which filters or transforms them. Exam-
ples of such situations include using the enforcement mechanism to prevent leaking of
sensitive information or a transformation of the trace produced by the system. Third, an
enforcement mechanism can be used as reference monitor (see Figure 2e). This archi-
tecture is close to the one of the autonomic monitor presented in Figure 1. There is a
closed loop between the system and the enforcement mechanism. All actions of interest
or relevant state changes are first submitted to the enforcement mechanism which then
grants, denies or alters state changes. Examples of such situations include using the
enforcement mechanism to grant access to sensitive primitives or system operations.

Example 1 (Using enforcement mechanisms). Consider the example system S depicted
in Figure 2b where enforcement mechanisms are used to enforce the correct behaviour
and ensure quality at runtime. Let us assume that S is purposed to realise some be-
haviour based on services provided by external systems Sys1 and Sys2. Actions of S
are driven by some users (not depicted in Figure 2b) and the actions should be logged
to a file system. The input sanitiser is used to forward to S information only when both
Sys1 and Sys2 provide the expected service, possibly discard or reformat some infor-
mation from the users. The reference monitor is used to monitor the important actions
of S by for instance rescheduling the actions or not letting S execute some actions when
these are not allowed. The output sanitiser is used to ensure that actions are logged prop-
erly by enforcing a pre-defined log format, anonymising user sensitive information, or
discarding irrelevant information.

The input-output relationship realised by the enforcement mechanism should fulfill the
following constraints.

– Soundness: the output sequence should be correct w.r.t. the specification.
– Transparency: a correct input sequence should not be modified, if possible.5

Remark 1 (Runtime enforcement vs supervisory control theory). Runtime enforcement
share the same objectives with supervisory control theory, which was introduced by
Ramadge and Wonham [81,82]. In supervisory control theory, one uses an automaton
modelling the system to synthesise a supervisor and a list of forbidden states. Events of
the system are partitioned into the so-called controllable and non-controllable events.
Intuitively, the supervisor is composed with an automaton model of the system (syn-
chronous product) and ensures the most permissive behaviour of the initial system while
preventing bad behaviour (rejected by the automaton). Should the system try to execute

5 This is the notion of transparency adopted in a majority of papers on runtime enforcement.
Some research efforts notice that this notion of transparency only constrains correct execu-
tion sequences; and they advocate that constraints should be placed on how an enforcement
mechanism transforms incorrect execution sequences [11,12,58].
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References Models of enforcement mechanisms Specification formalisms used for synthesis
[88] security automata Büchi automata
[62] edit-automata deterministic finite-state automata
[37] generalised enforcement monitors Streett automata
[20] edit automata Rabin automata
[76] delayers timed automata
[40] delayers with suppression timed automata
[65] security automata µ-calculus formulae
[42] generalised enforcement monitors labelled transition systems
[39] enforcement mechanisms with rollback finite-state automata
[15] safety shields safety automata
[92] shields for burst errors temporal logic (safety)
[13] iteration suppression automata deterministic finite-state automata

Table 1: Summary of existing models of enforcement mechanisms with the specification
formalism from which they can be synthesised.

an action that could lead the system to exhibit a bad behaviour, the supervisor disables
this action which then cannot execute on the system anymore.

3.2 Models of Enforcement Mechanisms/Monitors

The first model of enforcement mechanism was security automata (SA) [88]. An SA is
a finite-state machine that executes in parallel with the monitored program. Whenever
the target programs want to execute an action in the scope of the enforced property, two
cases arise. Either the transition is defined and then the SA lets the target system execute
the action, otherwise the target system is halted. We note the follow up work [50] which
corrects and extends the results in [88] related to the enforcement abilities of security
automata (see Section 3.3).

Ligatti et al. later extended the work of Schneider et al. by noticing that security
automata are (only) sequence recognisers. They propose the model of edit-automata

(EA) [62] which are sequence transformers. In addition of halting the target system,
edit-automata can insert and suppress actions (originating from the target system or
not). For instance, an EA can suppress and memorise an action of the target system
for later replay. In an EA, the memorisation of actions is realised using the state-space.
Several variants of edit-automata have been proposed [11].

Falcone et al. generalised edit automata with the so-called generalised enforcement

monitors (GEMs) [43]. Contrarily to EAs, a GEM clearly separates sequence recogni-
tion from sequence transformation: GEMs are based on finite-state machines extended
with generic enforcement operations that act on an internal memory. Separating se-
quence recognition from action memorisation has several advantages. First, GEMs are
more amenable to implementation. Second, one can define easily formal composition
operations on GEMs by computing the product state space and composing memory
operations.
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Bielova and Massacci proposed Iterative Suppression Automata (ISAs) [13], as a
variant of EAs. They noticed that the usual requirements of soundness and transparency
(and their implementation with EAs) do not distinguish what should happen when the
input execution does not satisfy the specification. The underlying motivation is to be
able to compare EAs in the manners they intervene on incorrect executions.

As noticed in [37], EAs and GEMs suffer from a practical limitation. Both of these
models assume being able to freeze an unbounded number of actions to be replayed
later. This amounts to assuming that an enforcement mechanism is able to predict the
result of any action. To address this issue, Dolzhenko et al. introduce Mandatory Re-
sults Automata (MRAs) [64,30]. Upon the observation of any action, an MRA should
return a result to the target application before seeing the next action. An MRA is placed
between the untrusted target application and the executing system, and enforces the
actions executed by the target as well as the results returned. Then, an MRA has to
consider input and output events on traces.

In [24,39], Charafeddine et al. propose enforcement mechanism with k-step roll-

back abilities. Such enforcement mechanism allows the system to deviate from the
desired property up to k observable execution steps. Should the system not return to
a correct state after k steps, the enforcement mechanism rolls the (non-deterministic)
system back to the last correct state and forces it to explore alternative executions. An
instantiation with 1 step of such general definition enforcement mechanisms is then
implemented and integrated in component-based systems (cf. [6]).

Similar to the above models are the so-called safety shields [15] for reactive hard-
ware systems, i.e. systems with Boolean signals as inputs and outputs. A shield is a
Mealy machine which ensures soundness and minimum interference according to a no-
tion of distance measuring the deviation between the output and the input of the shield.
When a state where a property violation becomes unavoidable is reached, the shield
enters in a recovery period, called k-stabilisation, and is allowed to deviate from its in-
put for at most k consecutive steps. Bloem et al. assume here that the violation should
be a rare event, and then the monitor keeps track of all possibilities assuming that it
was an isolated error. If another violation arises during this recovery period, the shield
enters in a fail-safe mode, where correctness is still ensured, but no minimal deviation.
Note, a shield cannot buffer events. Wu et al. extends shields and propose enforcement
mechanisms that respond immediately to violations and guarantees the safety under
burst errors [92]. Similar to the model in [24], k-stabilising shields (which recover the
system in a finite time) and admissible shields (which collaborate with the system) are
introduced in [52].

Models with memory constraints. Most of the above models of enforcement mecha-
nisms are endowed with an infinite memory as they allow the possible memorisation
of an unbounded number of events. Several models have been proposed to account for
practical memory limitations and bound the memory needed by enforcement mech-
anisms. Fong proposed Shallow History Automata (SHAs) [44] as security automata
that do not keep track of the order of event arrival. Fong generalised SHA as ↵-SA
which are SA endowed with a morphism ↵ abstracting the current input sequence. Talhi
et al. introduced Bounded Security Automata (BSAs) and Bounded Edit-Automata
(BEAs) [91]. BSAs and BEAs are SAs and EAs with a bounded memory to memorise
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the input sequence respectively. The previous models bound the size of the memory of
the enforcement mechanism (with an integer). Beauquier et al. introduced finite EAs
and deterministic context-free EAs, that is EAs with a finite set of states [10]. They
prove that finite EAs are strictly less expressive than EAs and study the conditions un-
der which a property can be enforced by a finite EA.

Models with real-time enforcement primitives. The previously described models of
enforcement mechanisms feature untimed sequence recognition mechanisms and en-
forcement primitives. In particular, when they do not account for the time that elapses
between the occurrence of two received events. Moreover, the amount of time during
which an event remains in the memory of the enforcement mechanism is not taken into
account. Models for enforcing timed properties have been defined as delayers in [77,76]
to enforce timed properties. Such models account for the physical time elapsing during
the reception of actions, storing and releasing actions in real-time. Later, the model of
delayers has been extended into delayers with suppression [40] where actions are dis-
carded from the memory when releasing such events would irremediably make the un-
derlying property violated. Since physical time has consequences on the implementabil-
ity of enforcement mechanisms, soundness and transparency need to be redefined and
additional constraints such as optimality are required on how such enforcement mech-
anisms release actions.

Models supporting uncontrollable events. Closer to controllers in supervisory-control
theory (see Remark 1), enforcement mechanisms accounting for uncontrollable actions
(i.e., actions that cannot be affected by the enforcement mechanism) have been de-
fined [85,57]. In addition to the current satisfaction of the output execution, such mod-
els take into account the possible reception of uncontrollable events. Uncontrollable
actions as clock ticks were first introduced by Basin et al. in [5]. Unrestricted uncon-
trollable actions were later introduced in extensions of GEMs in [85,84,86] and of EAs
in [57].

Predictive enforcement mechanisms. Inspired by the predictive semantics of runtime
verification monitors [94], predictive enforcement mechanisms were proposed in [78,79].
Predictive enforcement mechanisms leverage some apriori knowledge of the system to
output some events faster, instead of delaying them until more events are observed (or
permanently).

3.3 Enforceable Specifications

We now turn our attention to the existing characterisations of the so-called enforceable

specifications, i.e., specifications that can be enforced. Before elaborating on the ex-
isting characterisation, we first narrow down the term specification. As suggested by
Schneider [88], one can distinguish properties from policies when specifying systems.
A property (can be seen as a predicate that) partitions individual executions, while a
policy (can be seen as a predicate that) partitions sets of executions. Hence, not all
policies are properties. When observing a system execution, it is possible to determine
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the membership to a property; while determining membership to a policy generally re-
quires observing additional executions.6 Examples of properties include deadlock and
starvation freedom, fairness, access control constraints, formalised requirements over
executions. The classical example of policy (which is not a property, i.e., it can not be
expressed with predicates over single execution) is information-flow because it requires
checking for potential correlation between executions.

Enforceability of a property depends on several factors:

– the formalism used to specify the property, and more particularly whether the for-
malism describes finite or infinite executions;7

– the enforcement primitives endowed to the monitors and how these enforcement
primitives are mapped to actual system effectors;

– constraints stemming from the system in which enforcement monitors are to be
integrated.

In the pioneering work of Schneider on security automata, safety properties were char-
acterised as enforceable [88]. Since a security automaton can only either 1) let a system
action execute or 2) halt permanently the system, its decisions are irremediable. Concur-
rently, Kim et al. noticed that any monitoring mechanism (evaluating the execution of
a system against a property) should be able to determine if the current execution is out-
side the set of allowed executions [60]. Thus, properties should be also co-recursively

enumerable, that is, the non-membership test should be computable. We note that the
results in [88] were later refined in [50]8, with the insights given in [60].

Ligatti et al. proved that, compared to security automata, using the additional en-
forcement primitives, edit-automata can enforce the so-called renewal properties [8,62,63].
In the safety-liveness classification of properties [71], renewal properties form a super-
set of safety properties which contains some liveness properties. Intuitively, a property
is a renewal if a) any infinite execution sequence in the property contains infinitely many
prefixes in the property, and b) any infinite execution sequence not in the property con-
tains only finitely many prefixes in the property. Falcone et al. proved that Generalised
Enforcement Monitors instantiated with the store and dump operations, which respec-
tively memorise and release events, can enforce the so-called response properties [38]
in the Safety-Progress hierarchy of properties [21]. Response properties are properties

6 We note that some ongoing research efforts study hyper-properties [26], which resemble poli-
cies. We also note ongoing work advocating monitoring hyper-properties [16].

7 As was the case in runtime verification, early work on runtime enforcement considered infinite
executions.

8 Hamlen et al. [50] additionally introduce the notion of RW-enforceable policies (policies en-
forceable by enforcement mechanisms with Program Rewriting abilities), and use it to define
a more precise characterisation of enforceable security policies. They model the untrusted
programs as Türing machines with deterministic transition relations with three infinite-length
tapes. They divide enforcement mechanisms into three categories: static analysers, reference
monitors, and program rewriters. Static analysers operate strictly prior to running the untrusted
program. Reference monitors intercept events or actions the program under scrutiny and in-
tervene before occurrence of an event violating the policy, by terminating it or applying some
other corrective action. Program rewriters modify in a finite time the program under scrutiny
prior to execution.
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for which some expected good behaviour should happen infinitely often. They can be
intuitively understood as repeated transactions.

Moreover, we note that on finite sequences all properties are renewals. This ob-
servation is in line with the fact that (pure) response properties coincide with renewal
properties, as noticed in [38].

Ligatti et al. proved that the MRA approach permits the enforcement of a new
variant of properties, named result-sanitization or monitor-centric policies which are
simpler and more expressive than usual definitions (target-centric ones). They also
provide a hierarchical characterisation of the policies enforceable or not with MRAs.
For instance, they show that MRAs precisely enforce a strict subset of safety proper-
ties, whereas Non-deterministic MRAs (NMRAs) precisely enforce a strict superset of
safety properties. Depending on the definition chosen for non-safety properties or with
additional assumptions, MRAs can also enforce some non-safety properties.

Falcone and Jaber [24,39] showed that stutter-free safety properties are enforceable
on component-based systems with monitors that can roll the system back by one observ-
able execution step. Stutter-invariance is required on properties because of constraints
stemming from the nature of synchronisation of components. A hierarchy of enforce-
able properties according to the number of steps the enforcement mechanism can roll
the system back (the so-called k-step enforceability) is defined [39]. While 1-step en-
forceable properties are characterised, a general characterisation of k-step enforceable
properties is left open.

Basin et al. extend the characterisation given in [88,50] of enforceable properties by
additionally considering a universe of possible (input) traces and a set of controllable
actions [5]. A property is enforceable if it is a safety and is such that violations are not
caused by uncontrollable actions, and the set of prefixes of sequences in the universe
and the property is decidable.

3.4 Synthesising Enforcement Mechanisms

We now report on some of the existing techniques used to synthesise enforcement
mechanisms from properties described in several specification languages/formalisms
(Table 1, p. 7, gives the specification formalism from which each type of enforce-
ment mechanisms can be synthesised). Schneider et al. synthesise SAs from Büchi
automata [88]. Ligatti et al. synthesise EAs from deterministic finite-state automata
describing renewal properties [62]. Falcone et al. synthesise GEMs from Streett au-
tomata [37]. Chabot et al. synthesise EAs from Rabin automata [20]. Pinisetty et al.
synthesise delayers in [74,73,76] and Falcone et al. synthesise delayers with suppression
in [40], from timed automata. Using partial model-checking techniques, Mateucci and
Martinelli synthesise SAs from µ-calculus formulae [65]. Enforcement mechanisms are
described as algebraic operators driven by controller programs. Falcone and Marchand
synthesise GEMs from labelled transition system marked with secret states to enforce
opacity properties [42]. Charafedine et al. transforms deterministic finite-state automata
into enforcement mechanisms with 1-step roll-back abilities and integrate them into a
component-based system [24,39]. Bloem et al. synthesise safety shields from safety
automata by solving 2-player safety games [15]. Wu et al. synthesise shields that han-
dle burst errors using a game-based algorithm [92]. Bielova and Masacci adapt the
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construction of EAs to synthesise a variant called iteration suppression automata for
iterative properties described by deterministic finite-state automata. Iterative properties
are such that the good executions are formed of “iterations" that can repeat an arbitrary
number of times.

3.5 Implementations and Applications

The principles of runtime enforcement have been implemented and applied to several
domains. Most of these approaches are based on either SAs, EAs, or GEMs.

Tool implementations. While there is a plethora of tools for runtime verification [4],
there are only a few tool implementations for the runtime enforcement of properties
on systems: Polymer [9], Mobile [49], TiPeX [75], and more recently GREP [86,83].
Polymer is a language and system for the definition and composition of enforcement
mechanisms for Java applications. Mobile is a language-support for verified enforce-
ment on .NET. Whenever a Mobile program type-checks with respect to a security pol-
icy, it is guaranteed that the program respects the policy. TiPEX implements algorithms
for enforcing timed properties described as timed automata. TiPEX enforcement mech-
anisms correct input sequences by delaying actions. GREP also implements algorithms
for enforcing timed properties described as timed automata with the ability to handle
uncontrollable events. These algorithms are based on game theory.

We note that runtime verification tools can perform for free basic form of runtime
enforcement as in security automata by halting the target system whenever a viola-
tion of the property occurs. Java-MOP [25] is a tool for runtime verification which
arguably provides some support for ad-hoc runtime enforcement. Java-MOP provides
self-recovery mechanisms in case of violation in the form of handlers. Handlers are
code snippets that can be integrated in the target program in order to handle the viola-
tion (or validation) of a property using contextual execution information retrieved using
aspect-oriented programming.

Application domains. One of the first domains of application is the security domain; and
enforcement mechanisms were initially defined as security devices. Runtime enforce-
ment was applied to enforce security policies [34], availability requirements in [28],
privacy policies [54] and [61], opacity properties in [41,42], role-based access con-
trol security policies in [72], usage-control policies [66], the confidentiality of artifacts
in [48]. There is also a body of work applying runtime enforcement principles on mobile
devices such as Android-based mobile phones [36,67,68,1,31,69].

Limitations of enforcement. Even if a system is equipped with an enforcement mecha-
nism, it may reach a failing situation. This is due to several reasons. Firstly, the enforce-
ment mechanism considers only the described property and then acts according to this
latter only. Any other (maybe unexpected) event not taken into account by the property
may lead to a failure. Moreover, an enforcement mechanism has a restricted enforcing
power since it follows a specific set of rules. If the necessary correcting action is not in-
cluded in this set, then a failure may arise. As shown by [85], there are some situations
in case of uncontrollable events where it is not possible to avoid an incorrect situation.

12



Finally, there may be a gap between the abstract description of the enforcement mecha-
nism and its real implementation. In this case, this is more a problem of instrumentation
of the approach.

4 Healing Failures

In this section, we discuss techniques that can be used to heal executions after the failure
has been observed by the autonomic monitor. In this context, a failure is defined as an
execution that deviates from the intended semantics of the monitored program.

In order to automatically react to failures, it is first necessary to detect them. We
can distinguish between domain independent failures, that is, failures that do not de-
pend on the specific semantics of an application (e.g., crashes, uncaught exceptions,
and deadlocks) and domain-dependent failures, that is, failures that depend on the spe-
cific semantics of the system (e.g., the generation of a wrong output).

Domain-independent failures can be trivially detected with an implicit oracle, that
is, an oracle that can simply recognise the event that represents the failure (e.g., the ap-
plication that quits abruptly, an exception reported in a log file, and the application that
stops responding). Domain-dependent failures can be detected with program-specific
oracles, that is, oracles obtained from a definition of the semantics of the program.
These oracles detect failures by comparing the observed behaviour to the behaviour
defined in the specification, for instance, an oracle might be obtained from a logical
specification of the input/output behaviour of the system to detect incorrect outputs [3].

Detecting failures is a responsibility shared between the Observer and the Anal-
yser components of the Autonomic Monitor architecture introduced in Section 2. The
Observer is responsible for collecting events that can be processed by the Analyser to
establish if the monitored program has failed. In the case of domain independent fail-
ures, the Observer has to simply detect the events that characterise failures and notify
them to the Analyser, which reacts by triggering the healing process. In the case of
domain dependent failures, the Observer collects the events relevant to the classes of
failures that can be recognised, while the Analyser processes these events based on its
Knowledge of the expected behaviour of the system. If a mismatch between the ex-
pected behaviour and the actual behaviour of the monitored program is observed, the
Analyser triggers the healing process.

The healing process is driven by the Planner that activates appropriate mechanisms,
based on its knowledge of the system and the available strategies, as described in the
rest of this chapter. The Executor concretely actuates the plan elaborated by the Planner.

Since techniques that react to failures can affect a monitored program only after
a failure has been observed, they need to incorporate mechanisms to either rollback

the execution to a safe point before the failure happened, to successively influence the
execution preventing any failure, or to compensate the effect of an observed failure
moving the monitored system to the same state that would be observed if the failure has
never happened.

Techniques for reacting to failures rely to one of the following three main sources of
information: knowledge about the redundant elements of a system that can be exploited
to workaround a failure, knowledge about the actions that can be taken to react to some
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Fig. 3: General architecture for reacting to failures exploiting redundancy

specific types of failures, and knowledge about the actions that can be taken to explore
program and configuration variants in response to an unknown type of failure.

The rest of this section presents the techniques for reacting to failures organised
according to the knowledge that is exploited for the reaction: Section 4.1 presents tech-
niques that exploit the knowledge of the redundant elements, Section 4.2 presents tech-
niques that exploit the knowledge of specific failure types, and Section 4.3 presents
techniques that exploit the knowledge of the existing program variants.

4.1 Techniques that Exploit Redundancy

We say that two processing units (e.g., two components or two code fragments) are
functionally redundant if they produce the same outputs for the same inputs. Note that
redundant units are allowed to show behavioural differences, for instance in their inter-
nal structure, or in their non-functional characteristics, such as performance and usabil-
ity. A monitored program may include functionally redundant units, either introduced
intentionally or incidentally. Techniques relying on redundancy may exploit both forms
of redundancy.

Techniques based on explicit redundancy exploit the redundant elements intention-
ally introduced into the monitored system, such as the multiple redundant copies of a
same fault-tolerant component, to workaround failures, while the techniques based on
intrinsic redundancy exploit the redundant elements incidentally present in the moni-
tored system to workaround failures. An example of incidentally redundant elements
is the case of two different functionalities that, although not designed to be redundant,
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might be used to achieve the same result in specific situations (e.g., for some specific
inputs).

The general architecture of the techniques exploiting redundancy is shown in Fig-
ure 3. The sensor sends events from the monitored application to the Observer. The
types of collected events might change depending on the specific technique and appli-
cation, for instance they could be method invocations or http requests. The Observer
collects these events, maintains the relevant parts of the history of the execution and
intercepts failure signals, such as crashes and uncaught exceptions.

When a failure is detected, the Analyser matches the collected sequence of events
with its knowledge of the redundancy of the system to identify the useful redundancy,
that is, the redundant units that might be exploited to avoid the failure. If some use-
ful redundancy is present in the system (e.g., a redundant copy of a component or a
functionality involved in the failure), the Planner has to determine how to specifically

exploit the redundancy in the system to avoid the failure. For instance, the Planner may
decide to transfer the execution to another component or to rollback the execution to
a safe point and then execute a redundant copy of the operation that has failed. The
Executor concretely executes the plan, exploiting its knowledge of the implementation
of the system. The Effectors are the elements that support the execution of the plan
within the target application, that is, the Executor interacts with them to run the plan.
They usually consist of the API of the monitored system, sometime suitably extended
with mechanisms to control the execution, for instance to transfer the execution across
components or to rollback executions.

In the rest of this section we discuss some techniques exploiting these two forms of
redundancy.

Explicit Redundancy. A well-known way to tolerate failures is through the deployment
of multiple redundant components into the same system. The general intuition is that if
a component fails, the failure might be worked around by transferring the execution to a
redundant copy of the same component. This solution has been extensively investigated
in the context of fault-tolerant systems, especially in N-version programming [2].

In addition to classic fault-tolerance, there are other ways of taking advantage of
the redundancy explicitly introduced into a monitored program. In particular, recent
approaches investigate scenarios that might be less effort-demanding than N-version
programming, which requires the independent implementation of multiple copies of
the same component. An interesting approach is the one investigated by Hosek and
Cadar [51], who exploited the multiple versions available for the same program to au-
tomatically react to failures caused by faulty software updates.

The key idea is to maintain alive both versions of a software system after an up-
date. The two versions are then executed side by side and when a failure is experienced
in one version, the other one is exploited to overcome the failure. To achieve this ca-
pability, the execution of the two versions must be monitored and synchronised. The
monitor collects and compares the system calls performed by the monitored programs.
When a diverging behaviour is observed, appropriate actions are taken. The execution is
also synchronised, that is one version cannot proceed with the execution until the other
version has produced the same system call. In this way, the execution might be timely
switched from one version to the other.
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A divergent behaviour might produce different reactions depending on the kind of
divergence. If the two versions produce different system calls, the result produced by
one version is simply preferred to the other, for instance the new version of the system
might be preferred to the old one. If one program crashes, the approach performs a
lightweight rollback to the last system call, executes the code in the other version until
the next system call is produced, and then continues with the execution of the version
that produced the failure. This strategy de facto reuses the code in the other version
to avoid failures, and it might be effective to overcome bugs introduced with faulty
upgrades. Note that this explicit form of redundancy does not require special effort to
be generated because it is naturally introduced with the evolution of a software system.

Intrinsic Redundancy. Since intrinsic redundancy is not documented explicitly, discov-
ering the intrinsically redundant operations might be hard and expensive, indeed it is
undecidable in general. The effort required to discover these elements is compensated
by the possibility to augment systems that have not been designed to react to failures
with the capability to handle them.

Intrinsic redundancy can be extracted in various ways, for instance using testing
and analysis techniques [45], and can be suitably integrated with mechanisms to either
rollback executions or compensate the effect of failures to obtain systems with high
reliability. When integrated with rollback mechanisms, failures can be handled by first
bringing the execution back to a safe point and then running an intrinsically-redundant
alternative operation with the one that has failed [18]. When integrated with compensa-

tion mechanisms, failures can be handled by first compensating their effects, if any, and
then again executing an alternative operation intrinsically redundant with the one that
has failed [19].

The knowledge of the intrinsically redundant operations can be encoded using rewrit-
ing rules, which associate a sequence of operations to another sequence of operations
that has the same observable behaviour of the original sequence. As discussed in [19],
examples of intrinsically redundant operations typically present in container classes are:

addAll(a,b) ! add(a); add(b)
add(a) ! addAll(a,b); remove(b)

The first rule indicates that adding the elements a and b using the addAll method
produces the same effect as adding first a and then b using the add method. Alterna-
tively, the second rule indicates that adding element a with the add method produces
the same effect as adding the element a and an element b using the addAll method
and then removing b.

When a failure is detected, the sequence of the operations performed by the moni-
tored program is analysed, checking if any rewriting rule can be exploited to change the
failing sequence into an alternative sequence. The intuition for exploiting intrinsically
redundant operations is that a failing execution might be worked around by replaying
the execution using some alternative but equivalent operations. For instance, if a failure
has been observed when running the sequence of operations

newList(); addAll(a,b)
the sequence might be automatically replaced with the alternative sequence

newList(); add(a); add(b)
using the first rewriting rule.
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Note that the rewriting rules above allow substituting a sequence of operations with
alternative, but equivalent, sequences of operations that do not share any operation with
the original sequence. Avoiding to reuse operations executed during the failure intu-
itively increases the probability to produce a new sequence that does not fail.

If the opportunity to workaround the failure is detected, the planner elaborates a
suitable strategy, which could be based either on rollback or on compensation mecha-
nisms. If multiple rules could be exploited, the plan may attempt to execute a sequence
of rollback/compensation operations followed by the execution of a rewritten sequence
until the failure is overcame or no more options are available. The order of application
of the rules might be based on historical information, giving precedence to the rules that
have been most successful in the past.

The choice of using rollback or compensation before executing a rewritten sequence
of operations depends on the nature of the system that must react to errors. For instance,
rollback has been used to overcome failures in container classes [18], while compen-
sation has been exploited with Web applications where it is often sufficient to reload a
Web page to cancel the effect of a failure [19].

In general, not all the systems can be addressed with rollback or compensation
mechanisms. For instance, the state of a system might be too large, complex and difficult
to observe and control to be rolled back. Similarly, the impact of a failure may have
consequences that cannot be cancelled by any other system operation. However, when
at least one of the two approaches can be feasibly applied to a software system, the
system could be potentially extended with healing capabilities.

4.2 Failure-Specific Techniques

Failure-specific techniques exploit the knowledge about some specific classes of fail-
ures to effectively recognise and react to them. These techniques have a narrow appli-
cability compared to techniques addressing broader classes of failures, such as the ones
based on redundancy (see Section 4.1) and the ones exploring variants (see Section 4.3).
However, when an observed failure is in their scope, they can be dramatically effective.

The general architecture of failure-specific techniques is shown in Figure 4. The
sensor sends events from the monitored application to the Observer, which collects
these events, maintains the relevant parts of the history of the execution, and intercepts
failure signals, such as crashes and uncaught exceptions. When a failure is detected,
the Analyser matches the failure and the collected sequence of events with the known
failure types. If the observed failure matches with some known failure types, the cor-
responding reactions are retrieved. The Planner is then responsible for defining a strat-
egy to apply the selected reactions, contextualising them to the monitored program, if
needed, and defining their order of application. The Executor concretely executes the
plan, exploiting its knowledge of the implementation of the system. The Effectors are
the elements that support the execution of the plan, that is, the Executor interacts with
the Effectors when running the plan. In this case, the Effectors usually consist of the
API of the monitored system whose operations are invoked while applying a selected
reaction.
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In the following, we present two failure-specific techniques, one addressing a pre-
defined set of failure types, and another that can dynamically learn how to react to
failures based on a set of samples.

Pre-defined Failure Types. Techniques addressing pre-defined failure types are tech-
niques designed to handle specific situations in specific systems. A notable example is
the case of healing connectors [23,22], which are connectors that can be deployed on
a component-based system to react to failures caused by incorrect interactions between
components.

Healing connectors implement reaction mechanisms that are activated when a com-
ponent throws exceptions that should not be raised. To react correctly and efficiently,
they exploit the knowledge of how the interaction between components may fail due
to some specific classes of integration problems that may result in some exceptions.
When an exception is caught, healing connectors check if the cause of the exception
is a known problem, and if it is the case, they apply the pre-defined reaction. The re-
actions may follow four patterns [23]: parameter translation, component preparation,
alternative operation, and environmental changes.

Parameter translation can be used to react to the failures caused by the use of a
wrong parameter value in the invocation of an operation. It reacts by replaying the
failed interaction while replacing the incorrect value with the correct one. For instance,
parameter translation can be used to automatically fix a wrongly encoded URI stored in
a parameter.

Component preparation can be used to react to the failures caused by the compo-
nents that produce exceptions because they are in a state that is not suitable to accept
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a given request. It reacts by replaying the failed interaction after having modified the
state of the component. For instance, component preparation can be used to initialise an
uninitialised component.

An alternative operation can be used to react to the failures caused by the use of
a specific faulty operation. It reacts by replaying the failed interaction while replacing
the faulty operation with an alternative operation, similarly to methods exploiting re-
dundancy. For instance, alternative operation can be used to replace the invocation of a
deprecated method with the invocation of an up-to-date method.

Finally, an environmental change can be performed to react to the failures caused by
problems in the environment. It works by replaying the failed interaction after having
modified the environment in a way that may prevent the failure from occurring again.
For instance, an environmental change can be used to create the missing folders that
cause an application to fail.

When an uncaught exception is raised, multiple healing patterns might be eligible
to react to the failure. The Planner is responsible for organising the applicable patterns
in a pipeline. Healing connectors do not require special effectors, but they simply take
advantage of the API of the monitored program. If necessary, depending on the failure,
they may incorporate actions to compensate the effect of a failure so that the failed
interaction can be safely re-executed.

Sample-Based Approaches. Sample-based approaches exploit the knowledge of how
failures have been (manually) handled in the past to automatically react to new occur-
rences of the same failures [29]. They thus rely on the assumption that a repository of
failures and corresponding countermeasures is available.

Sample-based approaches are failure-specific because they can only address the
failures that have been observed in the past. However, the set of supported failures
is changed every time by simply providing a different set of samples to learn from,
potentially increasing the generality of the technique.

Comparing actual failures to sample failures is challenging because failures caused
by the same problem are never exactly the same. The same failures may occur in many
different circumstances, such as different states of the system, different inputs, and in
different environment conditions. To match a pair of failures, sample-based approaches
distill a signature that characterises a failure regardless of the specific circumstances in
which it occurred. In their work, Ding et al. [29] apply concept and contrast analysis to
the log files collected during failures to produce signatures that characterise failures in
terms of the key events reported in the log files.

Signatures are derived for both the sample failures and the newly observed failures.
When an observed failure has a signature matching the signature of a failure in the
repository, an appropriate reaction can be automatically extracted from the repository
and executed.

Reactions that have been taken in the past necessarily refer to a specific situation.
For instance, they may concern rebooting specific machines and changing specific con-
figurations. When the same failure is observed, it might occur in slightly different cir-
cumstances, which may require slightly different reactions. For instance, if in the past
machine hostA has been rebooted because it stopped responding, and in the actual
execution the machine that is not responding is machine hostB, the reboot operation
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should be executed on hostB and not on hostA. The approach described in [29]
can achieve this capability by executing an operation called contextualisation of the re-
action. Contextualisation extracts the parameters used in the sample reaction (e.g., the
name of the machine), matches the observed failure with the sample failure in the repos-
itory identifying the actual value for all the extracted parameters (e.g., the actual name
of the machine that is not responding), and executes the reaction replacing parameters
with actual values.

This strategy has been mostly experienced with large service-based systems to turn
the manual reactions executed in the past by the operators into automatic reactions,
reducing maintenance cost and increasing system reliability.

4.3 Techniques Exploring Variants

Techniques that react to failures by exploring variants are not usually explicitly tied to
any class of failures. The general intuition is that these techniques may try to replay a
failing execution many times until finding a change that might be operated on the mon-
itored program to prevent the failure without breaking the other functionalities of the
system. The change might be either on the configuration [90] or in the code [46] of the
monitored program. Of course, a suitable environment is needed to replay an execution
many times regardless of the side-effects that might be introduced by a failing execu-
tion. For this reason, these approaches must have access to a protected environment
where a copy of the application can be executed many times until finding a solution that
can be deployed on the real instance of the program.
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These techniques do not require any specific knowledge about the failures that may
occur on the target system, but they require to know how to explore the space of the
possible variants. For instance, they need to know what the space of the possible con-
figurations looks like, to be able to systematically execute a program with different
configurations, or they need to know how the code of a program can be modified, to
explore the space of the code changes that might fix a faulty program.

The general architecture of techniques reacting to failures by looking for variants
is shown in Figure 5. The sensor sends events from the monitored application to the
Observer. The collected events usually consist of the inputs received by the monitored
program and failure signals. When a failure is detected, the control is transferred to the
Analyser that exploits the knowledge of the search space to explore alternatives that
might prevent the occurrence of the failure. Each alternative is checked by replaying
the observed failure.

Alternatives might consist of different configurations of the monitored applications
or even program variants. When a suitable alternative is identified, the Planner synthe-

sises a change that the Executor can deploy on the monitored program. The Effectors
consist of mechanisms that allow the modification of either the program or its environ-
ment.

In the following, we present two techniques, one that reacts to failures by explor-
ing alternative configurations and the other that reacts to failures by synthesising code
changes.

Alternative Configurations. The assumption made by approaches exploring the space
of the possible configurations of a program is that there may exist a configuration un-
der which a failed functionality may run correctly. The strategy to find a workaround
consists of transferring the control to a separate instance of the monitored program run-
ning in a sandboxed environment to replay the failed execution several times for many
different configurations, until finding a configuration that makes the program pass. In
order to apply this process, the knowledge of the autonomic monitor has to incorporate
information about the shape of the space of all the legal configurations. Such a space
must be sampled efficiently to quickly find a solution to an observed problem.

REFRACT implements this strategy using a feature model as representation of the
configuration space [90]. In practice, when a failure is observed, REFRACT replays
the failed execution in a separate environment and samples the configuration space de-
scribed by the feature model according to three possible strategies: n-hops sampling,
random sampling, and covering array sampling.

The n-hops sampling strategy systematically investigates all the configurations that
can be obtained from the configuration of the monitored program by changing n op-
tions. The random sampling generates a completely random configuration. Covering
array sampling considers a set of configurations that include every possible combination
of values for up to t configuration options. If a configuration that prevents the failure is
detected, the configuration is further modified using the delta-debugging algorithm [93]
to minimise the set of changes that must be operated on the current configuration to
workaround the failure.

The new configuration can then be deployed to the monitored program. If the exe-
cution in the monitored program could be suspended while waiting for a better config-
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uration, the monitored program may immediately benefit from the new configuration,
otherwise only future occurrences of the failure will be prevented by the deployment of
the updated configuration.

Alternative Implementations. When a failure is observed, alternative implementations
that may include a fix to the problem that caused the failure can be generated using auto-
matic program repair techniques. While these techniques have been originally designed
to assist developers when fixing programs, they can also be exploited to automatically
react to failures, as proposed in GenProg [46]. The idea is that automatic program repair
can be used to generate many tentative program fixes that are deployed and tested in a
separate instance of the monitored program. The separate instance runs in a sandboxed
environment to prevent the generation of any harmful side-effect. If a fix can be found,
it is deployed on the original instance of the monitored program to prevent future oc-
currences of the same failure. If the execution in the original instance can be suspended,
the fix can also be exploited to turn the currently failing execution into a correct one.

To synthesise fixes automatically, the knowledge must include information on how
to change a monitored program and how to verify the correctness of the tentative fixes.
In GenProg, the synthesis of the fixes is driven by a genetic programming algorithm
that modifies the program exploiting single-point crossover and three mutation opera-
tors. The mutation operators can change a program by deleting a statement, adding a
statement copied elsewhere from the program, and replacing a statement with another
statement copied elsewhere from the program. The locations where the mutant oper-
ators should be applied to are identified using spectrum-based fault localisation [55],
which can automatically assign to each statement a score representing its likelihood to
be faulty. To increase the probability to produce mutations that can affect the faults in
a program, the probability to mutate a statement is proportional to its suspiciousness,
so that the statements that are more likely to be faulty are more likely to be modified.
The verification strategy simply runs the available test suite to check the correctness of
a fix, that is, a fix that passes all the available test cases is assumed to be correct.

GenProg has been exploited to react to failures produced by programs that respond
to http requests (e.g., a Web server) [46]. The idea is that the monitored system can
be extended with anomaly detection techniques to detect if an untrusted input causing
a suspicious execution has been received. When an anomalous execution is detected,
the program is suspended and the control is transferred to GenProg, which runs an
automatic repair process in a separate machine. If GenProg can find a fix, that is, a
change in the program that prevents the anomalous execution without causing the failure
of any of the available test cases, the fix is deployed on the original program and the
execution resumed. This strategy may prevent the immediate failure of the program, but
also prevent any similar failure in the future.

5 Open challenges

There are still several open challenges to achieve effective failure prevention and reac-
tion. In this section, we discuss some of the main open challenges. We note that some
of these challenges apply more broadly to runtime verification.

22



Gap between models and software Enforcement models might be difficult to imple-
ment into the corresponding autonomic monitors because they may require a strong
adaptation and instrumentation effort resulting from the gap between the abstraction
used in the model and the concrete behaviour of the software. Solutions that can reduce
this gap to make monitors easier to implement and reuse are necessary to make runtime
enforcement more practical.

Property specification Usually the languages proposed by the tools are rather simple
and do not permit to describe complex properties. Effort should be done in designing
formalism in order to describe and manage more complex properties in an intuitive way.

Distributed and multi-threaded systems Nowadays, many systems are distributed
and need to be observed and controlled in several points. The generation of distributed
enforcement mechanisms, communicating together in a minimal way, in order to en-
sure a global property is still an open challenge. A similar challenge is present in
the case of multi-threaded programs, where the effect of the monitors on multiple
partially-independent threads must be coordinated and controlled. In both cases, it will
require means to decentralise enforcement mechanisms. For this purpose, one can in-
spire from the decentralisation of runtime verification monitors [7,27], the monitoring
of decentralised specifications [33,32] and the decentralised enforcement of document
lifecyles [47].

The oracle problem In order to react to a failure, it is necessary to recognise that a
failure has happened. While some failures are trivial to detect (e.g., crashes), other fail-
ures (e.g., wrong results) require a thorough and detailed knowledge of the system to be
recognised. Unfortunately this knowledge is seldom available, and when it is available
it is typically expensive to encode in a machine-processable form. Researchers have
investigated how to automatically extract this knowledge from software artefacts pro-
duced for other purposes, but despite these early attempts, how to systematically extract
and exploit such knowledge to detect non-trivial failures is still an open challenge.

Specific vs general Solutions Techniques for reacting to failures might be defined to
be either general, that is, to be able to potentially address a large family of failures,
or specific, that is, to be able to address a restricted family of software failures. While
general approaches might be frequently useful, since they cover a broad range of situa-
tions, their effectiveness is intrinsically limited by their generality. In practice, general
approaches can hardly react to a failure in an optimal way because their strategies are
designed to be broadly useful. On the other hand, failure-specific approaches are use-
ful in a limited number of cases, but they can be extremely effective when applicable.
Finding a good compromise between generality and specificity in designing techniques
that may optimally address an extensive number of cases is still a challenge.

Non-intrusiveness Both techniques for preventing and reacting to failures work in the
field directly in the end-user environment. Any operation that is performed in the field
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in the attempt to prevent or react to a failure may potentially cause even more serious
consequences than the failure itself to the user data and processes. Although there are
several environments providing a degree of isolation (e.g., virtual machines and con-
tainers), how to employ them in a resource-constrained environment for preventing and
reacting to failures is still an open challenge. More in general, it is hard to design tech-
niques that can prevent and react to failures providing the guarantee of not affecting the
user.

Provably-correct monitoring To ensure a better confidence in enforcement mecha-
nisms, or more generally, in the mechanisms protecting the system from faults, it is
desirable to ensure that the monitoring code conforms to the property or security policy
at hand. This check can then be performed (using a proof checker) by a third-party who
does not necessarily trust the monitoring process. Preliminary work has been carried out
on this topic in [89] to verify the soundness and transparency of SAs, in [14] to check
the transition function of monitors generated from regular expressions, and in [87] to
verify the lack of interference between enforcers.

6 Conclusions

Society demands for highly-dependable, large and dynamic systems that can serve citi-
zens in their daily operations. Such systems are increasingly difficult to verify in-house
due to their size, complexity and dynamic nature. Runtime techniques, in particular
enforcement and healing solutions, can be exploited in the field to compensate the val-
idation and verification activities performed in-house. The joint collaboration of en-
forcement techniques, which can prevent failures, and healing techniques, which can
overcome an observed failure, can significantly increase the dependability of software
systems.

This chapter discusses some of the achievements in these related areas, providing an
overview of the available solutions. The material presented in this chapter can represent
a valuable starting point for researchers interested in enforcement and healing solutions.
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25. Chen, F., d’Amorim, M., Roşu, G.: Checking and correcting behaviors of java programs
at runtime with java-mop. Electronic Notes in Theoretical Computer Science 144(4), 3–20
(2006)

26. Clarkson, M.R., Schneider, F.B.: Hyperproperties. In: Proceedings of the 21st IEEE Com-
puter Security Foundations Symposium, CSF 2008, Pittsburgh, Pennsylvania, 23-25 June
2008. pp. 51–65. IEEE Computer Society (2008)

27. Colombo, C., Falcone, Y.: Organising LTL monitors over distributed systems with
a global clock. Formal Methods in System Design 49(1-2), 109–158 (2016),
https://doi.org/10.1007/s10703-016-0251-x

28. Cuppens, F., Cuppens-Boulahia, N., Ramard, T.: Availability enforcement by obligations and
aspects identification. In: Availability, Reliability and Security, 2006. ARES 2006. The First
International Conference on. pp. 10–pp. IEEE (2006)

29. Ding, R., Fu, Q., Lou, J.G., Lin, Q., Zhang, D., Shen, J., Xie, T.: Healing online service sys-
tems via mining historical issue repositories. In: Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering (ASE). pp. 318–321. IEEE (2012)

30. Dolzhenko, E., Ligatti, J., Reddy, S.: Modeling runtime enforcement with mandatory results
automata. International Journal of Information Security 14(1), 47–60 (Feb 2015)

31. El-Harake, K., Falcone, Y., Jerad, W., Langet, M., Mamlouk, M.: Blocking advertisements on
android devices using monitoring techniques. In: Margaria, T., Steffen, B. (eds.) Leveraging
Applications of Formal Methods, Verification and Validation. Specialized Techniques and
Applications - 6th International Symposium, ISoLA 2014, Imperial, Corfu, Greece, October
8-11, 2014, Proceedings, Part II. Lecture Notes in Computer Science, vol. 8803, pp. 239–
253. Springer (2014)

32. El-Hokayem, A., Falcone, Y.: Monitoring decentralized specifications. In: Bultan and Sen
[17], pp. 125–135

33. El-Hokayem, A., Falcone, Y.: THEMIS: a tool for decentralized monitoring algorithms. In:
Bultan and Sen [17], pp. 372–375

26



34. Erlingsson, Ú., Schneider, F.B.: SASI enforcement of security policies: a retrospective. In:
Kienzle, D.M., Zurko, M.E., Greenwald, S.J., Serbau, C. (eds.) Proceedings of the 1999
Workshop on New Security Paradigms, Caledon Hills, ON, Canada, September 22-24, 1999.
pp. 87–95. ACM (1999)

35. Falcone, Y.: You should better enforce than verify. In: Barringer, H., Falcone, Y., Finkbeiner,
B., Havelund, K., Lee, I., Pace, G.J., Rosu, G., Sokolsky, O., Tillmann, N. (eds.) Runtime
Verification - First International Conference, RV 2010, St. Julians, Malta, November 1-4,
2010. Proceedings. Lecture Notes in Computer Science, vol. 6418, pp. 89–105. Springer
(2010)

36. Falcone, Y., Currea, S., Jaber, M.: Runtime verification and enforcement for Android appli-
cations with RV-Droid. In: Qadeer and Tasiran [80], pp. 88–95

37. Falcone, Y., Fernandez, J.C., Mounier, L.: Synthesizing enforcement monitors wrt. the
safety-progress classification of properties. In: Sekar, R., Pujari, A. (eds.) Information Sys-
tems Security, Lecture Notes in Computer Science, vol. 5352, pp. 41–55. Springer Berlin
Heidelberg (2008)

38. Falcone, Y., Fernandez, J.C., Mounier, L.: What can you verify and enforce at runtime?
International Journal on Software Tools for Technology Transfer 14(3), 349–382 (2012)

39. Falcone, Y., Jaber, M.: Fully automated runtime enforcement of component-based systems
with formal and sound recovery. International Journal on Software Tools for Technology
Transfer pp. 1–25 (2016)

40. Falcone, Y., Jéron, T., Marchand, H., Pinisetty, S.: Runtime enforcement of regular timed
properties by suppressing and delaying events. Systems & Control Letters 123, 2–41 (2016)

41. Falcone, Y., Marchand, H.: Runtime enforcement of k-step opacity. In: Proceedings of
the 52nd IEEE Conference on Decision and Control, CDC 2013, December 10-13, 2013,
Firenze, Italy. pp. 7271–7278. IEEE (2013)

42. Falcone, Y., Marchand, H.: Enforcement and validation (at runtime) of vari-
ous notions of opacity. Discrete Event Dynamic Systems 25(4), 531–570 (2015),
http://dx.doi.org/10.1007/s10626-014-0196-4

43. Falcone, Y., Mounier, L., Fernandez, J., Richier, J.: Runtime enforcement monitors: composi-
tion, synthesis, and enforcement abilities. Formal Methods in System Design 38(3), 223–262
(2011)

44. Fong, P.W.L.: Access control by tracking shallow execution history. In: 2004 IEEE Sympo-
sium on Security and Privacy (S&P 2004), 9-12 May 2004, Berkeley, CA, USA. pp. 43–55.
IEEE Computer Society (2004)

45. Goffi, A., Gorla, A., Mattavelli, A., Pezzè, M., Tonella, P.: Search-based synthesis of equiva-
lent method sequences. In: Proceedings of the ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE) (2014)

46. Goues, C.L., Nguyen, T., Forrest, S., Weimer, W.: Genprog: A generic method for automatic
software repair. IEEE Transactions on Software Engineering (TSE) 38(1), 54–72 (2012)

47. Hallé, S., Khoury, R., Betti, Q., El-Hokayem, A., Falcone, Y.: Decentralized enforcement of
document lifecycle constraints. Information Systems (2017)

48. Hallé, S., Khoury, R., El-Hokayem, A., Falcone, Y.: Decentralized enforcement of artifact
lifecycles. In: Matthes, F., Mendling, J., Rinderle-Ma, S. (eds.) 20th IEEE International En-
terprise Distributed Object Computing Conference, EDOC 2016, Vienna, Austria, September
5-9, 2016. pp. 1–10. IEEE Computer Society (2016)

49. Hamlen, K.W., Morrisett, G., Schneider, F.B.: Certified in-lined reference monitoring on .net.
In: Sreedhar, V.C., Zdancewic, S. (eds.) Proceedings of the 2006 Workshop on Programming
Languages and Analysis for Security, PLAS 2006, Ottawa, Ontario, Canada, June 10, 2006.
pp. 7–16. ACM (2006)

27



50. Hamlen, K.W., Morrisett, G., Schneider, F.B.: Computability classes for enforcement mecha-
nisms. ACM Transactions on Programming Languages and Systems (TOPLAS) 28(1), 175–
205 (2006)

51. Hosek, P., Cadar, C.: Safe software updates via multi-version execution. In: Proceedings of
the International Conference on Software Engineering (ICSE) (2013)

52. Humphrey, L., Könighofer, B., Könighofer, R., Topcu, U.: Synthesis of admissible shields.
In: Bloem, R., Arbel, E. (eds.) Hardware and Software: Verification and Testing - 12th In-
ternational Haifa Verification Conference, HVC 2016, Haifa, Israel, November 14-17, 2016,
Proceedings. Lecture Notes in Computer Science, vol. 10028, pp. 134–151 (2016)

53. IEEE: Systems and Software Engineering - Vocabulary. Tech. Rep. ISO/IEC/IEEE 24765,
IEEE International Standard (2010)

54. Johansen, H.D., Birrell, E., van Renesse, R., Schneider, F.B., Stenhaug, M., Johansen, D.:
Enforcing privacy policies with meta-code. In: Kono, K., Shinagawa, T. (eds.) Proceedings
of the 6th Asia-Pacific Workshop on Systems, APSys 2015, Tokyo, Japan, July 27-28, 2015.
pp. 16:1–16:7. ACM (2015)

55. Jones, J.A., Harrold, M.J.: Empirical evaluation of the tarantula automatic fault-localization
technique. In: Proceedings of the International Conference on Automated software engineer-
ing (ASE) (2005)

56. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1), 41–50
(2003)

57. Khoury, R., Hallé, S.: Runtime enforcement with partial control. In: García-Alfaro, J.,
Kranakis, E., Bonfante, G. (eds.) Foundations and Practice of Security - 8th International
Symposium, FPS 2015, Clermont-Ferrand, France, October 26-28, 2015, Revised Selected
Papers. Lecture Notes in Computer Science, vol. 9482, pp. 102–116. Springer (2015)

58. Khoury, R., Tawbi, N.: Corrective enforcement: A new paradigm of security policy enforce-
ment by monitors. ACM Trans. Inf. Syst. Secur. 15(2), 10:1–10:27 (Jul 2012)

59. Khoury, R., Tawbi, N.: Which security policies are enforceable by runtime monitors? A
survey. Computer Science Review 6(1), 27–45 (2012)

60. Kim, M., Kannan, S., Lee, I., Sokolsky, O., Viswanathan, M.: Computational analysis of run-
time monitoring - fundamentals of java-mac. Electr. Notes Theor. Comput. Sci. 70(4), 80–94
(2002)

61. Kumar, A., Ligatti, J., Tu, Y.: Query monitoring and analysis for database privacy - A security
automata model approach. In: Wang, J., Cellary, W., Wang, D., Wang, H., Chen, S., Li, T.,
Zhang, Y. (eds.) Web Information Systems Engineering - WISE 2015 - 16th International
Conference, Miami, FL, USA, November 1-3, 2015, Proceedings, Part II. Lecture Notes in
Computer Science, vol. 9419, pp. 458–472. Springer (2015)

62. Ligatti, J., Bauer, L., Walker, D.: Enforcing non-safety security policies with program mon-
itors. In: di Vimercati, S.D.C., Syverson, P.F., Gollmann, D. (eds.) Computer Security - ES-
ORICS 2005, 10th European Symposium on Research in Computer Security, Milan, Italy,
September 12-14, 2005, Proceedings. Lecture Notes in Computer Science, vol. 3679, pp.
355–373. Springer (2005)

63. Ligatti, J., Bauer, L., Walker, D.: Run-time enforcement of nonsafety policies. ACM Trans.
Inf. Syst. Secur. 12(3), 19:1–19:41 (Jan 2009)

64. Ligatti, J., Reddy, S.: A theory of runtime enforcement, with results. In: Gritzalis, D., Preneel,
B., Theoharidou, M. (eds.) Computer Security - ESORICS 2010, 15th European Symposium
on Research in Computer Security, Athens, Greece, September 20-22, 2010. Proceedings.
Lecture Notes in Computer Science, vol. 6345, pp. 87–100. Springer (2010)

65. Martinelli, F., Matteucci, I.: Through modeling to synthesis of security automata. Electr.
Notes Theor. Comput. Sci. 179, 31–46 (2007), http://dx.doi.org/10.1016/j.entcs.2006.08.029

28



66. Martinelli, F., Matteucci, I., Mori, P., Saracino, A.: Enforcement of U-XACML history-based
usage control policy. In: Barthe, G., Markatos, E.P., Samarati, P. (eds.) Security and Trust
Management - 12th International Workshop, STM 2016, Heraklion, Crete, Greece, Septem-
ber 26-27, 2016, Proceedings. Lecture Notes in Computer Science, vol. 9871, pp. 64–81.
Springer (2016)

67. Martinelli, F., Matteucci, I., Saracino, A., Sgandurra, D.: Remote policy enforcement for
trusted application execution in mobile environments. In: Bloem, R., Lipp, P. (eds.) Trusted
Systems - 5th International Conference, INTRUST 2013, Graz, Austria, December 4-5,
2013, Proceedings. Lecture Notes in Computer Science, vol. 8292, pp. 70–84. Springer
(2013)

68. Martinelli, F., Matteucci, I., Saracino, A., Sgandurra, D.: Enforcing mobile application secu-
rity through probabilistic contracts. In: Joosen, W., Martinelli, F., Heyman, T. (eds.) Proceed-
ings of the 2014 ESSoS Doctoral Symposium co-located with the International Symposium
on Engineering Secure Software and Systems (ESSoS 2014), Munich, Germany, February
26, 2014. CEUR Workshop Proceedings, vol. 1298. CEUR-WS.org (2014)

69. Martinelli, F., Mori, P., Saracino, A.: Enhancing android permission through usage control:
a BYOD use-case. In: Ossowski [70], pp. 2049–2056

70. Ossowski, S. (ed.): Proceedings of the 31st Annual ACM Symposium on Applied Comput-
ing, Pisa, Italy, April 4-8, 2016. ACM (2016)

71. Owicki, S., Lamport, L.: Proving liveness properties of concurrent programs. ACM Transac-
tion Programming Languages and Systems 4(3), 455–495 (1982)

72. Pavlich-Mariscal, J., Michel, L., Demurjian, S.: A formal enforcement framework for role-
based access control using aspect-oriented programming. In: Model Driven Engineering
Languages and Systems, pp. 537–552. Springer (2005)

73. Pinisetty, S., Falcone, Y., Jéron, T., Marchand, H.: Runtime enforcement of parametric timed
properties with practical applications. In: Lesage, J., Faure, J., Cury, J.E.R., Lennartson,
B. (eds.) 12th International Workshop on Discrete Event Systems, WODES 2014, Cachan,
France, May 14-16, 2014. pp. 420–427. International Federation of Automatic Control
(2014)

74. Pinisetty, S., Falcone, Y., Jéron, T., Marchand, H.: Runtime enforcement of regular timed
properties. In: Cho, Y., Shin, S.Y., Kim, S., Hung, C., Hong, J. (eds.) Symposium on Applied
Computing, SAC 2014, Gyeongju, Republic of Korea - March 24 - 28, 2014. pp. 1279–1286.
ACM (2014)

75. Pinisetty, S., Falcone, Y., Jéron, T., Marchand, H.: Tipex: A tool chain for timed property en-
forcement during execution. In: Bartocci, E., Majumdar, R. (eds.) Runtime Verification - 6th
International Conference, RV 2015 Vienna, Austria, September 22-25, 2015. Proceedings.
Lecture Notes in Computer Science, vol. 9333, pp. 306–320. Springer (2015)

76. Pinisetty, S., Falcone, Y., Jéron, T., Marchand, H., Rollet, A., Nguena-Timo, O.: Runtime
enforcement of timed properties revisited. Formal Methods in System Design 45(3), 381–
422 (2014)

77. Pinisetty, S., Falcone, Y., Jéron, T., Marchand, H., Rollet, A., Nguena-Timo, O.L.: Runtime
enforcement of timed properties. In: Qadeer and Tasiran [80], pp. 229–244

78. Pinisetty, S., Preoteasa, V., Tripakis, S., Jéron, T., Falcone, Y., Marchand, H.: Predictive
runtime enforcement. In: Ossowski [70], pp. 1628–1633

79. Pinisetty, S., Preoteasa, V., Tripakis, S., Jéron, T., Falcone, Y., Marchand, H.: Predictive
runtime enforcement. Formal Methods in System Design pp. 1–46 (2017)

80. Qadeer, S., Tasiran, S. (eds.): Runtime Verification, Third International Conference, RV
2012, Istanbul, Turkey, September 25-28, 2012, Revised Selected Papers, Lecture Notes in
Computer Science, vol. 7687. Springer (2013)

81. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event processes.
SIAM journal on control and optimization 25(1), 206–230 (1987)

29



82. Ramadge, P.J., Wonham, W.M.: The control of discrete event systems. Proceedings of the
IEEE 77(1), 81–98 (1989)

83. Renard, M.: GREP. https://github.com/matthieurenard/GREP (2017)
84. Renard, M., Falcone, Y., Rollet, A., Jéron, T., Marchand, H.: Optimal enforcement of (timed)

properties with uncontrollable events. Mathematical Structures in Computer Science pp. 1–
46 (2017)

85. Renard, M., Falcone, Y., Rollet, A., Pinisetty, S., Jéron, T., Marchand, H.: Enforcement of
(timed) properties with uncontrollable events. In: Leucker, M., Rueda, C., Valencia, F.D.
(eds.) Theoretical Aspects of Computing - ICTAC 2015 - 12th International Colloquium
Cali, Colombia, October 29-31, 2015, Proceedings. Lecture Notes in Computer Science, vol.
9399, pp. 542–560. Springer (2015)

86. Renard, M., Rollet, A., Falcone, Y.: Runtime enforcement using Büchi games. In: Proceed-
ings of Model Checking Software - 24th International Symposium, SPIN 2017, Co-located
with ISSTA 2017, Santa Barbara, USA. pp. 70–79. ACM (July 2017)

87. Riganelli, O., Micucci, D., Mariani, L., Falcone, Y.: Verifying policy enforcers. In: Proceed-
ings of the International Conference on Runtime Verification (RV) (2017)

88. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1), 30–50 (Feb
2000)

89. Sridhar, M., Hamlen, K.W.: Flexible in-lined reference monitor certification: Challenges and
future directions. In: Proceedings of the 5th ACM Workshop on Programming Languages
Meets Program Verification. pp. 55–60. PLPV ’11 (2011)

90. Swanson, J., Cohen, M.B., Dwyer, M.B., Garvin, B.J., Firestone, J.: Beyond the rainbow:
Self-adaptive failure avoidance in configurable systems. In: Proceedings of the ACM SIG-
SOFT International Symposium on Foundations of Software Engineering (FSE) (2014)

91. Talhi, C., Tawbi, N., Debbabi, M.: Execution monitoring enforcement un-
der memory-limitation constraints. Inf. Comput. 206(2-4), 158–184 (2008),
http://dx.doi.org/10.1016/j.ic.2007.07.009

92. Wu, M., Zeng, H., Wang, C.: Synthesizing runtime enforcer of safety properties under burst
error. In: Rayadurgam, S., Tkachuk, O. (eds.) NASA Formal Methods - 8th International
Symposium, NFM 2016, Minneapolis, MN, USA, June 7-9, 2016, Proceedings. Lecture
Notes in Computer Science, vol. 9690, pp. 65–81. Springer (2016)

93. Zeller, A., Hildebrandt, R.: Simplifying and isolating failure-inducing input. IEEE Transac-
tions on Software Engineering (TSE) 28(2) (Feb 2002)

94. Zhang, X., Leucker, M., Dong, W.: Runtime verification with predictive semantics. In: Good-
loe, A., Person, S. (eds.) NASA Formal Methods - 4th International Symposium, NFM 2012,
Norfolk, VA, USA, April 3-5, 2012. Proceedings. Lecture Notes in Computer Science, vol.
7226, pp. 418–432. Springer (2012)

30



Specification-based Monitoring of
Cyber-Physical Systems:

A Survey on Theory, Tools and Applications

Ezio Bartocci1, Jyotirmoy Deshmukh2, Alexandre Donzé3,
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Abstract. The term Cyber-Physical Systems (CPS) typically refers to
engineered, physical and biological systems monitored and/or controlled
by an embedded computational core. The behaviour of a CPS over time
is generally characterised by the evolution of physical quantities, and
discrete software and hardware states. In general, these can be math-
ematically modelled by the evolution of continuous state variables for
the physical components interleaved with discrete events. Despite large
e↵ort and progress in the exhaustive verification of such hybrid systems,
the complexity of CPS models limits formal verification of safety of their
behaviour only to small instances. An alternative approach, closer to the
practice of simulation and testing, is to monitor and to predict CPS be-
haviours at simulation-time or at runtime. In this chapter, we summarise
the state-of-the-art techniques for qualitative and quantitative monitor-
ing of CPS behaviours. We present an overview of some of the important
applications and, finally, we describe the tools supporting CPS monitor-
ing and compare their main features.

1 Introduction

Dynamic Behaviours and their Evaluation The world around us is in a
constant flux with “things” changing dynamically. Planets move, temperatures
rise and fall, rivers flow, rocks break down. In addition to these physical dynam-
ics, a large part of the changing world is due to the activities of living systems
and in particular humans, their social constructs and the artefacts they build.
Houses are illuminated and air-conditioned, power is generated, distributed and
consumed, cars drive on roads and highways, plants manufacture materials and
objects, commercial transactions are made and recorded in information systems.
Airplanes fly, continuously changing location and velocity while their controllers



deal, via sensors and actuators, with various state variables in the engine and
wings. Conceptually those processes can be viewed as temporal behaviours, wave-
forms or signals or time series or sequences, where continuous and discrete vari-
ables change their values over time and various types of events occur along the
time axis.

The systems that generate these behaviours are evaluated to some extent as
good or bad, e�cient or worthless, excellent or catastrophic. Such an evaluation
can apply to the system in question as a whole, to some of its components or to a
particular period of operation. We use monitoring to denote the act of observing
and evaluating such temporal behaviours. Behaviours can be very long, spanning
over a large stretches of time, densely populated with observations. They can
also be very wide, recording many variables and event types. As such they carry
too much information by themselves to be easily and directly evaluated. What
should be distilled out of these behaviours should somehow be expressed and
specified. The mathematical objects that do this job are functions that map
complex and information-rich behaviours into low dimensional vectors of bits
and/or numbers that indicate satisfaction of logical requirements and the values
of various performance indices, see Figure 1.
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Fig. 1. Monitoring as reducing complex temporal behaviours into low-dimensional vec-
tors of bits and numbers. The first of three behaviours is continuous and the two others
are at the timed level of abstraction, state-based (signal) and event-based.

The evaluation can be based on a gross abstraction of the behaviour, for
example the event of an airplane crash corresponds to a zero location on the z

dimension and a large downward velocity at some point in time. Likewise the
death of a patient can be specified by the stabilisation of his or her heart beat
signal to a constant value. More often than not, those global catastrophic events
may be related to (and preceded by) more detailed temporal behaviours that
involve intermediate steps and variables, for example, some rise in the engine
temperature which is not followed by certain actions such as turning on a cooling
system. In less safety-critical contexts, systems are evaluated for performance,
for example the time a client spends in a queue between requesting and being
granted, or the energy consumption of a computer or a chemical plant along
some segment of time.

Monitoring Real Systems and Monitoring Simulated Models Before
going further, let us distinguish between two major contexts in which the mon-
itoring of dynamic behaviours can take place (see a more elaborate discussion
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in [95]). The first is the monitoring of real systems during their execution via on-
line measurements. Here the role of monitoring is to alert in real time in order to
trigger corrective actions, either by a human operator or by a supervisory layer
of control. A primitive form of this type of monitoring exists in many domains:
indicators on the control panel of a car, airplane or electronic device, monitors
for physiological conditions of patients in a hospital and SCADA (Supervisory
Control and Data Acquisition) systems for controlling complex large-scale sys-
tems such as airports, railways or industrial plants. In fact, any information
system can be viewed as performing some kind of a monitoring activity.

The other context is during model-based system design and development
where all or some of the system components do not exist yet in flesh and blood
and their models, as well as the model of the environment they are supposed
to interact with, exist as virtual objects of mathematical and computational
nature. The design process of such systems is typically accompanied by an ex-
tensive simulation and verification campaign where the response of the system
to numerous scenarios is simulated and evaluated. Most of the work described in
this chapter originates from the design-time monitoring context, where simula-
tion traces constitute the input of the monitoring process. Many techniques and
considerations are shared, nevertheless, with the monitoring of real systems.

The activity of simulating a system and checking its behaviour is part of the
verification and validation process whose goal is to ensure, as much as possible,
that the system behaves as expected and to avoid unpleasant surprises after its
deployment. In some restricted contexts of simple programs or digital circuits,
this process can be made exhaustive and “formal” in the sense that all possi-
ble classes of scenarios are covered. When dealing with cyber-physical systems,
whose existence and interaction scope are not confined to the world inside a
computer for which practically exact models exist, complete formal verification
is impossible, if not meaningless. In this domain, simulation-based lightweight
verification is the common practice, accompanied by the hope of providing a
good finite coverage of the infinite space of behaviours.

Rigorous Specification Formalisms Part of the runtime verification move-
ment is coming from formal verification circles, attempting to export to the
simulation-based verification domain another ingredient of formal verification,
namely, the rigorous specification of the system requirements. In the context of
discrete systems, software or digital hardware, formalisms such as temporal logic
or regular expressions are commonly used. They can specify in a declarative man-
ner which system behaviours, that is, sequences of states and events, conform
with the intention of the designer in terms of system functionality, and which
of these behaviours do not. Such specifications can be e↵ectively translated into
monitoring programs that observe behaviours and check whether the require-
ments are satisfied. As such they can replace or complement tedious manual
inspection of simulation traces or ad hoc programming of property testers.

Let us give some intuitive illustrations of the nature of these formalisms.
Linear-time temporal logic (LTL) provides a compact language for speaking of
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sequences and the relations between their values at di↵erent points in time. The
semantics of an LTL formula ' is time dependent with (w, t) |= ' indicating
that formula ' holds for sequence w at position t. The simplest formulas are
state formulas which are satisfied at t according to the value of the sequence
at t. That is, writing p for the truth value of a logical variable, or x > 0 for a
numerical variable, is interpreted at each t as p[t] and x[t] > 0, respectively.

More complex formulas are built using Boolean and temporal operators. The
latter are divided into two types, future and past operators. The satisfaction of
a future operator at position t depends on the values of the sequence at some
or all the positions from t onward, that is, the su�x of w from t to |w|. For
example p (always p) is true at any t such that p holds at every t

0 � t. The
analogous past formula p (historically p) holds at t if p holds at any position
t
0  t, in other words, along the prefix of w from 0 to t. The satisfaction of a
future formula by the whole sequence w is defined as its satisfaction at position
0 while that of a past formula, by its satisfaction at |w|. Past formulas have some
advantages such as causality, while future LTL is more commonly used and is
considered by some to be more intuitive.

The formula p quantifies universally over all time instances. The dual
formula p (eventually p) quantifies existentially. It holds at t if p holds at some
t
0 in the future. The weakness of such a property from a practical standpoint is
that there is no bound on the distance between t and t

0, a fact that may upset
some impatient clients waiting for a response during their lifetime. We should
note that in verification, formulas are often interpreted over infinite sequences
generated by automata, while in monitoring we deal with finite sequences and if
p never becomes true until the end of w, formula p is falsified.

A more quantitative alternative to can be expressed in discrete time using
the next operator. Formula p (next p) holds at t if p holds at t+1. Thus, the
requirement that each p is followed by q within 2 to 3 time steps is captured by
the formula

(p ! ( ( q)) _ ( ( ( q)))).

This formulation may become cumbersome for large delay constants and by
extending the syntax we can write this formula as

(p ! [2,3] q)

with [a,b] p being satisfied at t if p is satisfied at some t
0 2 [t + a, t + b]. In

discrete time, this can be viewed as a syntactic sugar, but in dense time where
next is anyway meaningless, this construct allows events to occur anywhere in
an interval, not necessarily at sampling points or clock ticks.

Sequential composition is realised in future LTL using the until operator.
The formula pU q (p until q) is satisfied at t if q occurs at some later point in
time while p holds continuously until then. Using this operator, for which
and are degenerate cases, one can require that some process should not start
as long as another process has not terminated. The semantics of until is defined

4



below.8

(w, t) |= '1 U'2 i↵ 9t0 � t ((w, t0) |= '2 ^ 8t00 2 [t, t0] (w, t00) |= '1) (1)

The past counter-part of until is the since operator with q Sp (q since p) meaning
that p occurred in the past and q has been holding continuously since then. The
semantics of since is given below.

(w, t) |= '2 S'1 i↵ 9t0  t ((w, t0) |= '1 ^ 8t00 2 [t0, t] (w, t00) |= '2) (2)

It is interesting to compare these operators with the concatenation operation
used in regular expressions.

Regular expressions constitute a fundamental and popular formalism in com-
puter science, conceived initially to express the dynamic behaviour of neural
networks, and later applied to lexical and grammatical analysis. Traditionally,
such expressions are defined over a monolithic alphabet of symbols but in order
to present them in the same style as LTL, we will use product alphabets such as
{0, 1}n, defined and accessed via variables. Thus an expression p in our approach
would be interpreted in the traditional approach as the set of all Boolean vectors
in a global alphabet in which the entry corresponding to p is 1.

In discrete time, p is satisfied by any sequence of length one in which p holds.
Sequential composition is realised by the concatenation operation where '1 · '2

is satisfied by any sequence w that admits a factorisation w = w1 · w2 such
that w1 satisfies '1 and w2 satisfies '2. This is best illustrated by defining the
semantics using the satisfaction relation (w, t, t0) |= ' which holds whenever the
subsequence of w starting at t and ending in t

0 satisfies expression ':

(w, t, t0) |= '1 · '2 i↵ 9t00 2 [t, t0] (w, t, t00) |= '1 ^ (w, t00, t0) |= '2 (3)

The Kleene star allows to repeat concatenation for an indefinite but finite number
times, with '⇤ being satisfied by any sequence that admits a finite factorisation
in which all factors satisfy '. As an example, expression (¬p)⇤ · q · p specifies
sequences in which a finite ( possibly empty) time segment where p does not
hold is followed by the occurrence of q followed by p.

Note that unlike LTL, regular expressions are more symmetric with respect
to the arrow of time, as can be seen by the di↵erence between their respective
semantics definitions. The definitions of |= in (1) and (2) go recursively from t

to the future or the past, respectively. When they come up from the recursion
they do it in the opposite direction: for future LTL, satisfaction is computed
backwards and that of past LTL is computed forward. For concatenation, in
contrast, the semantics of |= in (3) is defined by a double recursion which takes
the whole sequence and splits it into two parts which are the arguments for the
two recursive calls. The semantics is collected from both ends while coming up
from the recursion.

8 Variants of until may di↵er on whether '2 is required to occur or whether '1 can
cease to hold at the moment '2 starts or only after that.
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Going Cyber-Physical The exportation of these formalisms and their mon-
itoring algorithms to the cyber-physical world has to cope with the hybrid na-
ture of such systems. The dynamics of digital systems is captured by discrete
event systems such as automata, generating discrete sequences of logical states
and events. Physical systems are modelled using formalisms such as di↵erential
equations, producing behaviours viewed as continuous signals and trajectories.
Specification formalisms and monitoring algorithms should then be extended so
as to express and check temporal properties of such behaviours. This topic is the
focus of the present chapter, centred around Signal Temporal Logic (STL), first
presented in [96], along with a monitoring algorithm, further elaborated in the
thesis [107] and explained from first principles in [98].

STL is a straightforward extension of (propositional) LTL along two orthogo-
nal dimensions, namely, moving from discrete to dense time and using predicates
on numerical values in addition to basic (atomic) propositions. The first feature
is present in real-time variants of temporal logic such as MTL/MITL while the
second has been explored in various first-order extensions of discrete-time LTL.
We believe that some of the popularity of STL comes from the smooth and sim-
ple integration of these two features. This popularity, as attested by numerous
publications that apply it to application domains ranging from analog circuits,
via robotics, control systems and engineering education, down to biomedical
and biochemical domains, justifies the role STL plays in this chapter, although
in principle other variants of logic could do the job as well.

In order to be relevant to real applications, we should keep in mind that
continuous dynamical systems are the object of study of various branches of
mathematics and engineering, in particular, control and signal processing. These
domains have developed over the years a variety of ways to measure and evaluate
such systems and their behaviours, which are appropriate to their physical and
mathematical nature. There is a variety of mathematical norms that reduce such
behaviours into single numbers. There are transformations like Fourier’s that
extract the spectral properties of signals for the purpose of classification or noise
removal. There are many statistical ways to assess signals and time series and
detect occurring patterns. The challenge in monitoring cyber-physical systems
is to integrate these traditional performance measures with those provided by
the newly developed verification-inspired formalisms which are more suitable for
capturing sequential aspects of behaviours.

2 Specification Languages

In this section, we present Signal Temporal Logic (STL) [96] as the specification
language that we use in this document for expressing properties of CPS. We
introduce the syntax of the formalism, together with its qualitative and quanti-
tative semantics.
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2.1 Signal Temporal Logic

STL [96] extends the continuous-time Metric Temporal Logic (MTL) [87] with
numerical predicates over real-valued variables. In particular, STL enables rea-
soning about real-time properties at the interface between components that ex-
hibit both discrete and continuous dynamics.

We denote by X and P finite sets of real and propositional variables. We let
w : T ! Rm⇥Bn be a multi-dimensional signal, where T = [0, d) ✓ R, m = |X|
and n = |P |. Given a variable v 2 X [ P we denote by ⇡v(w) the projection of
w on its component v.

We now define the variant of STL that contains both past and future temporal
operators. The syntax of an STL formula ' overX[P is defined by the grammar

' := p | x ⇠ c | ¬' | '1 _ '2 | '1 U I'2 | '1 S I'2

where p 2 P , x 2 X, ⇠ 2 {<,}, c 2 Q, and I ✓ R+ is an interval. We define
the semantics of STL as the satisfiability relation (w, t) |= ', indicating that
the signal w satisfies ' at the time point t, according to the following definition.
Given that we interpret the logic only over the finite traces, we let the satisfaction
relation to be defined only for t 2 T.

(w, t) |= p $ ⇡p(w)[t] = true
(w, t) |= x ⇠ c $ ⇡x(w)[t] ⇠ c

(w, t) |= ¬' $ (w, t) 6|= '

(w, t) |= '1 _ '2 $ (w, t) |= '1 or (w, t) |= '2

(w, t) |= '1 U I'2 $ 9t0 2 (t+ I) \ T : (w, t0) |= '2 and 8t00 2 (t, t0)(w, t00), |= '1

(w, t) |= '1 S I'2 $ 9t0 2 (t� I) \ T : (w, t0) |= '2 and 8t00 2 (t0, t), (w, t00) |= '1

We say that a signal w satisfies a STL formula ', denoted by w |= ', i↵ (w, 0) |=
'. In the remainder of this section, we discuss several specific aspects of the STL

syntax and semantics.

Finitary interpretation Specification formalisms with future temporal operators
are typically defined over infinite behaviours. In particular, we can have a speci-
fication that is satisfied at time t i↵ a future obligation is fulfilled at some future
time instant t

0
> t. Consequently, observing a finite prefix of a behaviour may

not be su�cient to determine the satisfaction or the violation of a temporal
specification according to its standard semantics. The finitary interpretation of
future temporal logics is a well-studied problem in the monitoring research field.
In order to tackle this issue, we adapt the semantics of U and restrict the ex-
istential quantification of time to the (possibly bounded) signal domain. This
altered semantics provides a natural interpretation of STL over finite signals. In
particular, the eventually operator has a so-called strong interpretation – '

is satisfied i↵ ' holds at any time before the signals ends. Similarly, the always
operator has a weak interpretation under this semantics – ' is satisfied i↵ '
is not violated during the signal duration.
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The problem of interpreting temporal logic over finite or truncated behaviours
was extensively studied in [57], where weak, strong and neutral views of the fini-
tary semantics for LTL are proposed. In [56], the authors provide a topological
characterisation of weak and strong temporal operators. An extensive discussion
about di↵erent interpretations of temporal logics over finite traces is presented
in [98]. Finally, we also mention the real-time monitoring framework from [29],
where 3-valued {true, false, inconclusive} semantics are used to provide a finitary
interpretation of a real-time temporal logic.

Strict interpretation of temporal operators We adopt the strict semantics of
until and since as originally proposed in [8]. The strict interpretation of 'U 
evaluated at time t requires that both  is satisfied at some t

0 strictly greater
than t and that ' continuously holds in the interval (t, t0) that excludes t. In
other words, the satisfaction of 'U at t depends only on the evaluation of '
and  at some times in the future of t. This is in contrast to the classical non-
strict semantics of until and since in the discrete-time LTL [110], where 'U 
is satisfied if  holds at t. Let us first denote by Ū the non-strict until operator,
and by U its strict counterpart 9. We also recall that LTL contains the next
operator in addition to Ū . We can show that in discrete time, a temporal
logic with Ū and such as LTL is equivalent to the logic that has U only, by
using the following rules.

'1 U'2 ⌘ ('1 Ū'2)
' ⌘ false U'

'1 Ū'2 ⌘ '2 _ ('1 ^ ('1 U'2))

In contrast to LTL, continuous-time temporal logics such as STL do not have
the next operator. It turns out that the strict interpretation of the temporal
operators strictly increases the expressiveness of the underlying logic in dense
time, as it enables “forcing” the time to advance. The main practical consequence
of strict interpretation of U and S is that it allows specification of instantaneous
events in continuous time.

Derived operators The syntactic definition of STL is minimal and includes only
basic operators. We can derive other standard operators as follows:

True constant: true ⌘ p _ ¬p
False constant: false ⌘ ¬true
Conjunction: '1 ^ '2 ⌘ ¬(¬'1 _ ¬'2)
Implication: '1 ! '2 ⌘ ¬'1 _ '2

Eventually: I ' ⌘ true U I '

Once: I ' ⌘ true S I '

Always: I ' ⌘ ¬ I ¬'
Historically: I ' ⌘ ¬ I ¬'

9 We restrict our argument to the future operators for the sake of simplicity – the
same reasoning can be applied to the past operators.
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In addition to these derived operators, we can also define instantaneous events
that have zero duration. Such events enable specification of rising and falling
edges in boolean signals.

Rising edge: " ' ⌘ (' ^ (¬' S true)) _ (¬' ^ (' U true))
Falling edge: # ' ⌘ (¬' ^ (' S true)) _ (' ^ (¬' U true))

2.2 Signal Temporal Logic with Quantitative Semantics

In Section 2.1, we introduced STL with qualitative semantics. This classical def-
inition of STL enables to determine the correctness of a signal with respect
to a specification. Specifically, it gives a binary pass/fail answer to the moni-
toring problem. When reasoning about hybrid systems that involve both dis-
crete and continuous dynamics, the qualitative verdict may not be informative
enough. After all, systems with continuous dynamics are usually expected to
admit some degree of tolerance with respect to initial conditions, system param-
eters and environmental perturbations. Consequently, a quantitative degree of
satisfaction/violation would be preferable to a simple yes/no output given by
the qualitative interpretation of STL.

Fages and Rizk [113] and Fainekos and Pappas [61] proposed to tackle this
issue by equipping the temporal logic with quantitative semantics. This extension
replaces the binary satisfaction relation with the quantitative robustness degree
function, while preserving the original syntax of the specification language. In
essence, the robustness degree function gives a real value that indicates how far
is a signal from satisfying or violating a specification. We illustrate the concept of
the robustness degree function with a simple example on numerical predicates.
Let x < c be a numerical predicate. This predicate partitions the R domain
into the set of all real values that are strictly smaller than c and those that are
greater or equal to c. Picking a concrete value for x, the robustness degree gives
the relative position of x to c, instead of only indicating whether x is above or
below the threshold. This idea is naturally extended to the logical and temporal
operators that we now formalise.

Let ' be an STL formula, w a signal and t a time instant in T. We then
define the robustness degree function ⇢(', w, t) as follows.

⇢(p, w, t) =

(
1 if ⇡p(w)[t] = true

�1 otherwise

⇢(x ⇠ c, w, t) = c� ⇡x(w)[t]
⇢(¬', w, t) = �⇢(', w, t)
⇢('1 _ '2, w, t) = max{⇢('1, w, t), ⇢('2, w, t)}
⇢('1 U I'2, w, t) = supt02(t+I)\T min{⇢('2, w, t

0), inft002(t,t0) ⇢('1, w, t
00)}

⇢('1 S I'2, w, t) = supt02(t�I)\T min{⇢('2, w, t
0), inft002(t0,t) ⇢('1, w, t

00)}

We note that for a fixed formula ' and a given signal w, the quantity ⇢(', w, t)
is a function of time, and can thus be treated as a signal. We refer to it as the
robust satifaction signal or robustness signal.
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There is a couple of fundamental properties that relate the STL quantitative
semantics to its qualitative counterpart. Consider an arbitrary STL formula ',
a signal w and time t 2 T. The first property says that for any ⇢(', w, t) 6=
0, its sign determines whether (w, t) |= '. The second property states that if
(w, t) |= ', then for any signal w0 whose pointwise distance from w is smaller
than ⇢(', w, t) we also have (w0

, t) |= '.
We illustrate the di↵erence between the qualitative and the quantitative se-

mantics in Figure 2. We can also observe the relation between the two semantics
as stated in the previous paragraph.

(a) (b)

⌃[0,1](x � 2)⌃[0,1](x � 2)

x � 2

0

x

2 2

x

0

x � 2

Fig. 2. Example for STL formula evaluation: (a) qualitative and (b) quantitative se-
mantics.

Alternative quantitative semantics In this section, we presented a quantitative
semantics that allows measuring spatial robustness of STL specifications. This
definition takes into account the spatial variations of signals when compared
to STL specifications. Developing alternative notions of robustness degree for
STL has been an active area of research in the recent years. In [51], the au-
thors extend the quantitative semantics of STL by combining spatial with time
robustness, thus also allowing to quantify temporal perturbations in signals.
The idea of the combined space-time robustness for STL is further enhanced
in [7] with averaged temporal operators. In [114], the authors identify that the
bounded eventually [a,b] operator behaves like the convolution operator com-
monly used in filtering and digital signal processing. Following this surprising
observation, one can develop various quantitative semantics for temporal logic,
by defining the appropriate kernel window used for evaluating the formula. These
additional operators enable reasoning not only about the worst-case but also the
average-case behaviours. The Skorokhod metric provides an alternative way to
measure mismatches between continuous signals in both space and time. An ef-
fective procedure for computing the Skorokhod distance between two behaviours
is developed and presented in [93, 42]. This method is extended to estimate the
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Skorokhod distance between reachpipes in [94]. Nevertheless, there are no avail-
able methods yet to compute the Skorokhod distance between a signal and an
STL formula.

3 Monitoring Algorithms

In this section, we present algorithms answering the following monitoring ques-
tion: what is the qualitative and/or quantitative satisfaction of a formula ' by a
signal w? This problem is much easier than model-checking, i.e., proving that a
system satisfies a formula, which is undecidable for STL even for simple classes
of systems. Yet, it is desirable that e�cient algorithms exist for monitoring, as
this task can typically be repeated on large numbers of instances, or on signals
of long durations. We consider two di↵erent settings: o✏ine and online. In the
o✏ine setting, we assume that w is known before computing the satisfaction of
'. In the online setting, we assume only a partial knowledge of w, and compute
successive estimates of ' satisfaction as new samples of w become available.

3.1 O✏ine Monitoring

For simplicity we restrict the presentation to the case of STL with future op-
erators, and piecewise constant signals, i.e., we assume that w is completely
defined by a sequence of time instants t0 < t1 < . . . < ti < . . . and values
w0, w1, . . . , wi, . . . such that

8t 2 [ti, ti+1), w[t] = wi[t].

Here, we assume that the sequence of (time, value) pairs is finite, i.e., i  N .
Moreover, we assume that the signal w holds its final value indefinitely, i.e., for
all t > tN , w[t] = w[tN ]. We present briefly an algorithm computing quantitative
satisfaction of ' by w, adapted in a simpler form from [49]. For a purely Boolean
monitoring algorithm, see [108]. Computing the quantitative satisfaction is not
more complex than computing the Boolean, as both can be achieved in linear
complexity in the size of signals.

The algorithm work by induction on the structure of the formula following
the generic scheme presented in Algorithm 1.

To implement Algorithm 1, we need to provide an implementation of the func-
tion ComputeSatisfaction for each instance of the switch statement. Instances
which do not involve any temporal operator are straightforward and presented in
Table 1. As can be expected, the only non-trivial case is with temporal operators.

In theory, we only need to handle the until operator (U I), as other temporal
operators such as globally ( I) and eventually ( I) are derived from U I and
Boolean operations. However, in practice, it is more e�cient to deal with these
operators separately. Also as we will see, U I is handled by combining specific
algorithms for I and I and U I with I = [0,1) (unbounded until). It turns
out that for o✏ine monitoring, unbounded operators are easier to handle than
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Algorithm 1 Monitor(', w)

switch (')
case p:

return ComputeSatisfaction(p, w)
case x ⇠ c:

return ComputeSatisfaction(x ⇠ c, w)
case ⇤ ', where ⇤ 2 {¬, I , I}:

w
0 := Monitor(', w)

return ComputeSatisfaction(⇤ , w0)
case ' ⇤  , where ⇤ 2 {_, U I}:

w
0 := Monitor(', w)

w
00 := Monitor( , w)

return ComputeSatisfaction(⇤ , w0
, w

00)
end switch

Boolean Quantitative
(p, w) y[t] = p if p == true, y[t] = +1 , else y[t] = �1
(x ⇠ c, w) y[t] = (⇡x(w)[t] ⇠ c) y[t] = ⇡x(w)[t]� c

(¬ , w
0) y[t] = ¬w[t] y[t] = �w[t]

(_ , w
0
, w

00) y[t] = w
0[t] _ w

00[t] y[t] = max(w0[t], w00[t])

Table 1. ComputeSatisfaction for atomic predicate and Boolean operators. y is the
signal returned, either Boolean or Real valued.

bounded time ones. Hence, we will present implementations for the unbounded
cases before the bounded cases. In the following, we explain how to implement
the ComputeSatisfaction function for unbounded eventually, timed eventually.
The bounded globally case can be deduced from eventually using the equivalence

I ' , ¬ I ¬'. Then we describe the algorithm for unbounded until and
finally timed until operators.

ComputeSatisfaction( [0,1), w) (Unbounded Eventually) From the quantitative
semantics, recall that

⇢( I(', w, t) = sup
I
⇢(', w, t).

If I = [0,1), that means that

y[t] = sup
t0�t

{w[t]} = max
ti�t

w[ti]

It is easy to see that y is defined by a finite sequence satisfying the (backward)
recurence relation: ⇢

yN = wN

yk = max(wk, yk+1)

Note that in the case of I = [a,1), the result is obtained by shifting time by
�a.
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ComputeSatisfaction( [a,b), w) (Bounded Eventually) From the quantitative se-
mantics, we have that:

⇢( [a,b)(', w, t) = sup
[a,b)

⇢(', w, t)

so that

y[t] = max
ti2[t+a,t+b)

{w[ti]}.

In other words, the signal t ! y[t] stores the sequence of maximums of signal w
over a sliding finite window of size b� a. In [49], the authors observed that such
a sliding window could be computed using an algorithm due to Daniel Lemire
with linear complexity in the size of signal w [90]. We refer the reader to [90, 49]
for details about this algorithm.

ComputeSatisfaction( [0,1), w) (Untimed Until) To compute the satisfaction
of untimed until, we are given two signals: w0 and w

00 and need to compute y.
Since w0 and w

00 are of finite length N , y is also of finite length N . The computa-
tion goes backward starting from (yN , tN ). The time sequence t0, t1, . . . , tN�1 is
obtained by merging and sorting the sequences t0i and t

00
i so that to simplify the

notations, we assume that the sequences w0
i and w

00
i are defined on the same time

sequence, i.e., w0
i = w

0[ti] and w
00
i = w

00[ti] for all i. Using standard min�max
manipulations, we can show that the following recurrence is true:

⇢
yN�1 = min(w0

N�1, w
00
N�1)

yk = max(min(w0
k, w

00
k),min(w0

k, yk+1)), k 2 {0, . . . , N � 2}

Implementing this recurrence yields an algorithm with complexity in O(2N).

ComputeSatisfaction((U [a,b), w
0
, w

00)) (Bounded Until) To compute satisfaction
signals for formulas involving timed operators, we make use of the following
result:

Lemma 1. For two STL formulas ', ,

'U [a,b) , [a,b) ^ 'U [a,+1) (4)

'U [a,+1) , [0,a)('U ) (5)

Using this lemma, ComputeSatisfaction(U [a,b), w
0
, w

00) can be obtained by a
sequence of intermediate computations using the algorithms above, as detailed
in Algorithm 2. Note that all ComputeSatisfaction algorithm presented before
run in linear time w.r.t. the number of samples in their input signals, so that for
any STL formula, the computation of the robust satisfaction signal is also linear
w.r.t. the size of the signals involved.
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Algorithm 2 ComputeSatisfaction(U [a,b), w
0
, w

00) with a < b < +1
w1 := ComputeSatisfaction(U [0,+1) , w

0
, w

00)
w2 := ComputeSatisfaction( [0,a) , w1) // w2 is the right hand side of (5)
w3 := ComputeSatisfaction( [a,b) , w

00)

return ComputeSatisfaction(^ , w2, w3)

3.2 Online Monitoring

O✏ine algorithms assume that the entire trace is available to the monitoring pro-
cedure, and then run on the trace to produce either a Boolean satisfaction value
or a quantitative (robust) satisfaction value. There are a number of situations
where o✏ine monitoring is unsuitable. Consider the case where the monitor is
to be deployed in an actual system to detect erroneous behaviour. As embedded
software is typically resource constrained, o✏ine monitoring – which requires
storing the entire observed trace – is impractical. Also, when a monitor is used
in a simulation-based validation tool, a single simulation may run for several
minutes or even hours. If we wish to monitor a safety property over the simu-
lation, a better use of resources is to abort the simulation whenever a violation
(or satisfaction) is conclusive from the observed trace prefix. Such situations
demand an online monitoring algorithm, which has markedly di↵erent require-
ments. In particular, a good online monitoring algorithm must: (1) be able to
generate intermediate estimates of property satisfaction based on partial signals,
(2) use minimal amount of data storage, and (3) be able to run fast enough in
a real-time setting.

A basic online algorithm returns a true or false satisfaction value when the
satisfaction or violation of the property being monitored can be concluded by
observing the finite trace prefix. In many cases, the information in the trace prefix
is insu�cient to produce a conclusive answer. Thus, several kinds of semantics
have been proposed to interpret MTL or STL formulae over truncated traces.
These semantics typically extend the satisfaction in a Boolean sense as used by
o✏ine monitoring algorithms to a richer satisfaction domain, typically having
three or four values.

A typical three-valued semantics, for instance, assigns the satisfaction value of
true if given the truncated signal, it can be decided that the signal will definitely
satisfy the property. For example, if the value of the signal w at time 2 is 5,
then any trace prefix inclusive of this time-point definitely satisfies the formula

[0,10](w > 0). Dually, it assigns the satisfaction value of false when the trace
prefix is enough to establish that the signal definitely violates a given formula.
If neither determination can be made, then the semantics assigns a satisfaction
value of unknown [29]. Four-valued semantics that introduce presumably true
and presumably false in addition to true and false for signal traces that are likely
to respectively satisfy or violate the property have been proposed in [30].

In what follows, we first discuss qualitative monitoring algorithms; these
algorithms, given an MTL or STL property, decide from a given prefix of a signal,
if the entire signal would satisfy or violate the given property. An orthogonal, but
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relevant issue for online monitoring is the semantics of the MTL/STL property
to be monitored on partial signal traces. We recall that following the tradition
of the semantics for LTL on truncated traces [57], there are di↵erent notions of
satisfaction that can be used to reason over prefixes of signals. We say that a
signal-prefix strongly satisfies a given property if for any su�x the resulting signal
would satisfy the property. In other words, the signal-prefix is su�cient to decide
the satisfaction of the given property. We say that a signal-prefix weakly satisfies a
given property if there is some su�x such that the resulting signal would satisfy
the property. A third notion of satisfaction is neutral satisfaction, which is if
the given signal-prefix satisfies the property where the temporal operators are
restricted to quantify only over the length of the signal-prefix. Some algorithms
for qualitative monitoring make use of such richer notions of satisfaction.

Qualitative Online Monitoring There are two main flavours of qualitative
online monitoring. The first, based on work in [97], uses a modification of an
algorithm similar to Algorithm 1. This procedure called incremental marking,
essentially treats the signal as being available in chunks. The algorithm com-
putes the robustness signal in a bottom-up fashion, starting from the leaves (i.e.,
atomic formulas) appearing in the STL formula and then for each super-formula,
combining the robust satisfaction signals for its subformulae. The algorithm
maintains the robust satisfaction signal partitioned as the concatenation of two
signals: the first segment containing values that have already been propagated
to the super-formula (by virtue of having su�cient information to allow deciding
the satisfaction of the super-formula), and the second segment containing values
that have not yet been propagated, as they may influence the satisfaction of the
super-formula because of a part of the signal not yet available.

The second flavour of qualitative online monitoring makes use of automata-
based monitors [71] and the richer notions of strong and weak satisfaction of
MTL properties by signal-prefixes. In this approach, the given MTL formula
(with future and past modalities) is first rewritten so that all temporal opera-
tors bound by finite time intervals appear in the scope of zero or more temporal
operators that are unbounded. Essentially, each bounded temporal formula de-
fines a finite time-window into the signal, where signal values would have to be
available to evaluate the subformula. The algorithm maintains a time-window
for each such bounded temporal subformula as a tableau and updates it using
dynamic programming methods. This e↵ectively allows treating bounded tem-
poral subformulae as atomic propositions. The outer unbounded operators are
monitored using two-way alternating Büchi automata that accept informative
prefixes of the signal. An informative prefix is a signal-prefix that allows decid-
ing the satisfaction or violation of the given unbounded temporal formula. The
procedure has space-bounds that are linear in the variability of the given signal,
and length of the formula, and requires constructing automata that are doubly
exponential in the size of the given MTL formula.
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Quantitative Online Monitoring Qualitative monitoring algorithms by their
nature are unable to quantify the degree to which the signal corresponding to
the given signal-prefix may satisfy or violate the property of interest. Online
algorithms for computing robust satisfaction semantics seek to address this gap.
We discuss three algorithms below. The operating assumption of each algorithm
is the same: given a trace prefix, return a quantitative value that captures a
notion of robust satisfaction over the incomplete trace. However, none of the
algorithms are probabilistic in nature. The first and the third algorithms pro-
vide a quantitative value based only on the trace prefix observed (and possibly
a forecast su�x). The second algorithm, given a formula ', processes a trace
prefix and returns a robust satisfaction interval that always contains the robust
satisfaction value w.r.t. ' of any trace with this prefix.

Simulation Model or Deployed System

Cyber-Physical 
System

On-Line
Monitor 

for φCurrent time and signal values
(𝑡𝑖, 𝑠𝑖)

Specification 
Robustness

Model Based 
Forecast of 

Future Behavior

Sequence of predicted future 
time and signal values 
(𝑡𝑖+1, 𝑠𝑖+1)… (𝑡𝑖+𝐻𝑟𝑧, 𝑠𝑖+𝐻𝑟𝑧)

Fig. 3. The online temporal logic monitoring framework for bounded future and un-
bounded past formulas proposed in [44]. In case the monitored system contains a model
which can be used for forecasting future behaviours up to a horizon Hrz, then these
behaviours can be used to compute the robustness estimate of the specification '. If a
forecasting mechanism is not available, then it is preferable to monitor past formulas.

Quantitative monitoring of STL with past operators and predictors.

The first algorithm we discuss is for online monitoring of STL formulas with
bounded future and unbounded past formulas [44]. For a given STL formula ',
the algorithm computes the horizon, or the number of look-ahead steps that
would be required to evaluate the bounded future component of a formula, and
the history or the number of samples in the past that would be needed to evalu-
ate a given bounded past formula. The algorithm then maintains a tableau that
is updated every time a new signal value becomes available using a dynamic
programming based approach. For unbounded past operators, the algorithm ex-
ploits the fact that an unbounded past formula can be rewritten such that the
computation over an unbounded history can be stored as a summary in a vari-
able that is updated each time a new signal value becomes available. For the
unobserved parts of the signal, which would be required to compute the satis-
faction of a bounded future temporal subformula, the algorithm requires the use
of a predictor in order to compute a robustness estimate (see Fig. 3).

In more detail, the algorithm monitors invariants expressed as STL formulas
'. That is, the assumption is that ' should be satisfied at all times of the system
execution or model simulation. As an example, consider the specification

' ⌘ ¬(x � 0.5) ! [0,1] [0,1](x � 0.5) (6)
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which states that if the value of the signal x decreases below 0.5, then within
1 sec in the past it should have been higher than 0.5 for at least 1 sec. In Fig.
4, we present a simple example of a signal x and the corresponding robustness
value ⇢(', x, t) computed online for Eq. (6). Notice that the signal x decreases
below the threshold 0.5 (i.e., the antecedent ¬(x � 0.5) is now satisfied) at two
points in time, at 5.5 sec and at 12.25 sec. In the first case, no violation of
the requirement occurs (barely), while in the second case a violation occurs
(the robustness drops below zero). In either case, the robustness of Eq. (6)
starts decreasing at time 6 and at time 13, respectively, when the subformula

[0,1] [0,1](x � 0.5) starts changing robustness value. On the other hand, the
robustness increases afterwards because the value of the signal x approaches
the threshold 0.5 and, therefore, the antecedent comes closer again to being
falsified. The fact that the specification robustness starts decreasing can be used
as a warning that the system may be soon violating its requirement; and, thus,
remedial action may be required.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
-1.5

-1

-0.5

0

0.5

1

1.5

Fig. 4. A signal x (solid blue line) and the corresponding robustness value ⇢(', x, t)
(dashed red line) computed for the formula in Eq. (6).

Quantitative monitoring of robust satisfaction interval for bounded

future STL formulas. The second algorithm computes robust interval seman-
tics for STL formulas with bounded future formulas [40]. A robust satisfaction
interval (`, u) for a given signal-prefix is defined such that ` (respectively, u) is
the infimum (respectively, supremum) over the robust satisfaction values of the
given property for all signals that have the given partial signal as the prefix. For
example, consider a constant signal-prefix with magnitude 1, defined over time
t 2 [0, 5). The robust satisfaction interval for the formula [0,10](x > 0) over
this signal-prefix is (�1, 1], while the robust satisfaction interval for the formula

[0,10](x > 0) is [1,1). The interval semantics generalises the notion of strong
and weak semantics. A signal-prefix strongly satisfies (resp. violates) a property if
the lower-bound of the robust satisfaction interval is positive (resp. upper-bound
of the robust satisfaction interval is negative). A signal-prefix weakly satisfies a
property if the upper bound of the robust satisfaction interval is positive.

In lieu of a detailed exposition of the algorithm, we demonstrate it with an
example in Fig. 6 for the formula in Eq. (7).

' ⌘ [0,a]

�
¬(y > 0) _ [b,c](x > 0)

�
(7)

We assume that the algorithm starts in a state where it has processed the
partial signal till time t2, and show the e↵ect of receiving data at time-points t3,
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Fig. 5. These plots show the signals x(t) and y(t). Each signal begins at time t0 = 0,
and we consider three partial signals: till time t3 (black + blue), and till time t4 (black
+ blue + green), and till time t5 (black + blue + green + red)

⇤[0,a]

W

¬⌃[b,c]

y > 0x > 0

t0 = 0 t1 a

t2 [-1, -1] [2, 2] [2, 2]

t3 [-1, -1] [2, 2] [2, 2]

t4 [-1, -1] [2, 2] [2, 2]

t5 [-1, -1] [2, 2] [2, 2]

b t3 t4 a+c

t2 (x`,xu) -- -- (x`,xu)

t3 [-1, -1] [-2, -2] -- (x`,xu)

t4 [-1, -1] [-2, -2] [2, 2] (x`,xu)

t5 [-1, -1] [-2, -2] [2, 2] [2, 2]

t0 = 0 t1 a

t2 [1, 1] [-2, -2] [-2, -2]

t3 [1, 1] [-2, -2] [-2, -2]

t4 [1, 1] [-2, -2] [-2, -2]

t5 [1, 1] [-2, -2] [-2, -2]

t0 = 0 t3-b t4-c a

t2 (x`,xu) -- -- (x`,xu)

t3 [-1,xu] [-2,xu] -- (x`,xu)

t4 [-1, -1] [-2, -2] [2, 2] [2,xu]

t5 [-1, -1] [-2, -2] [2, 2] [2, 2]

t0 = 0 t3-b t1 t4-c a

t2 [1,xu] -- [�2,xu] -- [�2,xu]

t3 [1,xu] [1,xu] [�2,xu] -- [�2,xu]

t4 [1, 1] [1, 1] [-2, -2] [2, 2] [2,xu]

t5 [1, 1] [1, 1] [-2, -2] [2, 2] [2, 2]

t0 = 0

t2 [�2,xu]

t3 [�2,xu]

t4 [�2,�2]

t5 [�2,�2]

Fig. 6. We show a snapshot of the list at each node in the syntax tree of formula given
in Eq. (7) maintained by the algorithm for four di↵erent (incremental) partial traces of
the signals x(t) and y(t) shown in Fig. 5. Each row indicates the state of each list at the
time indicated in the first column. An entry marked -- indicates that the corresponding
element did not exist in the list at that time. Each colored entry indicates that the
entry was a↵ected by availability of a signal fragment of the corresponding color.

t4 and t5. The algorithm maintains lists of robust satisfaction intervals at each
node in the syntax tree of ', and updates these lists when new time-points in
the trace become available. Each row in the table adjacent to a node shows the
state of the list after the algorithm processes the value at the time indicated in
the first column.

The first row of the table shows the snapshot of the lists at time t2. Observe
that in the lists for the subformula y > 0, ¬y > 0, because a < b, the data
required to compute the interval at t0, t1 and the time a, is available, and hence
each of the intervals is singular. On the other hand, for the subformula x > 0,
the time horizon is [b, a+ c], and no signal value is available at any time in this
interval. Thus, at time t2, all elements of the list at the node corresponding to
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x > 0 are (x`,xu) corresponding to the user-provided greatest lower bound and
lowest upper bound on the signal x = (x, y).

To compute the values of [b,c](x > 0) at any time t, we take the supremum
over values from times t+b to t+c. As the time horizon for the node corresponding
to [b,c](x > 0) is [0, a], t ranges over [0, a]. In other words, we wish to perform
the sliding maximum over the interval [0 + b, a + c], with a window of length
c� b. We can use the algorithm for computing the sliding window maximum as
discussed in the earlier section on o✏ine monitoring. One caveat is that we need
to store separate monotonic edges for the upper and lower bounds of the robust
satisfaction intervals. The algorithm then proceeds upward on the syntax tree,
only updating the list of a node only when there is an update to the lists of its
children.

The second row in each table is the e↵ect of obtaining a new time point
(at time t3) for both signals. Note that this does not a↵ect the lists at the
node y > 0 or the node ¬y > 0, as the robust satisfaction intervals are already
singular, but does update the intervals for the node x > 0. The algorithm then
invokes the sliding window computation on the list for x > 0 to update the list
for [b,c](x > 0). Finally, we remark that the run of this algorithm shows that at
time t4, the interval for the formula ' is [�2,�2], which yields a negative upper
bound, showing that the formula is not satisfied irrespective of the su�xes of x
and y. In other words, the satisfaction of ' is known before we have all the data
required to fully determine the robust satisfaction value for the formula.

Quantitative monitoring for unbounded horizon STL formulas. Robust
satisfaction intervals are meaningless for STL formulas with unbounded future
operators. Hence, for such formulas, nominal quantitative semantics have been
proposed in [41]. These semantics essentially compute the robust satisfaction
value of the formula restricted to the trace prefix that is available. However, a
key challenge is to avoid storing the entire signal or performing repeated compu-
tation whenever a new time-point becomes available. This can be circumvented
by storing the summary of computation of the robust satisfaction value and
then incrementally updating the summary variables. The number of summary
variables required is finite and independent of the trace length, although expo-
nential in the length of the formula. Nominal quantitative satisfaction values
for arbitrary unbounded horizon STL formula can be monitored in this fashion.
The rules for rewriting the nominal robustness computation of an unbounded
horizon STL formula in terms of summary variables is involved, and we omit the
details for brevity. Interested readers can find them in [41].

4 Extensions

It is out of doubt that STL has gained in the last decade an increased popular-
ity among engineers for its conciseness and expressive power enabling to specify
complex behavioural properties related to the order and the temporal distance
among discrete events such as the satisfaction of predicates (e.g., threshold cross-
ing) over the real variables.
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However, the pure time-domain nature of this specification language some-
times has revealed to be a technical impediment to overcome for an immedi-
ate applicability to cyber-physical systems. In particular, abnormal signal be-
haviours such as undesirable oscillations and complex topological requirements
(i.e., the spatial distribution of the entities generating signals) are very challeng-
ing to capture using only the time-domain.

For this reason, in the last decade STL has inspired a number of extensions
that have been successfully applied in many applications ranging from identifying
oscillatory behaviours in analog circuits [104], biological systems [32] and mu-
sic melodies [52] to specifying spatiotemporal requirements in reaction-di↵usion
systems [12, 13, 16, 102], smart grids [69] and mobile ad-hoc sensor networks [15].
In the following we aim to provide an overview of some of the STL extensions
recently proposed.

4.1 Monitoring Complex Oscillatory Properties
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Fig. 7. The freezing operator of STL-⇤ enables in a) the specification of the notions of
local maxima (⇤[ [0,10] x

⇤ � x]) and local minima (⇤[ [0,10] x
⇤  x]) by comparing

the value x with all the frozen values (represented by the expression x
⇤) within a

time interval [0, 10]. This feature is suitable to capture oscillatory behaviours without
knowing a-priori specific signal thresholds. In b) freezing operators are nested within
the classical eventually STL operators to detect the possible occurrence of a local
maxima and a local minima within [0, 15] time units.

The dynamical behaviour of a physical system often exhibits complex oscil-
latory patterns representing an infinite periodically behaviour. Real-life analog
signals are characterised by omnipresent noise, i.e., random perturbations of the
desired signal. Damped oscillations or oscillations with increasing amplitude are
peculiar aspects in many biological systems [21, 22, 32]. Abnormal oscillations
due to the presence of spikes or hunting oscillations [104] are considered unde-
sired behaviours in analog circuit design. Signal-processing tasks such as peak
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detection [5, 19, 34] is common in many medical cyber-physical systems whose
correctness impacts the performance and the sensitivity of the computational
devices involved. Providing a concise formal specification language expressive
enough to characterise such patterns and to e�ciently monitor them is a very
challenging task.

For example, the classic STL is not expressive enough to distinguish classes
of oscillatory patterns such as damped oscillations or oscillations with increasing
amplitude, because it is not able to globally reference and compare local prop-
erties (i.e., local minima/maxima) of a signal. Motivated by this necessity the
authors in [32] have proposed an extension of STL (named STL-⇤), augmenting
STL with a freezing operator that allows to record the signal values during the
evaluation of a sub-property, and to reuse it for comparison in the other parts
of the formula. This operator increases the expressive power of STL and for
instance it enables to express and to capture various dynamic aspects of oscil-
lations (see Fig. 7). A quantitative semantics for STL-⇤ is also proposed in [33].
However, the price to pay for this enhanced expressiveness is an higher compu-
tational complexity for the monitoring procedure. In [32] the authors show that
the monitoring algorithm for STL with nesting freeze quantifiers is polynomial
in the number of intervals on which the signals is defined and the size of the
syntactic tree of the formula, but it is exponential in the number of the nested
freeze operators in the formula.

Although STL-⇤ is more expressive than STL, its analysis is still limited to
the time-domain representation of a signal. However, oscillatory patterns (i.e.,
chirp signals, hunting behaviours, noise filtering) are in general very challenging
and tedious to investigate using only time and a time-frequency analysis is essen-
tial sometime to e�ciently detect them. Time-frequency analysis is an important
branch of signal processing and it is based on the study of the spectrogram (see
Fig. 8), a representation of the frequencies’ magnitude in a signal as they vary
with time. Spectrograms can be calculated from digitally sampled data in the
time-domain representation of the signal using extensions of the classic Fourier
transforms such as the Short Time Fourier Transform (STFT) or Wavelet Trans-
forms (WTs). Although a preliminary work on combining time and frequency
domain specifications for periodic signals is reported in [37], the first attempt
to provide a unified formalism to express time-frequency properties of a signal
is the time-frequency logic (TFL) introduced in [52]. TFL extends STL with
predicates evaluating the magnitude of a particular frequency range in a point
in time. The semantics of TFL operates over a spectrogram generated using
STFT. In [52] TFL was applied to detect musical patterns, but it can be easily
used in other application domains. More recently, TFL was extended in [104] to
operate over spectrograms generated using WTs. These spectrograms generally
provide a better trade-o↵ between the resolution in the time domain and the
resolution in the frequency domain w.r.t. STFT.
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Fig. 8. In a) we show three di↵erent examples of spectrogram obtained using di↵erent
time to frequency domain signal transformations: Fourier Transform (FT), Short Time
Fourier Transform (STFT) and Wavelet Transform (WT). FT provides the average
magnitude of a signal for a certain interval of frequencies along the entire duration of
the signal. FT are indeed not suitable to localise the time when a change of frequencies
occurs. STFT consists instead in dividing a longer time signal into shorter segments of
the same length and in computing the FT for each of these segments. This provides a
better time resolution than FT. However, STFT has a fixed resolution that depends on
the time length chosen for the shorter segments. A wide window gives better frequency
resolution but poor time resolution and vice-versa. WT generally provides the best
combination of good time resolution for high-frequency events and good frequency
resolution for low-frequency events. In b) we show an example of a signal with in c)
its STFT spectrogram for the frequencies in the range 0 � 50Hz. On the right of the
spectrogram we provide the projection of the magnitude associated with each frequency,
while on the bottom we show a slice of the spectrogram for the frequency 10 Hz. TFL
provides a special predicate that enables to compute such slicing and to compare the
magnitude w.r.t. a user-defined threshold.
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4.2 Monitoring Spatio-Temporal Behaviours

The components in CPS are generally distributed across space and connected
via a communication infrastructure. The complex behaviour of each individual
component due to a fully-integrated hybridisation of computational (logical) and
physical action and the interactions between these components via the network
enable them to produce very rich and complicated emergent spatiotemporal be-
haviours, often impossible to predict at design time. Examples include smart
grids, robotics teams or collections of genetically engineered living cells. In such
examples, temporal logics may be not su�cient to capture also topological spatial
requirements. For example, the notion of being surrounded or spatial superposi-
tioning (averaging resources in a space) are not available in the standard STL
and encoding them with specific functions may result cumbersome.

Recently, three di↵erent spatiotemporal extensions of STL, Spatial-Temporal
Logic (SpaTeL) [69], the Signal Spatio-Temporal Logic (SSTL) [16, 102] and the
Spatio-Temporal Reach and Escape Logic (STREL) [15] have been proposed to
accommodate the growing need of expressing not just temporal but also spa-
tiotemporal requirements in CPS.

SpaTeL [69] is the unification of STL and Tree-Spatial-Superposition-Logic
(TSSL) introduced in [12, 13] to classify and detect spatial patterns. TSSL rea-
sons over quadtrees, spatial data structures that are constructed by recursively
partitioning the space into uniform quadrants. TSSL uses the notion of spatial
superposition (introduced in [68]) that provides a way to describe statistically the
distribution of discrete states in a particular partition of the space and that en-
able to specify self-similar and fractal-like structures that generally characterise
the patterns emerging in nature. SpaTeL is equipped with both a qualitative and
a quantitative semantics that provide a measure or robustness of how much the
property is satisfied or violated. In [69] this measure of robustness is used as a
fitness function to guide the parameter synthesis process for the neighbourhood
prices in a demand-side management system model of a smart grid using particle
swarm optimisation (PSO) algorithms.

SSTL [16, 102] instead extends STL with three spatial modalities somewhere,
everywhere and surround, which can be nested arbitrarily with the original STL
temporal operator. SSTL is interpreted over a discrete model of space repre-
sented as a finite undirected graph. Each edge of the graph is labeled with a
positive weight that can be used to represent the distance between two nodes.
This provides a metric structure to the space, in terms of shortest path distances.
However, the weight can be used to encode also other kind of information (i.e.,
the average travelling time between two cities). In [102], the authors provide a
qualitative and quantitative semantics of SSTL and e�cient monitoring algo-
rithms for both semantics.

STREL [15] generalises SSTL by introducing two new spatial operators: reach
and escape. These operators enable to express the same spatial modalities in
SSTL and to compute the monitoring procedure locally at each location using
the information of its neighbours. While SSTL can operate only on static spatial-
temporal models (the position of the locations remains always fixed), STREL
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can handle also dynamic/mobile networks. Moreover, in [15] the authors show
that for a certain class of models (called euclidean spatial models), all the spatial
properties expressed in STREL that satisfy a model will also satisfy all the model
transformations using rotation, translation and reflection.

4.3 Matching and Measuring Temporal Patterns over CPS

Behaviours

In the introduction of this document, we mentioned that declarative specifica-
tion languages are typically based on temporal logics or regular expressions. Both
formalisms have their merits and weaknesses. Temporal logic are often good for
describing global behaviours and the expected relations between the events and
the states that evolve over time. In contrast, regular expressions are convenient
for expressing local temporal patterns (consecutive sequences of events at states)
that happen in a behaviour. In the digital hardware community, it has been ob-
served that the necessary expressiveness and succinctness of the specification
language is truly achieved when temporal logic is combined with regular expres-
sions. In fact, both IEEE formal specification language standards, SystemVerilog
Assertions (SVA) [126] and Property Specification Language (PSL) [55] adopt
this combined approach.

In the context of continuous-time applications, Timed Regular Expressions
(TRE) were proposed in [11] as a real-time extension of regular expressions.
For a long time, this formalism was subject to theoretical studies, but without
any real practical relevance. More recently, a novel algorithm for matching and
extracting TRE patterns from hybrid behaviours was developed in [124]. The
original o✏ine pattern matching procedure was extended with an online version
in [125]. These results on TRE pattern matching enabled the combination of
STL with regular expressions also in the continuous-time setting, as it was shown
in [64]. Finally, automated extractions of quantitative measurements from CPS
behaviours based on TRE patterns was proposed in [65].

5 Applications to Cyber-Physical Systems (CPS)

In this section, we provide an overview of the important applications of temporal
logic-based monitoring techniques presented thus far and conclude with a pre-
sentation of the practical challenges that need to be addressed through future
research.

5.1 Practical Considerations for CPS Monitoring

CPS integrate computation and control of physical processes to enable safety
critical applications in many domains including medical devices, automotive sys-
tems, avionics and power systems [88]. The problem of monitoring CPS has been
a productive area for the runtime verification community as a whole, leading to
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many important considerations such as monitoring timed properties, quantita-
tive semantics, simulation-guided falsification and online monitoring challenges.

Both o✏ine and online monitoring setups present unique challenges for CPS
applications. As described in Section 3, the o✏ine monitoring setup analyses
trace data collected from running a system, after the execution has terminated. A
key challenge includes that of monitoring large volumes of data e�ciently [26]. At
the same time, richer specification languages with higher computational worst-
case complexities can be accommodated in an o✏ine monitoring setup, exacer-
bating the challenge of e�cient o✏ine monitoring.

Online monitoring, on the other hand, is constrained by the limited ability
to store the trace as the system being monitored executes and the hard real time
demands on the computation time. Furthermore, in practice, monitoring is often
restricted to perform a single pass through the trace in the forward direction.
This naturally restricts us to specification languages that can be monitored e�-
ciently in an online fashion. For instance, the presence of unbounded until oper-
ators in the specification can potentially require a large lookahead to resolve the
truth of the formula appropriately [70, 66, 39]. Finally, if the monitoring shares
the same platform as the deployed system, it should be non-intrusive as much as
possible: in other words, its consumption of resources such as CPU time, memory
and I/O must not interfere with that of the running application [127]. The lat-
ter concern is especially acute for CPS, wherein instrumentation can potentially
interfere with critical timing properties of the system being observed.

Finally, physical measurements are well known to be noisy and they require
specialised sensors. As a result, the problem of monitoring under incomplete and
noisy measurements is especially relevant for CPS applications [83, 24].

Another important classification, especially for CPS applications, involves
the problem of modelling the physical environment surrounding the closed loop
being monitored [79]. Herein, di↵erent monitoring setups are distinguished by
the complexity and fidelity of the physical plant models and the software run-
time setup used [84]. Software-in-the-loop monitors properties using the control
system being designed and a mathematical model of the plant. Hardware-in-the-
Loop monitoring (also known as Processor in the Loop) executes the controller
on the runtime platform used during deployment, while using a mathemati-
cal model of the plant [120]. The monitoring challenges include the problem of
mapping the “simulation time” of the plant model to the real-time elapsed for
the real-time software. Model-based development environments such as Mat-
lab™, Simulink/Stateflow™, Modelica™, Scade™ and DSpace™ support soft-
ware/hardware in the loop testing and runtime monitoring for complex CPS [76].

Real-time Monitoring of CPS Monitoring of real systems in real time during
their execution requires adapting the techniques and the algorithms presented so
far in this document. In the case of real-time monitoring, the property observers
are implemented on a physical device that is connected to the system-under-
test (SUT) [105, 118, 119]. Several considerations must be taken into account -
the real-time sensing of the SUT signals and the environment, the frequency of
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the monitor operation that must be at least as high as the frequency at which
the SUT works, the limited availability of resources that are available on the
monitor device, etc. When considering real-time monitors implemented in em-
bedded software or hardware, it is often the case that both the computations
are done at the periodic intervals over the quantised input signals. In that case,
STL is interpreted over signals that are defined in discrete time and over finite
domains. While in this setting, STL is not more expressive than LTL, keeping ex-
plicit real-time operators and numerical inputs allows e�cient implementation
of monitors and allows giving them both qualitative and quantitative seman-
tics. A translation of STL specifications into real-time monitors implemented
in FPGA is proposed in [77]. A quantitative semantics for such STL properties
based on the weighted edit distance, together with the algorithms for computing
the robustness degree of a trace with respect to a property are developed in [78].

5.2 Property Falsification and Parameter Synthesis

In this section, we summarise work on the application of specification robust-
ness of traces (Sec. 2.2) to two very related problems: property falsification and
parameter synthesis.

Falsification techniques attempt to find a counterexample to a given property
and to a given model of a system (or even to the actual system). Falsification is
a rather valuable approach, generalising manual testing to an automatic search
for violating counterexamples. However, the core challenge in falsification is the
question of where to search for violations. This is a very challenging problem for
CPS due to the continuous nature of the input space which consists of initial
conditions and input signals to the model.

The problem of parameter synthesis for property satisfaction can be thought
of as a dual problem to the falsification problem. In the case of parameter syn-
thesis, the search is typically not over the space of initial conditions and inputs
to the model, but over the model’s parameters. In addition, the goal is not to
find a falsifying behaviour, but rather either a set of satisfying behaviours for
a range of parameters, or a parameter which induces a model which robustly
satisfies the property.

To automate the search, we may use specification robustness to provide guid-
ance on what to search for. Figure 9 illustrates the overall setup for falsification
and/or parameter synthesis. As pointed out in [103] and in [2], robustness is
a natural measure of a distance between a signal and a property. A tool that
tries to minimise robustness by searching over inputs and initial conditions is
in essence a tool for finding counterexamples. Similarly, a tool that attempts
to maximise robustness by searching over a range of parameters is a parameter
synthesis tool. To this end, a global optimisation engine is used to systemat-
ically guide the search for inputs (parameters) that minimise (maximise) the
overall robustness. The approach does not need to find the globally minimum
(maximum) robustness. Rather, it stops whenever the specification robustness
crosses a given threshold. For falsification methods, this threshold is typically
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Fig. 9. Setup for the falsification of properties using robustness metrics.

the value zero indicating a change from positive robustness values (correct be-
haviour) to negative robustness values (incorrect behaviour). Also, in the case of
counterexample search, even if a falsification is not obtained, then the minimum
robustness obtained can serve as useful information to provide the engineer.

The idea of minimising robustness to search for falsification or maximis-
ing robustness for parameter synthesis has been implemented in tools such as
Breach [46] and S-Taliro [10]. However, the challenges in these problems lie in the
choice of a global optimisation solver that can e�ciently (quickly) converge to
local optima. In theory, any such solver will have to fundamentally grapple with
the underlying undecidability of finding falsifying inputs for programs, in general.
On the other hand, approaches such as Nelder-Meade algorithm [101], Simulated
Annealing [103], Ant-Colony Optimization [9], Gaussian Process Optimization
with Upper Confidence Bound [18], and the Cross-Entropy method [115] have
been used to report success on large examples. Path-planning based methods
like RRTs (rapidly exploring random trees) combined with online monitoring of
STL robustness have shown promise in systems with hybrid dynamics [53].

As the model fidelity and complexity increases, so does the model simula-
tion time. Long computation times are acceptable in optimal design applications,
e.g., [58], since the system must be designed once; however, they can be problem-
atic in system testing applications. Typically, the developers may be willing to
wait overnight for test results, but most probably they will not be willing to wait
for a week, for example. To improve the performance of stochastic optimisation
methods, e.g., [103, 9, 18, 115], in [6, 1] they proposed hybrid techniques where
robustness descent directions are analytically computed and interleaved with
stochastic optimization methods. Such a process guarantees fast convergence to
local optimiser points. On the other hand, it requires a white-box model, i.e.,
the mathematical model must be known to the falsification algorithm. Recently,
the aforementioned restriction was relaxed in [130] where it was shown that the
descent directions can be approximated as long as the system simulator can
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provide linearizations of the model along the simulation trace of the system.
Finally, we should remark that some of the techniques which were used in [6] for
falsification were initially used in [50] for parameter synthesis using simulations
for computing reachable sets.

Automotive Systems Automotive systems present an important application
for many aspects of runtime monitoring and property falsification, discussed thus
far. As automobiles become ever more autonomous, it is important to check the
functional correctness of their core components.

The work in [62] describes the application of S-Taliro to automotive system
models. Therein, they show the presence of unexpected behaviours in an auto-
matic transmission model that were not revealed by previous testing approaches.
Falsification methods for stochastic systems were applied to stochastic models
of automotive systems in [3]. The presented framework for robustness guided
falsification in this section is also used as an intermediate step in specification
mining methods [129, 74]. The methods presented in [129, 74] are primarily ap-
plied to automotive applications. In [131], the authors applied Breach as part of
a compositional verification scheme for complex automotive system with many
sub-modules. The Breach requirement mining feature was used at the system
level to induce pre-conditions for sub-modules, making it easier to apply suc-
cessfully model-checking analysis at the module level. The contribution in [85]
formulated a library of control-theoretic specifications that can be expressed in
STL and showed its application to an automotive powertrain control benchmark.
Both STL and TRE have been recently used to specify, monitor and measure
hybrid properties of the DSI3 standard [106, 65].

CPS Engineering Education STL monitoring was used in the context of a
MOOC10 (Massively Open Online Class) teaching basic concepts of CPS de-
sign [82]. A key assignment was for the student to design, simulate and execute
on real hardware a control algorithm driving a robot in an environment with
obstacles. In order to evaluate hundreds of students contributions, a simulator
was designed and equipped with STL monitoring capabilities. Grading was then
done by evaluating a set of test cases and STL properties implementing fault
monitors, i.e., each STL property evaluated to true would indicate a specific type
of fault. The system would then return either some feedback if the user were a
student or a partial grade if the user were an instructor.

Systems and Synthetic Biology The growing need of computational models
and methods [25] to investigate and to design complex biological systems with
a predictable behaviour has also benefited greatly from the use of the aforemen-
tioned monitoring techniques. STL has become popular also among bioscientists
to specify in a concise and unambiguous way the behaviour of several cellular

10 https://www.edx.org/course/cyber-physical-systems-uc-berkeleyx-eecs149-1x
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and molecular mechanisms. The quantitative semantics of STL and its exten-
sions has triggered the development of several parameter synthesis techniques
and invaluable tools [18, 47, 12, 17, 69] to automatically characterise the parame-
ter region of a biological model responsible for a behaviour of interest. Similarly
to falsification analysis, parameter synthesis leverages an optimisation process
using a particular heuristic. The only di↵erence is that the objective function
is to maximise (instead of minimising) the robustness with respect to an STL
requirement. This approach has been successfully employed to study several bio-
logical case studies. Examples include the study of the onset of new blood vessel
sprouting [48], the programmed cell death (apoptosis) [123], the e↵ect of iron
metabolism on blood cell specialisation [100] and the logical characterisation of
an oscillator of the circadian clock in the Ostreococcus Tauri [19].

Medical Devices The growing area of closed-loop medical devices has led
to devices such as implantable pacemakers and artificial pancreas that provide
life sustaining treatments in real-time. As a result, the problem of monitoring
and verifying their operation takes on great significance. The broader area of
closed loop medical devices has received a lot of recent interest from the formal
verification community. This started with work on pacemakers and implantable
cardiac defibrillators (ICDs) that includes hybrid automata models for excitable
cells in the heart [20, 67], leading to approaches that employ these models to test
closed loop systems [109, 81, 80].

Other examples of safety critical medical devices include the ones used in
intensive care. In [34], the authors propose a method to automatically detect
ine↵ective breathing e↵orts in patients in intensive care subject to assisted ven-
tilation. Their approach is based on learning and monitoring STL specification
discriminating between normal and ine↵ective breaths.

More recently, also the artificial pancreas concept has emerged as an impor-
tant approach to treat type-1 diabetes, approaching a de facto cure [86].

Artificial Pancreas Control Systems The artificial pancreas concept refers to a
series of increasingly sophisticated devices that automate the delivery of insulin
to patients with type-1 diabetes in a closed loop, automatically responding to
changes in the patient’s blood glucose levels and activities such as meals and
exercise [72, 38, 86]. However, such systems can pose risks to the patient arising
from defects and malfunctions. Short-term risks include extremely low blood
glucose levels called hypoglycemia, that can lead to seizures, loss of consciousness,
coma or even death in extreme cases.

Cameron et al use robustness-guided falsification techniques for checking
properties of closed loop control systems for the artificial pancreas [36]. Their
work investigates a PID controller proposed in [128, 122, 121] based on published
descriptions of the control system available. The simulation environment incor-
porates this controller in a closed loop with models of the patient [99], the sensors
and actuators. Their work formulated nearly six di↵erent temporal properties of
the closed loop and obtained falsification for three of them. However, they could
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Fig. 10. Overview of the key components of an artificial pancreas control system.
b(t): external user commanded insulin, u(t): insulin infused to patient, G(t): blood
glucose level of the patient, n(t): sensor measurement error (noise), Gs(t): glucose level
estimated/reported by sensor, uc(t): insulin infusion commanded by the algorithm.

not falsify the remaining three properties that governed the absence of prolonged
hypoglycemia and hyperglycemia in the patient.

Another recent study [116] was performed to test a predictive pump shuto↵
controller designed in [35] that has undergone outpatient clinical trials [92]. This
study involved the entire controller software as is, without any modifications.
At the same time, the closed loop simulation permits us to pose a rich set
of questions that compare the closed loop performance with a corresponding
open loop under the same meal inputs and physiological model conditions. The
falsification discovered adverse noise patterns in the CGM sensor that could
trick the Kalman filter into predicting inaccurate forecasts for the future glucose
value, and thus prevent appropriate pump shuto↵/resumption. At the same time,
critical properties such as not commanding excess insulin when the patient is in
hypoglycemia could not be violated. The study concluded the need to investigate
these violations under more realistic patterns of CGM noise.

6 Tools

Due to relatively low computational complexity of the online and o✏ine mon-
itoring algorithms, many software tools have been developed over the last two
decades. Among the first tools that were developed for monitoring (a subset
or superset) of Boolean-valued temporal logic specifications were the Temporal
Rover [54], MaC [89], Java PathExplorer [70] and LOLA [39]. Since then, there
has been a wealth of research on on- and o↵-line monitoring of requirements
expressed in some form of temporal logic (see for example the competition at
the Runtime Verification conference series [14, 63, 112, 23]) and several publicly
available tools have resulted from this e↵ort, for example:
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1. RV-Monitor [91]: is available at
https://runtimeverification.com/monitor/

2. MonPoly [27]: is available at
http://www.infsec.ethz.ch/research/projects/mon_enf.html

3. LTLFO2Mon [28] is available at
https://github.com/jckuester/ltlfo2mon

The review in this section focuses only on tools that can reason about real-
time properties of traces (output signals) since this is a necessity for testing
and monitoring for Embedded and Cyber-Physical Systems. In addition, the
focus is on publicly available software tools for o↵- and on-line monitoring that
can be readily downloaded and utilized in testing and monitoring applications.
Some of these tools are open source with licenses that allow extensions and
redistribution. In the following, we group the software tools survey into two
main broader categories: Boolean semantics and multi-valued semantics.

6.1 Software Tools for Boolean Semantics

In the first category, i.e., Boolean semantics, the tool AMT [108] available at:

http://www-verimag.imag.fr/DIST-TOOLS/TEMPO/AMT/content.html

analyzes STL properties over analog system output signals. In particular, the
properties analyzed by AMT are an extension of the industrial specification
language PSL with STL requirements. The software tool AMT is a stand alone
executable with a graphical interface where the user provides the STL/PSL prop-
erties, the signals and whether the analysis is going to be o✏ine or incremental.
In return, the tool plots the Boolean satisfaction of each property over time.

6.2 Software Tools for Quantitative Semantics

When considering software tools for evaluating quantitative semantics of STL
over signals, there are several options. The following tools are publicly available
and they can monitor both real valued and Boolean signals:

1. Breach [46]: available at
https://github.com/decyphir/breach

2. S-Taliro [10]: available at
https://sites.google.com/a/asu.edu/s-taliro/

3. U-Check [31]: available at
https://github.com/dmilios/U-check

Breach and S-Taliro are add-on toolboxes for the Matlab environment while
U-Check is a stand-alone program written in Java. Breach and S-Taliro provide
analysis tools for black box testing of models and hardware-in-the-loop systems
while U-Check deals with stochastic models (Continuous-Time Markov Chains).
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Table 2. Tools for reasoning with multi-valued temporal logics and their functionality.

Analysis Functionality Breach S-Taliro U-Check

Signal O✏ine testing [46, 49] [60, 62, 61]

Online monitoring [40] [43]

System Falsification [46] [2]

(best e↵ort) Coverage Testing [45]

Requirement Mining [129] [132, 74]

Parameter Synthesis [46] [117] [31]

Conformance [4]

Specification Visual specifications [75, 73]

Debugging [44]

The e�cient evaluation of STL requirements over real-valued and Boolean
signals gave raise to a number of semi-formal verification methods from testing
based verification [59] to parameter mining [132, 129] to falsification [2] to syn-
thesis [111]. As reviewed in Section 5, the aforementioned methods have been
applied to a wide range of practical applications. Table 2 provides an overview
with references of the various analysis methods that each tool supports.

7 Conclusion

Cyber-Physical Systems (CPS) combine heterogeneous and networked compu-
tational entities with physical components interacting with them through sen-
sors and actuators. Continuous and hybrid behaviours naturally arise from such
dynamical systems. Here, we have provided an in-depth overview of the state-
of-the-art techniques for CPS monitoring.

The common denominator of all these methods is the possibility to express in
a very powerful, concise and unambiguous way the properties of interest using a
formal specification language. In this work, we have mainly focused our attention
on Signal Temporal Logic (STL), a formalism enabling the designer to reason
about real-time properties over real-valued signals. In the recent years, there has
been a great e↵ort to provide e�cient algorithms to support online and o✏ine
monitoring of STL formulas over (system output) signals.

The introduction of novel quantitative semantics has considerably widened
the spectrum of applications from just monitoring qualitatively real-time signals
to providing novel falsification analysis and parameter synthesis techniques in
model-based testing as well as hardware-in-the-loop testing. As a consequence,
the application domains have also grown dramatically, ranging now from auto-
motive systems to synthetic biology and medical devices.

We believe that these techniques will play more and more a key role in
industry in the design and engineering safe and resilient CPS and/or to equip
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them with real-time hardware-based monitors enabling CPS self-awareness and
adaptation.
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Abstract. This chapter surveys runtime verification research related to
distributed systems. We report solutions that study how to monitor sys-
tem with some distributed characteristic, solutions that use a distributed
platform for performing a monitoring task, and foundational works that
present semantics for decomposing monitors or expressing specifications
amenable for distributed systems.
We will identify some characteristics that distinguish distributed mon-
itoring from centralised monitoring, and characteristics that allow to
classify distributed runtime verification works based on features of the
executing platforms, the specification language and the system descrip-
tion. Then, we will use these characteristics to describe and compare
the distributed runtime verification solutions proposed in the research
literature.
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1 Introduction

This chapter surveys works on runtime verification (RV) related to distributed
computing systems. Distributed computing is the area of computer science de-
voted to the study of distributed systems: computational artifacts that run in
execution units placed at di↵erent locations, and that exchange information us-
ing a communication infrastructure, such as a computer network (see Coulouris
[38], Garg [63], Attiya and Welch [4]).

Since distributed systems encompass many di↵erent but related classes of
systems, the terminology has not been uniformly used. We begin by clarifying
what we mean in this chapter by di↵erent terms and conventions commonly used
in distributed computing, particularly with respect to monitoring.

The computational units that form a distributed system are typically able to
execute processes simultaneously, under true concurrency. Each computational
unit can run more than one process, and independently manage a set of local
resources, typically including local memory and a local clock. We call each of
these computational units a location.



There are two large classes of distributed systems, according to the way
in which processes communicate and synchronize: systems that can use shared
memory, and systems that can only use some form of message passing as means
of communication. It is nowadays widely accepted to refer to the former as par-
allel systems and to the latter as distributed systems, and here we follow this
convention. Additionally, some systems assume the existence of a shared clock
(also called global clock) among the computational units, which is another usual
classification criteria. When one assumes the existence of a global clock, the
distributed system is usually called synchronous or decentralised system. If the
global clock is not assumed then the system is called asynchronous distributed
system or simply a distributed system. Sometimes the communication infrastruc-
ture within the distributed system is simple, as in the case of buses or broadcast
communication, but it is often the case that the network topology is relevant for
the study of a given class of distributed systems. We follow the convention that,
unless specified otherwise, all execution units can talk to all other execution
units directly.

In practice, components of distributed systems can fail independently. Loca-
tions are typically the units of failure, modeling crashes on the execution plat-
form that cause all processes in the location to stop their execution. Moreover,
messages in message passing systems can arrive out-of-order, be duplicated or
lost, or experience unbounded delays. The nature of the failures and the high
independence of failure between the di↵erent components is another factor of
complexity when dealing with distributed systems. Unless stated, it is common
in distributed systems to assume that the system under study presents no fail-
ures. We follow this convention here too.

Due to their concurrent nature and to the other aspects of distribution, it
is well-known that distributed systems are notoriously di�cult to design and
reason about. Throughout the years researchers have proposed many techniques
to increase the reliability of distributed algorithms and systems, including dy-
namic solutions. These e↵orts include the development of runtime verification
techniques for distributed computing, which we report here. We will use dis-
tributed runtime verification to refer to the broad area of research that studies
runtime verification in connection with distributed or decentralised systems. This
includes the monitoring of distributed systems as well as the use of distributed
systems for monitoring. Due again to these intrinsic di�culties, distributed run-
time verification is a very active area of research and new results will be produced
in the near future.

Terminology A distributed and decentralised monitoring setting is typically
built from subsystems, which we identify with processes for the discussion in
this chapter. We use P1, P2,. . . to refer to processes. Processes execute indepen-
dently and occasionally synchronize or communicate with each another via the
underlying communication platform.

Processes are partitioned across locations, meaning that every process is lo-
cated at exactly one location for any given instance. We use l, k,. . . to refer to
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locations. When two processes are co-located at the same location, we say that
they are local to one another. Otherwise, we say that they are remote. Processes
may interact and communicate with both local and remote processes. Remote
communication is typically assumed to be more expensive than its local coun-
terpart.

A local trace (or simply a trace), denoted T1, T2, . . . constitutes a log of past
behavior used for monitoring purposes. A trace consists of a totally ordered set
of trace events, each describing discrete computational steps of the monitored
system. The ordering of trace events is necessary for the monitoring of temporal
properties. A trace can describe events corresponding to a single process or else
a group of processes. Although a particular location may host a number of traces
(e.g., one per process hosted), we assume that a local trace cannot span across
locations.

A monitoring task can be performed online, while the system under analy-
sis is running, or o✏ine by analysing the log after the system has finished its
execution. Here we consider both kinds of solutions.

In runtime verification, monitors are created from specifications, but we will
use monitoring and runtime verification interchangeably in this chapter. In online
runtime verification, monitors—denoted as M1, M2, . . .—are computing entities
that check at runtime for the satisfaction or violation of correctness properties of
the running system. Di↵erent monitors can be created to verify di↵erent prop-
erties simultaneously, and also in a modular fashion, which generally leads to
better separation of concerns. The checking that the monitors perform is car-
ried out by analysing the traces generated by the executing processes. Similar
to processes, monitors are hosted by a single location for any given instance. We
allow monitors to analyse multiple traces in order to generate composite traces.
We do not put restrictions on whether a monitor is allowed to analyse local or
remote traces, but highlight the fact that remote trace analysis may carry ad-
ditional overhead costs and entail higher security risks. Monitors are allowed to
communicate with one another, which gives the flexibility for property checking
to be carried out in a decentralised or choreographed manner (see Section 4.2
and Section 4.4).

The rest of the chapter is organised as follows. Section 2 presents a collec-
tion of reasons that have been proposed in the literature to motivate the study
of distributed runtime verification problems. Section 3 identifies a number of
characteristics that are relevant in the study of the solutions proposed; these
characteristics serve as a basis to classify and compare the proposed solutions.
Section 4 contains a description of the di↵erent ways to organize the activities
carried out by the monitoring infrustructures. Section 5 describes a collection
of solutions proposed in the literature, classified according to the attributes de-
scribed in the preceding sections. Finally, Section 6 presents current challenges
and concluding remarks. The following diagram illustrates the dependencies be-
tween the sections.
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Essentially, Section 5 contains the description and comparison of relevant work,
using the classification characteristics extracted in Section 3.

2 Motivation and Scenarios

In this section we justify the study of distributed runtime verification. We present
di↵erent scenarios that motivated research related to distributed runtime veri-
fication, according to the problem that these e↵orts were trying to solve. The
list we present here is not intended to be exhaustive but its purpose is to give
some practical justifications for the study of distributed runtime verification.
Similarly, we do not claim that the papers cited are necessarily the first work
to propose the study of a similar class of problems. The works mentioned below
are further discussed in Section 5.

Observing Distributed Computations The obvious setting where distrib-
uted monitoring arises is when the system under scrutiny is itself distributed.
One important problem related to observing distributed computations is that of
detecting global predicates, which is recognised as an important problem since
the early ages of distributed computing (Cooper and Marzullo [37]).

It is known that checking general predicates is hard, since one has to store
and enumerate all interleavings of the local processes. The so-called computation
slices can be used for a more e�cient detection (see Mittal et al. [80], Alagar
and Venkatesan [1], Chauhan et al. [30]). Computation slices are abstractions
of the distributed computation that guarantee the following: the predicate is
present in a slice of a computation c if the predicate occurred in some state of
c. This approximation is precise enough to detect the predicate. If an algorithm
is too general and does not exploit the structure of the predicate under consid-
eration, predicate detection can involve a long runtime and large memory over-
head (Chauhan et al. [30]). Hence, best current solutions for predicate detection
consider only fragments of the possible space of global predicates (for example
the so-called linear, relational, regular and co-regular, and stable fragments) to
gain e�ciency. Even though most techniques for predicate detection (Cooper
and Marzullo [37], Mittal et al. [80], Alagar and Venkatesan [1]) send all local
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events to a central process for inspection of its interleavings, some modern ap-
proaches (see Chauhan et al. [30]) consider purely distributed detection. Based
on Chauhan et al. [30], Mostafa and Bonakdarpour [81] adapt the work to check
whether properties defined using LTL are satisfied.

Analysis Decomposition Most approaches to runtime verification either con-
sider the system under dynamic evaluation as a black-box, or only inspect the
internals of the monitored system with the goal to instrument the system for the
monitoring task. However, it is common—using design principles like component-
based design—that the description of the system is decomposed into di↵erent
units.

For example, the work by Falcone et al. [49] investigates how to use the hier-
archical description of the system to generate monitors that are then composed
with the original system. This process produces a modified system that shares
the original decomposition (and implements its functionality) and also includes
the monitors embedded. Within this setting, the authors study how to compile
a given design into either a centralised or a decentralised platform by deciding
the placement of components using di↵erent deployment possibilities. Although
the work by Falcone et al. [49] does not specifically target distributed systems,
the solution obtained from the compilation of the modified system can lead to
a distributed monitoring solution if the target platform is distributed.

A similar approach is exemplified by Cassar and Francalanza [24, 23], where a
framework for monitoring asynchronous component-based systems is presented.
Again, the authors do not treat the system under scrutiny as a single monolithic
block, but identify its constituent sub-components in the form of independently
computing entities, called actors. The resulting monitoring setup generated is
also localised to sub-components of the system, mirroring its non-monolithic
structure. Even though actor systems are not necessarily executed in distributed
fashion, the asynchronous nature of the code generated and its localisation lead
to a straightforward distribution.

Exploiting Parallelism Another justification for studying runtime verification
in the context of distributed systems is the exploitation of parallel executing units
to perform a monitoring task. For example, Berkovich et al. [14] propose to use
additional hardware (a GPU parallel execution platform) to minimize the impact
of online monitors on execution time overhead, reducing the intrusiveness. More-
over, the works by Francalanza and Seychell [60, 61] report performance gains in
terms of lower overheads when monitors are specified as concurrent entities and
executed over the prevalent multi-core and multi-processor architectures. This
gain is obtained because the concurrent monitors exploit better the resources of
the underlying processing units.

Fault Tolerance Handling failures in distributed systems is challenging be-
cause di↵erent components can fail independently (e.g., nodes crashing) and the
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communication can miss, duplicate or reorder messages or incur in unbounded
delays (Francalanza and Hennessy [59]). Even worse, there can be complicated
failure dependencies between components, and the resulting failure patterns can
be di�cult to predict and explain.

At the same time, failure tolerance can be achieved by replicating components
that perform a certain task, including monitors. For example, Fraigniaud et al.
[54] study the problem of distributed monitoring with failures, where events can
be observed from more than one monitor, but the nodes where the monitors
execute can crash. The distributed monitoring algorithm then tries to reach a
verdict among the surviving monitors.

The work by Basin et al. [7] targets the incomplete knowledge caused by
network failures and message corruptions and attempts to handle the resulting
disagreements. A subsequent work investigates how to handle network failures,
and proposes algorithms that can reach verdicts when some information is miss-
ing and messages are reordered (see Basin et al. [8]). Since message losses are
also considered, this approach can also model node crashes, which are simulated
by all messages from the crashed node being lost.

E�ciency In many distributed systems scenarios, a simple monitoring solution
can be obtained by implementing a central monitor that all other entities com-
municate with. However, distribution itself can be exploited to coordinate the
monitoring task more e�ciently. Many works attempt to provide more e�cient
solutions by exploiting the locality in the observations to also perform partially
the monitoring task. For example, the works by Falcone et al. [49] and by Cassar
and Francalanza [23, 24], already mentioned, exploit the hierarchical structure
of the system to generate local monitors. On the other hand, Cassar et al. [25]
and Francalanza and Seychell [60, 61] exploit the structure and semantics of the
correctness property from which the monitors are synthesised to generate mon-
itor organisations that use the underlying hardware e�ciently. Concretely, the
generated monitors minimize idle computing units and improve memory manage-
ment via redundant monitor deallocations and monitor network reorganisations.
These works pursue a more e�cient monitoring where less communication and
execution overhead is needed.

The pursuit of lowering overheads has also led Colombo et al. [36] to consider
distribution as a means of o✏oading part of the monitoring computation to
the computing resources of another machine. They provide handles that allow
the specifier to dictate whether a property is to be runtime-checked locally,
as inlined code within the monitored system, or remotely via an independent
monitoring unit located on a separate machine. In separate work Colombo et al.
[32] investigate various instrumentation techniques in Enterprise-Service Bus
(ESB) distributed architectures, so as to determine which of them lead to lower
monitoring overheads.

As observed by Bauer and Falcone [11] and in Francalanza et al. [58], when
atomic observations of the monitored system occur locally, one can organize the
monitors hierarchically according to the structure of the original specification.
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This can lead to substantial savings in communication overheads because a ver-
dict of a subformula can often be reached further down hierarchically. From the
practical point of view, Bauer and Falcone [11] claim that many cyber-physical
systems, like distributed systems found in the automotive and avionics indus-
tries, fulfill the requirement that both observations and their placement to local
nodes are known at deployment time.

In the context of multithreaded programs with shared memory, the work
of Luo and Roşu [74] proposes to decompose a given property into local decen-
tralised monitors for each of the threads, which again helps to reduce monitoring
overheads.

Monitoring Expressivity Some approaches borrow directly monitoring lan-
guages from non-distributed computing, and study how to exploit or adapt the
methods for distributed systems. Other approaches present new formalisms or
extend existing ones with specific capabilities for distributed systems. For ex-
ample, Sen et al. [90, 91] propose a method to check for violations of safety
properties in distributed systems, using a variation of LTL that is suitable to
describe (past time) properties of distributed systems. This extension essentially
allows to express the knowledge of particular agents. The work in Francalanza
et al. [58] proposes and formalizes a migrating monitor setup so as to better
handle the open-ended and dynamic nature of distributed systems. This helps
monitoring to adapt to locations that are learnt dynamically and to varying cor-
rectness specifications over the course of long-running distributed computations.

The e�ciency of migrating monitors is investigated by Bauer and Falcone [11]
for fixed-location setups. The subsequent work Colombo and Falcone [34] extends
these results and compares them to choreographic solutions (see Section 4.4).

Testing and Enforcement Testing multithreaded programs is in general a
challenging task because often concurrency errors arise only under specific in-
terleavings and execution conditions, which are hard to cause and reproduce
due to the non-determinism introduced by the scheduler. The work by Luo and
Roşu [74], already mentioned, presents an enforcement mechanism that exploits
user-specified properties to generate local monitors that can influence the execu-
tions. This approach either (1) attempts to improve testing by forcing promising
schedules that can lead to violations; or (2) prevents violations of the specified
property by blocking individual threads whose execution may lead to a viola-
tion. This kind of enforcement is otherwise typically implemented using ad-hoc
manual synchronisation. The monitoring generation described in [74] includes
the decomposition of the property into local decentralised monitors for each of
the threads.

3 Characteristics of Distributed Runtime Verification

In this section we capture some challenges that distributed systems impose on
monitoring and the main di�culties that must be tackled by solutions to dis-
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tributed runtime verification. We begin in Section 3.1 by describing some key
characteristics of distributed system monitoring, particularly following a histor-
ical perspective. Overall, we consider 14 characteristics, denoted (C1)–(C14).
Some of them (in particular (C1)-(C5)) are common to most distributed mon-
itoring solutions, but are not typically a concern for non-distributed systems.
Other criteria are not oblivious to all distributed monitoring cases, but identify
aspects that will allow us to extract some classification dimensions, according to
the approach taken by each solution. Most of these characteristics are also either
unique to distributed systems or more challenging and important in distributed
systems than in non-distributed systems. The classification aspects are listed
later in Section 3.2.

3.1 Common Characteristics

Already in the late 1980s, Joyce et al. [71] identified five issues in monitoring
distributed systems, in an early attempt to characterize the key constraints that
distinguish monitoring in sequential settings from monitoring in distributed sys-
tems:

(C1) The fact that distributed systems have many foci of control ;
(C2) The presence of communication delays among nodes, which makes it di�-

cult to determine a system’s state at any given time;
(C3) The inherent non-determinism in distributed and asynchronous systems;
(C4) The fact that monitoring a distributed system alters its behavior ;
(C5) The complexity of the interactions between the system and the system

developer.

Aspect (C1) captures the idea that a distributed system is composed of pro-
cesses running independently in distributed execution units. Issue (C2) refers to
one of the aspects of message passing systems. We will later refer to this as-
pect that allows to distinguish between systems that are not synchronised (see
Global Clock below) and where messages can be unboundedly delayed or be
lost (see Failures below). Not all current research in distributed monitoring
assumes that messages can su↵er independent delays. Issue (C3) refers to the
non-deterministic and asynchronous nature common to many distributed sys-
tems. Issue (C4) refers to the intrusiveness of monitoring in the system under
analysis, which is not a unique characteristic of monitoring distributed systems.
We consider here intrusiveness as a key characteristic (see Intrusiveness be-
low). Finally, issue (C5) refers to the additional complexity (when compared
with non-distributed systems) for the engineer exercising the monitoring infras-
tructure, in terms of deploying the monitors and collecting and analysing the
reported data. We do not develop (C5) further in this chapter as we focus on
runtime verification, and not on software engineering aspects.

Another work that explores monitoring distributed systems and identifies
common and classifying criteria, by Francalanza et al. [57, 58], extracts the
following characteristics:
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(C6) Di�culties in keeping a global state;
(C7) Confidentiality of the information collected and communicated;
(C8) Trace analysis locality ;
(C9) Dynamic aspects of specifications;
(C10) Locations constitute units of failure.

Maintaining a global state in a distributed system under observation is im-
practical for several reasons, captured by aspect (C6). One reason is that some-
times it is even theoretically impossible to build and maintain a global view, due
to the lack of global clocks, asynchrony, message loss and reordering, etc. Even
when it is theoretically possible, it is common that the volume of event messages
that are required to build such a global view would substantially increase the
monitoring overhead, making it impractical. Most works recognize that although
such a central solution would greatly simplify monitoring, it is either too complex
or too intrusive. This di�culty will be captured as Global Clock and Failures

below.
Aspect (C7) is related to security (also mentioned by Falcone et al. [46]).

Every time a trace of events is communicated across locations, the confidentiality
of the information contained may be compromised. Solutions that encode and
decode this information can further increase the monitoring overhead. However,
we will not discuss this security aspects in this chapter.

Aspect (C8) refers to where the monitors are placed and where the events
from the observed system are collected. Ideally, local monitors should analyse
events locally and then communicate analysis summaries across locations. On
the other hand, placement sometimes involves additional restrictions. For exam-
ple, certain locations may not allow monitoring to be carried out locally due to
resource constraints. Placement is often at odds with locality, which sometimes
involves dynamic aspects. There are cases when it is di�cult to anticipate the
location where certain computations will be executed because this location de-
pends on some runtime information that is hard to infer statically. Aspect (C8)
is related to the distribution of the monitoring process, and in particular refers
to the preference of decentralizing it (see Centralisation below).

Aspect (C9) considers that in long-running applications without a central au-
thority, correctness specifications may not be all available prior to deployment.
Some specifications are added at runtime, while the system is already executing,
which disables the static placement of monitors. Dynamic aspects of monitoring
are considered in (C8) and (C9), caused by either unpredictable aspects at de-
ployment time, or constraints in the execution platform which restrict installing
monitors dynamically. Finally, aspect (C10) considers again the issue of failures
(see Failures below).

In a recent short paper, Bonakdarpour et al. [20] discuss the following four
issues as distinctive, characteristic challenges of distributed runtime verification:4

(C11) Modeling a distributed RV system (particularly the system under obser-
vation);

4The distributed RV considered in Bonakdarpour et al. [20] is a general monitoring
solution that runs on an infrastructure that is unreliable and unable to solve consensus.
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(C12) Defining and evaluating distributed correctness specifications;
(C13) Using di↵erent verdicts on the state of the monitored system;
(C14) Giving semantics to the di↵erent verdicts.

Aspect (C11) concerns both the actual implementation of a distributed sys-
tems’s description (including whether it is used in the monitoring process, see
issue Exploiting System Description below), as well as e↵orts devoted to de-
scribing the monitoring solutions (see Section 4). It is well-known that describing
precisely the semantics of distributed systems is more di�cult than when cen-
tralised systems are considered. Aspect (C12) is related to the formalism used
to describe monitors (see Distributed Specifications). Finally, the last two
issues (C13) and (C14) are more specific to the solution provided in [20]. The
first issue (C13) states that local monitors need to emit verdicts from richer
domains, not just Boolean values, due to the necessary amount of information
that needs to be collected and combined. This aspect has already been witnessed
in monitoring non-distributed systems using LTL3 (see Bauer et al. [13]), where
the semantics of LTL for finite traces is expressed using a 3 valued domain (the
third value captures the possibility of expressing an unknown verdict, which may
become later true or false when new observations are made). Issue (C13) refers
to the use of multi-valued domains as verdicts emitted the local monitors in the
distributed systems. Issue (C14) refers to how these multiple verdicts can be
combined during the creation of a final verdict.

3.2 Distinguishing Characteristics

We now list six dimensions that will allow us to distinguish the di↵erent lines of
research and classify the solutions proposed.

Exploiting System Description Most work in RV focuses on building moni-
tors that can analyse any system (under some general assumptions), that is, the
system is consider as a black-box that emits the necessary signals to the moni-
tors. On the other hand, some other approaches exploit the system’s description
to generate specialised monitors. Examples of system’s descriptions proposed
include models of the system, abstractions or even full descriptions as programs.
In this case, the monitors generated are only guaranteed to be correct for the
specific system analysed, and in case a di↵erent system is finally deployed with
the monitor, the verdicts of this monitor may not be correct. On the other hand,
solutions that consider the system as a black-box generate monitors that are
correct for every system (that fulfills some general assumptions) at the price
of potentially less e�ciency. For example, algorithms that generate monitors as
finite state machines from LTL specifications work for all systems as sources of
traces. If the monitor can rule out certain paths using concrete facts of the sys-
tem under observation, obtained by static analysis for example, then the monitor
can be specialised into a smaller finite state machine.

In some cases only certain aspects of the system description are used to build
the solution, like the number of distributed nodes, the location of the individual
predicates emitted by the running system, or the topology of the network.
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Centralisation Even if the system under observation is intrinsically distributed,
the monitoring task can be performed in a central location that collects informa-
tion from the remote units. However, solutions with a central monitor have many
drawbacks from the points of view of overhead, e�ciency, tolerance to faults and
security. For these reasons, many solutions attempt to divide the monitors into
local monitors and perform part of the monitoring activities locally, in a dis-
tributed fashion.

Global Clock There are two large classes of distributed runtime verification
techniques depending on whether it is assumed that all nodes have access or
not to a global clock (or to perfectly-synchronised local clocks). In case a global
clock is assumed, the system under analysis is equivalent to a synchronous sys-
tem (following distributed computing terminology). In this case, we call the
problem decentralised monitoring. Similarly, when monitors do not have access
to a global clock we refer to the problem as distributed monitoring. Another
characteristic feature of monitoring distributed systems is asynchrony, both be-
tween the monitors and the distributed system under scrutiny, and among the
distributed monitors themselves.

Monitoring a distributed system often amounts to monitoring a message pass-
ing system. We reserve the term non-distributed systems for those systems that
have a global clock and direct access shared memory between all computational
units. For example, parallel systems (as defined above) are non-distributed sys-
tems with several concurrent execution units.

Distributed Specifications One key classification criteria is whether the spec-
ification language from which monitors are generated has specific features for dis-
tributed systems, that is whether the formalism allows to refer to characteristics
of the distributed platform. Some approaches borrow directly a language origi-
nally proposed for non-distributed systems, like LTL, and attack the problem of
monitoring distributed systems against specifications written in this language.
Other approaches start by introducing a modified specification language with
some distributed feature, and then develop specific monitoring algorithms for
this language.

Failures In practice, both non-distributed and distributed systems are subject
to failures. However, failures in distributed systems can be more subtle than in
non-distributed systems due to the physical independence of the executing units.
Even though most monitoring solutions assume that no component can fail, some
approaches consider the possibility of some part of the distributed system failing.
In particular, some of the failing aspects considered are network delays in the
transmission of the messages, message loss or duplication, message corruption
and node crashes. Even though Byzantine failures have been thoroughly studied
in distributed systems, this aspect has received little attention in the area of
monitoring distributed systems.
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Intrusiveness As already identified in early surveying e↵orts (see (C4) above),
the monitoring process typically modifies the behavior of the monitored sys-
tem. Naturally, most works focus on the e↵ectiveness of the monitoring solution
proposed, that is, on proving that the monitoring process actually detects the
intended property. Some research also considers the e�ciency of the combined so-
lution (in terms of running time, number of messages, etc) and in some few cases
how the monitoring process a↵ects the running system (that is, how intrusive
monitoring is). Moreover, some works are intrusive on purpose, trying to reduce
the intrinsic non-determinism of the running system with the goal of avoiding
failures (like in enforcement) or provoking failures (for testing purposes).

4 Monitor Organisations

In this section we explain and compare the various ways in which monitoring
distributed system activities can be organised. The various monitoring organisa-
tions can be explained in terms of the di↵erent configurations used to compose
these components together as a monitoring infrastructure contributing towards
a common goal.

The analysis of correctness properties concerning di↵erent processes, possibly
spanning across di↵erent locations, often requires the aggregation of traces into
composite traces. We will generally assume that the composition of two remote
traces does not necessarily yield a total ordering among the events of the resulting
composite trace, but instead gives a partial ordering. Monitors can communicate
with each other to coordinate the monitoring task.

4.1 Traditional Monitoring

A traditional monitoring setup, depicted in Figure 1, typically consists of a
group of processes (P1, P2 and P3 in the figure) that reside at one location (l).
These processes generate a single local trace (T1) that is analysed by a single
monitor (M1), also located at the same location. Even if these processes execute
concurrently and are subject to a di↵erent interleaving every time the system is
executed, the monitoring setup will always report a trace with a total ordering
of events reflecting the executed interleaving.

4.2 Decentralised Monitoring

As depicted in Figure 2, a decentralised monitoring setup resembles traditional
monitoring in that all process executions and trace events are governed by a sin-
gle global clock. Moreover, processes and monitors can communicate using syn-
chronous channels, and computations are totally ordered. Consequently, traces
can also be totally ordered, either explicitly as one data structure or locally by
using time-stamps.

In contrast to traditional monitoring which is typically performed by a sin-
gle monolithic monitor, monitoring in a decentralised and distributed setup is
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interaction interaction
P1 P3

T1

P2

M1

l

Fig. 1. A traditional (centralised) monitoring setup where processes P1, P2 and P3

generate a single trace T1 observed by a single monitor M1. The interaction between
processes illustrate that processes may communicate or synchronize, even though it is
not assumed that they do (as P1 with P3 in the figure).

interaction interaction
P1 P3

T1

P2

M1 M2 M3
interaction interaction

kl

Fig. 2. In a decentralised monitoring setup the synchronised trace T1 can be processed
by several independent monitors. Now monitors can interact (like M1 and M2, and M2

and M3) but are not required to (like M1 and M3). Also, monitors and processes can
be placed at di↵erent locations that share a global clock (l and k in the figure).

decomposed into di↵erent sub-components (M1,M2,M3) reflecting the fact that
a global correctness property may be decomposed into smaller properties. For
instance, in cases where trace events may be attributed to di↵erent system units
(e.g. classes or objects), each monitor may selectively analyse events pertaining
to a particular unit entity (e.g. all the method call invocations on a particu-
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l

P3
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Fig. 3. In an orchestrated monitoring setup, traces are independently produced locally
at the location of processes, but can be processed by remote monitors.

lar object) and then communicate aggregate monitoring information to other
monitors in order to verify a global property. It is common that sub-monitors
reflect some decomposition of the specification, but sometimes sub-monitors are
obtained directly by the placement of parts of the specification into locations
without much decomposition.

There are also cases in which the correctness properties are inherently sepa-
rate and concern only a subset of processes as in the case of parametric monitor-
ing where the property can be evaluated independently for di↵erent parameter
instances (see, e.g., Chen and Roşu [31]). In this case, monitoring may be de-
centralised in a natural manner without the need for the individual monitors to
communicate.

4.3 Orchestrated Monitoring

Orchestrated and choreographed monitoring approaches are used in settings
where more than one process is dispersed across more than one location. The
set of processes generate more than one trace that can only be partially ordered
due to the absence of a global clock.

In an orchestration all monitoring is ultimately performed centrally by a
single monitor, accessing the respective trace events from di↵erent locations.
The approach is depicted in Figure 3, which shows two sub-systems located
at l and k, each producing local traces of events (T1, T2 and T3 respectively),
subsequently analysed by monitors M1,M2 and M3 from a remote location g.
Each of these monitors analyse an independent correctness property.

On the one hand, the centralisation of the analysis simplifies the logic of
the monitor, which is conducive to a decrease in errors in the monitor code it-
self. However, these benefits come at a cost in distributed settings such as the
one depicted in Figure 3. First, the approach leads to a substantial increase
in the volume of trace information which has to be transmitted remotely for
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Fig. 4. In an choreographed monitoring setup, traces are independently produced lo-
cally at the location of processes and can be processed by di↵erent monitors indepen-
dently.

monitoring. The considerable increase in communication overhead across loca-
tions a↵ects monitoring scalability when the number of processes and locations
increases. The approach is also susceptible to data exposure when the trace
events transmitted across locations contain private information. Adding addi-
tional security layers via mechanisms such as encryption further increases the
monitoring overhead. Finally, the architecture poses a security risk by exposing
the monitor as a central point of attack from which sensitive information can be
tapped. Nevertheless, restricted forms of the orchestrated monitoring approach
can be suitable when dealing with public information that is communicated over
a relatively safe medium.

4.4 Choreographed Monitoring

A choreographed monitoring approach also targets system settings consisting
of multiple processes dispersed across more than one location. In contrast to
orchestrated monitoring, choreography-based approaches push the runtime veri-
fication activities locally to the location where the traces are generated, as shown
in Figure 4. The diagram depicts four processes, located at three locations l, k,
and h, each generating local traces, with monitors M1, M2 placed at l, and M3

placed at k. The monitor decomposition is not only due to the independence of
the correctness properties being checked. In fact, monitors M2 and M3 could be
verifying the same global property and eventually interact with each other in
order to synchronize their monitoring e↵ort.

The appeal of localizing monitoring is the potential minimisation of data
exposure and communication overhead. By verifying locally, we avoid having to
transmit trace information to a remote monitor. Moreover, localised monitors

15



typically require less communication than remote monitoring using a central
monitor. However, choreography is more complex to instrument, since correct-
ness properties need to be decomposed into coordinated local monitors. Fur-
thermore, choreographed monitoring is also more intrusive, by burdening the
monitored subsystems with additional local computation, and is thus applicable
only when the hosting locations allow local instrumentation of monitoring code.

5 Instantiations

In this section we describe and compare research solutions proposed in the lit-
erature, using the characteristics captured in Section 3 and the organisations
described in Section 4. To ease the description we group the papers as follows:

– Decentralised Monitoring
– Distributed Monitoring
– Fault Tolerance
– Monitor Decomposition
– Predicate Detection for Distributed Systems
– Intrusiveness
– Behavioral Type Systems for Distributed Monitoring

Other features cross-cut papers across di↵erent characteristics and are men-
tioned in each particular case. Tables 1 and 2 summarize the papers according
to the main characteristics considered. In the characteristics shown in the tables,
Global Clock, Failures, System Description, Distributed Specs and In-

trusiveness are directly characteristics captured in Section 3. Asynchronous

Msgs refers to whether the underlying platform is a message passing system.
Asynchronous Msgs, Decentralised Monitoring and Distributed Mon-

itoring are characteristics considered within Global Clock in Section 3.
The entries LTL and Predicate Detection are included because these spec-

ification languages have been thoroughly considered in many works. Finally,
Types refer to a line of research based on process algebras and session types.

Decentralised Monitoring Bauer and Falcone [11, 12] study the problem
of decentralised monitoring. The starting point is a specification expressed in
LTL without any specific extension for distributed systems, except for the static
mapping of atomic predicates to individual processes. Note that individual state
predicates of the specification may be split into more than one process. The
solution synthesizes a monitor for each process, under the assumption that com-
ponents communicate synchronously with a global clock. Each component has a
local monitor attached, and emits events synchronously after every global clock
tick. By design, the solution to a verdict is taken as combination of the execution
of the local monitors, lacking a central decision-making point. This work is later
generalised by Falcone et al. [46] beyond LTL to cover all regular languages.

The main advantage of a decentralised solution over a non-distributed one
is that not all events must be sent to the location of the central monitor. The
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Bauer and Falcone [11] 2012 3 · 3 · · · · 3 · · ·
Bauer and Falcone [12] 2016 3 · 3 · · · · 3 · · ·
Colombo and Falcone [33] 2014 3 · 3 · · · · 3 · · ·
Colombo and Falcone [34] 2016 3 3 3 · · · · 3 · · ·
Falcone et al. [46] 2014 3 · 3 · · · · · · · ·
Bartocci [6] 2013 3 3 3 · · · · 3 · · ·
Sen et al. [90] 2004 · 3 · 3 · · 3 3 · · ·
Francalanza et al. [57] 2011 · 3 · 3 · 3 · · · · 3
Francalanza et al. [58] 2013 · 3 · 3 · 3 · · · · 3
Basin et al. [7] 2013 3 · · · 3 · · · · · ·
Basin et al. [8] 2015 3 3 · 3 3 · · · · · ·
Fraigniaud et al. [54] 2014 · 3 · · 3 · · 3 · · ·
Bonakdarpour et al. [19] 2016 · 3 · · 3 · · 3 · · ·
Falcone et al. [49] 2015 · · · · · 3 · · · · ·
Bonakdarpour et al. [17] 2010 · 3 · · · 3 · · · · ·
Bonakdarpour et al. [18] 2010 · 3 · · · 3 · · · · ·
Berkovich et al. [14] 2015 3 · · · · · · 3 · 3 ·
Francalanza and Seychell [60] 2013 · 3 · 3 · · · · · · ·
Francalanza and Seychell [61] 2015 · 3 · 3 · · · · · · ·
Attard and Francalanza [3] 2016 · 3 · 3 · · · · · · ·
Chase and Garg [29] 1998 · 3 · · · · · · 3 · ·
Cooper and Marzullo [37] 1991 · 3 · · · · · · 3 · ·
Garg and Waldecker [65] 1994 · 3 · · · · · · 3 · ·
Garg and Mittal [64] 2001 · 3 · · · · · · 3 · ·
Mittal and Garg [79] 2005 · 3 · · · · · · 3 · ·
Mittal et al. [80] 2007 · 3 · · · · · · 3 · ·
Sen and Garg [89] 2007 · 3 · · · · · · 3 · ·
Ogale and Garg [84] 2007 · 3 · · · · · 3 3 · ·
Chauhan et al. [30] 2013 · 3 · 3 · · · · 3 · ·
Mostafa and Bonakdarpour [81] 2015 · 3 · 3 · · · 3 3 · ·
Sen and Garg [87] 2003 · 3 · · · · · 3 3 · ·
Luo and Roşu [74] 2013 3 · 3 · · 3 · · · 3 ·
Cassar and Francalanza [22] 2014 · 3 · 3 · · · · · 3 ·
Zhang et al. [94] 2016 · 3 · 3 · · · · · 3 ·
Colombo et al. [36] 2012 · 3 · · · · · · · 3 ·
Colombo et al. [35] 2011 · 3 · 3 · · · · · 3 ·
Cassar and Francalanza [24] 2016 · 3 · 3 · · · · · 3 ·
Bocchi et al. [15] 2013 · 3 · 3 · · 3 · · · 3
Bocchi et al. [16] 2017 · 3 · 3 · · 3 · · · 3
Hu et al. [68] 2013 · 3 · 3 · · 3 · · · 3

Table 1. State-of-the-art on distributed monitoring. Each paper is classified according
to the characteristics considered (part 1) .17



Publication year G
lo
b
al

C
lo
ck

A
sy
n
ch
on

ou
s
M
sg
s

D
ec
en

tr
al
is
ed

M
on

it
or
in
g

D
is
tr
ib
u
te
d
M
on

it
or
in
g

F
ai
lu
re
s

S
y
st
em

D
es
cr
ip
ti
on

D
is
tr
ib
u
te
d
S
p
ec
s.

LT
L

P
re
d
ic
at
e
D
et
ec
ti
on

In
tr
u
si
ve
n
es
s

T
y
p
es

Demangeon et al. [41] 2015 · 3 · 3 · · 3 · · · 3
Neykova et al. [83] 2013 · 3 · 3 · · 3 · · · 3
Neykova et al. [82] 2014 · 3 · 3 · · 3 · · · 3
Jia et al. [70] 2016 · 3 · 3 · · 3 · · 3 3
Di Giusto and Pérez [42] 2015 · 3 · 3 3 · 3 · · 3 3
Di Giusto and Pérez [43] 2016 · 3 · 3 3 · 3 · · 3 3
Castellani et al. [26] 2014 · 3 · 3 3 · 3 · · 3 3
Castellani et al. [27] 2016 · 3 · 3 3 · 3 · · 3 3
Mezzina and Pérez [76] 2016 · 3 · 3 · · 3 · · 3 3
Mezzina and Pérez [77] 2017 · 3 · 3 · · 3 · · 3 3

Table 2. State-of-the-art on distributed monitoring. Each paper is classified according
to the characteristics considered (part 2).

challenge is that local monitoring must be performed with only partial observa-
tions of the global trace. The algorithm progresses by rewriting the specification
at each node, with the partial information available. When local monitors are
unable to evaluate a specification given their local view of the computation,
they communicate their residual formulas to the other monitors. An alternative
approach would use a central monitor that receives information about the lo-
cal states of all other locations. One of the main practical concerns is how the
decentralised approach compares with this alternative central approach. The
empirical evaluation reported by Bauer and Falcone [11, 12], Falcone et al. [46]
suggests that the overhead introduced is lower in the distributed solution. There
is also an economic advantage in the decentralised solution, because in a dis-
tributed solution there is no need to add a central processor. Practical appli-
cations of this approach involve monitoring the behavior of embedded systems
that are distributed by nature, like cars and airplanes where the di↵erent dis-
tributed components are known upfront. These include typical field-busses like
EtherCAT, ProfiBus and ProfiNet (also known as “Industrial Ethernet” [51]).
In these systems, processes communicate over a synchronous bus, so the global
clock assumption is justified.

Bartocci [6] extends the work by Bauer and Falcone [11] to real-time em-
bedded systems by considering the maximum duration of the computation and
communication. The main result is the ability to calculate a sampling ratio above
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which the decentralised monitoring process is guaranteed to generate the correct
outcome.

The works by Colombo and Falcone [33, 34] start from similar assumptions
and goals: there is a global clock and one local monitor per executing component.
The number of executing components is also known upfront. The work in [34]
removes the assumption of instantaneous communication from Colombo and
Falcone [33] and enables a solution with reliable messages with any delay. Still,
a global clock is assumed because the specification logic is LTL and individual
predicates sensed are totally ordered. The solution proposed is a choreographed
decentralised monitoring algorithm, where each local monitor senses a collection
of local predicates. The local monitors use the rewriting approach (also known
as formula progression) by which the state of the monitor is the LTL formula
that results by expanding the LTL formula to the residual formula in the next
state, simplified with the acquired knowledge. A key element in the solution is
that a network of monitors is statically built by assigning each subformula of the
original formula to a node in the distributed system. The hierarchical description
inherent by the sub-formula relation in turn dictates the communication pattern
between the local monitors. Consider a formula  and let ' be a sub-formula
of  . The monitor M1 for ' informs the monitor M2 for  about the verdict of
' which, in turn, is used by M2 to compute the verdict of  . If a synchronous
clock is assumed, the root formula verdict is guaranteed to be reached within at
most k steps of delay, where k is the height of the original formula.

Distributed Monitoring Sen et al. [90] propose a method to detecting viola-
tions of safety properties in an asynchronous distributed system, where no global
clock is assumed. The method proposed generates, given a specification, local
monitors for all distributed nodes. These local monitors communicate only by
piggybacking additional information in the messages sent by existing processes
in the system, so the shape of the history of messages exchanged is not modified
by the actions taken by the monitors. The logic used in Sen et al. [90] extends
past time LTL with features for distributed systems, in particular an operator
@j', which captures the most recent value of formula ' according to process j.

The algorithm uses vector clocks (see Lamport [72], Mattern [75] and Fidge
[52, 53]) to transmit the most recent value of sub-formulas needed to compute
the outcome of their containing formulas. Then, at deployment time, the monitor
specification is decomposed into local monitors that collect information locally
and compute the current value of formulas, based on this local information and
on the information received in messages about the causal past of remote pro-
cesses. This approach allows to generate monitors without inspecting the internal
behavior of each process.

Francalanza et al. [57, 58] present a formal model for distributed monitor-
ing. System computations are described as ⇡-calculus processes (Milner et al.
[78]) hosted at di↵erent locations and interacting with one another via message
passing. When systems compute, they generate residual trace events that are
only locally ordered (with respect to the other events generated at the same
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location) but globally unordered (with respect to events generated at other lo-
cations), thereby modeling the absence of global clocks. Distributed monitors,
also residing a di↵erent locations, are then tasked with analysing local traces
and interacting with one another in order to perform a global analysis of system
computation. The model is equipped with a bisimulation-based equivalence rela-
tion that is used to reason about di↵erent distributed monitoring strategies such
as those discussed in Section 4. The model is also used to define and evaluate a
new migrating monitor strategy that better handles the dynamic nature of open
distributed systems.

Fault tolerance Not many works attack the problem of monitoring distributed
systems considering that components can fail. Notable exceptions are the works
by Basin et al. [7, 8], and by Fraigniaud et al. [54] and Bonakdarpour et al. [19].

Basin et al. [7] present a policy language, a variant of FOLTL with three-
valued semantics, and an algorithm that allows to reason about incomplete
knowledge and handle disagreements. The main practical motivation is to han-
dle errors in the observed trace, for example due to corruption or loss of part
of logs files in complex IT systems, crashes in running systems, or network fail-
ures. Another motivation is to reconcile di↵erent views or verdicts obtained from
monitors that observe di↵erent parts of the logs. The key idea is to equip the
execution with features to enable monitors to distinguish between an event not
being observed and the event not existing at all. The authors claim that any
approach that solves this problem must satisfy that, once a definite verdict is
given, providing more compatible information cannot retract the definite ver-
dict. They manage to provide a complete algorithm for a fragment of the policy
language. A similar work on compliance checking is Garg et al. [62]. Even though
these works do not explicitly handle distributed systems, they handle runtime
verification under incomplete information and incorrect information, which can
be used to encode problems for distributed systems.

Influenced by [7], Basin et al. [8] consider the problem of monitoring dis-
tributed systems in the presence of network failures. The authors also consider
the case that the monitor itself is distributed for the purposes of e�ciency,
performing the monitoring computation closer to the observation point and re-
ducing the communication overhead. The paper [8] deals with Metric Temporal
Logic (MTL), a logic that allows to express real-time properties. The algorithm
is designed based on the timed asynchronous model for distributed systems (see
Cristian and Fetzer [39]), which assumes the availability of highly-synchronised
local clocks but permits crash failures in the processes and in the network. An-
other assumption is that components are known at deployment time.

In [8] processes time-stamp their observation before communicating them to
the local monitors. The time-stamp allows components to compute precise delays
between events, and to totally order the events. It is interesting to point out that
even without failures, reliable asynchronous networks allow messages to arrive in
di↵erent orders. Forcing messages to arrive in order requires bu↵ering messages
to ensure proper delivery order, which in turn prevents the early detection of
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some violations that would be possible with out-of-order delivery. The algorithm
in Basin et al. [8] uses a richer value to encode the absence of knowledge when
evaluating part of the specification. When the missing information is finally
received, the monitor can precisely resolve the uncertainty. Sometimes, a monitor
can reach a precise verdict only with the partial information received in a timely
manner. Consequently, the algorithm can monitor MTL properties tolerating the
out-of-order arrival of partial observations.

Concerning organisation, the monitors in [8] are distributed in a directed
acyclic graph (DAG) where each monitor handles a subformula of the given for-
mula, and children nodes handle subformulas of the formula handled by their
parent node. The root of the DAG handles the original formula. During execu-
tion, messages are sent from children to parent monitors to inform about the
verdicts reached in the subformula handled at the given point in time. When
a process performs an atomic observation it also equips the time-stamp with
an additional sequence number, which is locally unique. This sequence num-
ber allows monitors to infer the existence or absence of unknown intermediate
samples between two observations. Intermediate nodes can also send heart-beat
messages, which serve the purpose of informing about the absence of verdicts
and the health of the intermediate node. Heart-beats also allow to infer the ex-
istence or absence of intermediate meaningful observations or verdicts, and in
turn compute timeouts.

The problem of distributed monitoring for asynchronous distributed systems
with node crashes is considered by Fraigniaud et al. [54] and Bonakdarpour
et al. [19]. Monitors can either work correctly or fail, but after a fail, monitors
do not perform any action for the reminder of the execution. The solution is
based on the asynchronous “wait-free” communicating infrastructure. It is well
known from the research area of distributed algorithms that the wait-free model
of computation (see Attiya and Welch [4]) can simulate many other models of
crash-fail asynchronous distributed systems. The main result in [19, 54] is an
algorithm and a lower-bound on the number of di↵erent verdicts that monitors
need to communicate with each other to correctly detect the violation of an LTL
property. The lower bound on the number of verdicts reveals that monitors need
to communicate complex information in order to compute a global outcome.
The final verdict reached by the cooperating monitors, in turn, will be that of
LTL3. The following three options are possible: (1) the property is satisfied in all
continuations; (2) the property is violated in all continuations; (3) the outcome
is unknown. These papers do not assume that the observations of the distributed
monitors are disjoint. Even though monitors may only be observing part of the
global input alphabet, several monitors may overlap in their partial observation.

Monitor Decomposition Falcone et al. [49] target the problem of monitor-
ing component based-systems, that is, systems that are described by the com-
position of components. More precisely, in [49] systems are described using the
Behavior-Interaction-Priority (BIP) component-based framework (see Basu et al.
[9]). Even though this paper does not attack explicitly the problem of monitoring
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a distributed system, it is nowadays well understood that component-based de-
scriptions can be compiled into distributed implementations (see Bonakdarpour
et al. [17, 18]). Consequently, the monitors generated at the component level
following [49] are attached to the system generating a modified BIP description
that can subsequently be compiled into a distributed system.

Monitor decomposition for decentralised monitoring can also be inferred from
the specification formula from which a monitor is synthesised. This line of re-
search is explored extensively by Francalanza and Seychell [60, 61] and Attard
and Francalanza [3] for both safety and co-safety properties of logics involving
conjunctions, disjunctions and recursion. Conjunctions and disjunctions are syn-
thesised into concurrent monitors that analyse sub-parts of the system, whereas
recursion leads to the dynamic generation of concurrent monitors, generated
lazily only when required to minimize monitoring overheads. In every case, the
concurrent monitors generated lead to self-contained localised monitoring that
can be readily distributed. The automated synthesis function is proved correct
in each of these cases(see Francalanza et al. [56] for the correctness proof in [3]).
The work by Cassar et al. [25] considers a refined implementation where the
concurrent sub-monitors cooperate among themselves and reorganize their in-
terconnection so as to optimize the resources used for monitoring, thus reducing
monitoring overheads.

Predicate Detection for Distributed Monitoring Predicate detection (see
Chase and Garg [29]) consists on checking whether a certain predicate occurred
during the distributed execution, or more formally, whether the predicate holds
in some consistent cut of the execution. In this context, predicates are state for-
mulas (and consequently safety properties) even though some work has extended
predicate detection to richer temporal formulas (see below for details).

All algorithms for predicate detection assume that the collection of execut-
ing processes is known a-priori, that processes do not fail and that all messages
eventually arrive. Predicate detection can be performed o✏ine, when all events
are available before the detection algorithm starts running, or online, when one
event at a time is processed. There are three main techniques for predicate de-
tection. The first technique uses the global snapshots proposed by Chandy and
Lamport [28], which can only detect stable predicates, which are predicates that
remain true after becoming true (like termination, but unlike mutual exclusion).
The second technique consists in an explicit construction of the lattice of global
states proposed by Cooper and Marzullo [37]. This technique can detect unsta-
ble predicates but it is exponential in the number of local states and processes.
Finally, the third technique exploits the specific structure of the predicate to pro-
vide e�cient solutions. Examples include conjunctions of local predicates (Garg
and Waldecker [65]) and relational predicates of the form

P
i xi < C, where xi

are local variables.
Even if one had access to all the local histories of the execution of all pro-

cesses, detecting a predicate is hard because—for general Boolean formulas—one
needs to enumerate and search all possible interleavings of the local executions.
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Chase and Garg [29] show that detection of 2-CNF predicates is an NP-hard
problem, even when assuming a central monitor. A solution to this explosion
problem is a technique called slicing (see [64]). Slices are abstractions of the
computation that guarantee that the predicate is detected in a slice if and only
if the predicate holds in some consistent cut of the original computation. Com-
puting a slice for a general predicate is still an NP-hard problem, shown by Mittal
and Garg [79], but when e�cient slices exist, these are much smaller than actual
explicit histories. Consequently, a line of work has focused on identifying classes
of predicates for e�cient slicing procedures exist. These slices are based on frag-
ments of the logic used to express the global state predicates. These fragments
include regular, co-regular, linear, relational and stable predicates (see Mittal
and Garg [79], Mittal et al. [80], Sen and Garg [89], Ogale and Garg [84]). Some
of these solutions construct the slices o✏ine, assuming that the whole histories
are available to the slicing algorithms, while others work online, building the
slice incrementally. Similarly, most of the solutions are still centralised (Cooper
and Marzullo [37], Mittal et al. [80], Sen and Garg [89], Mittal et al. [80]) in the
sense that all histories are sent to a central monitor that computes the slice and
detects the predicate.

The first distributed solution to slice-based predicate detection is by Chauhan
et al. [30]. The solution is online and distributed, in the sense that the slicing
is computed by the distributed monitors. The guarantee is that if the predi-
cate exists in a consistent cut of the computation, then it is detected by some
monitor. The algorithm exploits both the structure of the property ( [30] study
regular properties) and epistemic information about what the knowledge that
the di↵erent monitors acquire.

Also, even though most approaches are restricted to state predicates (or
more precisely, fragments of the propositional logic for state predicates), some
approaches tract richer temporal properties. For example, Sen and Garg [88],
Ogale and Garg [84] present methods for sliced based predicate detection for a
fragment of temporal logic that includes invariants (AG) and possible reachable
(EF) operators, which extends the applicability beyond safety properties into
a subclass of CTL formulas called Regular CTL (see Sen and Garg [87]). The
restrictive use of negation in [88] is relaxed in [84]. Even though the work in [88,
84] is applicable to a richer fragment of temporal logic, these algorithms work
with a central monitor.

More recently, Mostafa and Bonakdarpour [81] provide a solution for moni-
torable LTL3 temporal properties, but in this case extending the work of Chauhan
et al. [30] so the solution obtained is distributed. This solution inserts additional
messages in the network and is not restricted to only piggybacking information
in existing messages.

Intrusiveness It is often desirable that the monitoring process perturbs the
execution of the system under analysis in the least possible manner. Typically,
either the system is instrumented by embedding monitors in the code itself, or
monitors and processes share resources because they execute in the same plat-
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form. These changes a↵ect the behavior of the system, sometimes in a significant
manner.

Berkovich et al. [14] propose to use additional hardware, and in particular a
GPU parallel execution platform, to minimize the impact of online monitoring.
The authors show how to generate parallel monitors from temporal logic spec-
ifications and evaluate empirically that the obtained parallel monitors together
with the additional GPU hardware alleviate the e↵ect of monitoring on the ex-
ecution of the original system. This is a parallel solution (and not a message
passing distributed solution) to reduce the intrusiveness of monitoring.

Other times, it is desirable that the monitoring process perturbs the execu-
tion of the system. One example is runtime enforcement, where the objective of
the “monitoring” is to guarantee that the system stays within a safe region of
states. Consequently, the enforcement system uses the information provided by
the monitor to prevent an error before it occurs (see the chapter in this mono-
graph about runtime enforcement). Another example is testing of multithreaded
programs, which is in general a very hard task, due to the non-deterministic
nature of the execution of concurrent programs, and the di�culty to reproduce
erroneous behaviors. In this context it is desirable to guide the system towards
executions that are more likely to produce an error. The work by Luo and Roşu
[74] consists of an enforcement mechanism that uses user-specified monitors to
generate local monitors. Such local monitors block individual threads that violate
the specified properties. This enforcement pursues two objectives: (1) to guar-
antee the enforcement of properties in a multi-threaded program in a systematic
way, which is typically implemented using ad-hoc synchronisation manually; and
(2) to force schedules that test properties during the testing of multithreaded
programs. The monitor generation described in Luo and Roşu [74] includes the
decomposition of the property into local decentralised monitors for each of the
threads.

The body of work by Roşu and Havelund [86], Cassar and Francalanza
[22], Zhang et al. [94] explores the idea of decoupling the execution of monitors
from the systems under scrutiny. This approach uses a mixture of synchronous
and asynchronous monitoring, in order to obtain a feasible instrumentation setup
that distribute monitors and systems at di↵erent locations, such as in the case
of Colombo et al. [36] and other orchestrated monitoring setups. Asynchronous
monitoring, used in various monitoring tools such as Colombo et al. [35], Fran-
calanza and Seychell [61], Zhang et al. [94], Attard and Francalanza [3], mini-
mizes monitor intrusiveness because it requires less instrumentation e↵ort. More-
over, Cassar and Francalanza [22], Zhang et al. [94] show that this method of
instrumentation can substantially reduce monitoring overhead. By using hybrid
solutions, they also show how one need not compromise on the timeliness of
detections.

Cassar and Francalanza [24, 23] extend the concept of non-intrusiveness to
runtime adaptation via hybrid asynchronous monitoring. The goal is to design
monitors that intervene with the execution of the system under scrutiny, and
apply these interventions (i.e. system adaptations) with minimal overheads. In
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particular, the work [24] implements a framework where the monitors for system
components can act at varying degrees of synchrony with respect to the observed
components. Some parts of the system can be executed in a decoupled fashion
with their monitors when no adaptations on that sub-system are required. Later,
these sub-systems can be incrementally synchronised with the respective monitor
when an adaptation is about to be applied. The entire framework is implemented
atop a completely asynchronous actor computational model, which eases the
distribution over remote locations.

Behavioral Type Systems for Distributed Monitoring In this subsection
we describe the work in process calculus related to studying the monitoring of dis-
tributed systems. Many large-scale systems consist of heterogeneous, distributed
software artifacts (processes) that interact following some precise protocols. In
these communication-centric settings, processes communicate asynchronously,
without a global clock, and are prone to local failures. These characteristics
make distributed monitoring a suitable approach to enforce system correctness
by complementing the static verification techniques that are typically applied
individually to each process. As we detail next, monitoring for communication-
centric systems is an instance of the choreographed monitoring organisation
described in Section 4.

A productive research strand to the analysis of communication-centric soft-
ware systems uses process calculi (such as the ⇡-calculus) as minimal specifica-
tion languages. These formal calculi provide an unambiguous setting in which
the communication correctness of these systems can be compositionally estab-
lished. In particular, coupling process calculi with so-called behavioral type sys-
tems allows to (statically) enforce safety and liveness properties associated to
protocol conformance. Rather than classifying data values, behavioral types de-
fine abstractions of the protocols that a communication entity (say, a socket or
a channel) should respect throughout its execution (see Hüttel et al. [69] for a
survey).

Several works have explored the interplay of behavioral types and mecha-
nisms for distributed monitoring. In particular, monitoring frameworks based
on session types, a particular class of behavioral types, have been put forward.
Session types organize a series of communication actions corresponding to the
same reciprocal protocol into a structure called session (see Honda et al. [66]).
While typed process frameworks for binary session types can analyse two-party
protocols, more general type theories for multiparty session types cover the case
of protocols with three or more participants (Honda et al. [67]). Both binary and
multiparty session types start to make their way into mainstream programming
languages and frameworks (Ancona et al. [2]). In the multiparty case, a global
type entirely describes the intended communication scenario. By projecting this
global type onto each protocol participant, one may obtain its corresponding
local type, which abstracts a participant’s contribution to the protocol. This
collection of local types thus o↵ers a key reference for obtaining correct imple-
mentations for all participants.
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Communication-centric systems often comprise components made available
as grey- and black-boxes, with limited communication interfaces. As such, static
verification techniques are unsuitable for their validation. Motivated by this ob-
servation, several works develop abstract frameworks based on process calculi in
which monitors are terms of the specification language. The formal semantics of
these calculi uses these monitor terms to enable process behavior according to
the intended protocol. Rather than a logical specification (say, an LTL formula),
each monitor uses a behavioral type (e.g., a local protocol) to guide a partici-
pant’s behavior. These works define a special case of choreographed monitoring:
the coupling of processes and monitors at the same level of abstraction makes
the notion of local trace implicit. Monitors do not communicate to each other,
nor perform autonomous actions. The global type through its projections is used
to synthesize a monitor for each participant. This way, even untyped processes
can be used to implement a protocol participant as long as they o↵er the right
communication actions at the right time, in accordance with the governing local
protocols.

Based on this general setup, Bocchi et al. [15, 16] develop a monitored ⇡-
calculus with dynamic usage of multiparty session types, o↵ering local and global
safety assurance of distributed components. In their model, a network is a collec-
tion of processes (one per participant) that communicate via asynchronous mes-
sage passing. Each participant is equipped with a trusted monitor that guards
the run-time behavior of both the principal and its environment—this is realised
by the evaluation of incoming and outgoing messages. Monitors regulate the
creation of sessions and movement of messages within sessions. This dynamic
checking can be switched o↵ when processes have been statically verified. A se-
ries of queues shared between principals is assumed to support message passing,
together with a global transport that abstracts distributed communication.

Building upon Bocchi et al. [15] and Bocchi et al. [16], the works by Hu et al.
[68], Demangeon et al. [41] propose a dynamic verification framework for multi-
party session types that admit interruptions. This a practical framework, which
relies on the Scribble protocol language, an implementation of multiparty session
types (see Yoshida et al. [93]), to specify global protocols, and on a Python API
for conversation programming. In this framework, the monitor that tracks the
progress of each participant within a session is represented using a finite state
machine (FSM), generated from the local type. By independently monitoring
each session endpoint at runtime, this framework ensures global communication
safety even in the presence of asynchronous interruptions.

Other works on a practical strand are [83, 82]. Neykova et al. [83] propose
a toolchain for designing deadlock-free multiparty global protocols. Using auto-
matically generated monitors for each session endpoint, this toolchain can detect
illegal communication actions and mistaken message types that go against pro-
tocol conformance. The work by Neykova et al. [82] extends preceding works
with timed information: Scribble specifications are extended with clocks, resets,
and clock predicates that constrain the occurrence of protocol interactions.
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Recent work by Jia et al. [70] introduces a framework for monitoring inter-
acting processes that follow binary session protocols, building upon a logically
motivated theory of session types. As in several of the works mentioned above,
in this framework monitors are placed next to communication endpoints.

A distinguishing aspect is blame assignment: in case processes deviate from
the prescribed session protocols, monitors may halt the execution, raise an alarm,
and assign blame. The authors prove that their dynamic monitoring is not in-
trusive in the sense that it does not change the behavior of well-typed processes.
Also, they show that in case of alarm one of an indicated set of possible culprits
must have been compromised.

Finally, we mention some works in which the concept of monitor as a process
term, in the sense just described, has been exploited. Even though the main pur-
pose of these works is not run-time verification, they can be seen as applications
of xchoreographed monitoring. Di Giusto and Pérez [42], Di Giusto and Pérez [43]
use this kind of monitors to support the run-time adaptation of session-typed
processes in both binary and multiparty settings. There is exactly one moni-
tor per session. By combining monitor information and event-based constructs,
one may specify the reaction to unanticipated circumstances (for example, local
failures) by means of adaptation steps. An associated type system ensures com-
munication safety and consistency properties: while safety guarantees absence
of run-time communication errors, consistency ensures that adaptation steps do
not disrupt already established session protocols. In a similar line, the moni-
tors defined by Castellani et al. [26, 27] play a dual role: they enforce run-time
adaptation policies, and ensure secure information flow in multiparty exchanges.
Recent work by Mezzina and Pérez [76, 77] uses monitors as the memories re-
quired to support models of concurrency in which actions are reversible and
causally consistent.

6 Challenges and Conclusion

6.1 Challenges

We list here some challenges for future research in distributed runtime verifica-
tion.

Fault tolerance One of the key characteristics of distributed systems is that,
in practice, di↵erent parts of the system can fail independently. However, most
approaches consider that the system does not fail. Some future problems include
the following.

The theoretical approach by Fraigniaud et al. [54], Bonakdarpour et al. [19]
(discussed in Section 5) has two major obstacles to become practical:

– First, after the distributed verdicts are emitted, there is a phase in which a
global function is applied to the collection of verdicts emitted. This function
must be implemented somehow by a central computational infrastructure
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which must receive all verdicts and produce an outcome. However, a general
implementation of this function requires a non-failing central monitor. But
the existence of such a central unit would greatly simplify the initial moni-
toring problem, and in fact, the basic starting point of [19, 54] is to design
distributed fault tolerant solutions.

– Second, the work [19] only presents an algorithm for the processing of a one
letter observation, under the assumption that the processes are perfectly
synchronised at the beginning of such an observation. To process a subse-
quent observation, the monitors that survive the first round must somehow
re-synchronize, but again, a synchronisation procedure would provide a much
simpler solution to the monitoring problem at hand. In summary, A general
fault-tolerant solution for sequences of observations is still an open problem.

Also, there are very few results in runtime verification that can handle net-
work failures (most notably, the work by Basin et al. [8]). It would be very
interesting to extend these approaches to other logics and distributed system
assumptions.

Global atomic observations Specification formalisms for non-distributed sys-
tems assume that atomic predicates are testable, which is not a restriction. In
distributed systems, in general, predicates are global in the sense that they
can involve di↵erent parts of the system. Then, not all global predicates are
Boolean combinations of local predicates. For example, one restriction of the
work by Bauer and Falcone [11] is that the individual global observations are
Boolean combinations of local observations performed in each of the processes,
whose observations do not overlap. More formally, each process j can emit a
collection of local propositions APj (such that APj \ APi = ; whenever i 6= j).
The alphabet of atomic observations is then ⌃j = 2APj . Note how the global al-
phabet ⌃ = 2[iAPi is strictly larger, in general, than [i⌃i because it can contain
relational symbols like pi _ pj where pi and pj are local observations at di↵erent
processes. We use relational observations to refer to atomic propositions whose
truth value depends on the observations made at more than one process. For
example, consider the numeric variables xi and yj where the sub-index indicates
the process at which the variable is observed (Pi and Pj resp). The atomic predi-
cate xi < yj cannot be evaluated at Pi or Pj alone, and it cannot be decomposed
into a Boolean combination of local predicates either.

As discussed earlier, even though research in predicate detection has con-
sidered classes of predicates richer than individual observations (regular, linear,
etc) and has characterised that detecting a predicate in 2-CNF is already NP-
hard, it would be interesting to extend other techniques for decentralised and
distributed monitoring beyond combinations of local predicates.

Monitor Orchestrations Colombo and Falcone [34] present a choreographed
decentralised monitoring solution obtained from a network of local monitors,
which is statically computed by mapping every subformula to a distributed sys-
tem node. There are many possible ways to create such a network, even if one
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restricts the map (as in [34]) to one of the nodes with the highest number of
propositions locally involved in the subformula, because there can be more than
one such node. Even though all choices could lead to a correct monitoring solu-
tion, for a given trace of execution, the choice of network has an impact in the
communication overhead. For every input trace, one could calculate a-posteriori
the best network in the sense of the network that would have produced the
lowest overhead. However, even for the fixed parameter assumed in [34] (e.g.,
static number of locations, fixed specifications, no dynamic remote spawning of
new computation, the assumption of a global clock) it is not clear how to pre-
compute an optimal network, even how to approximate it. Nevertheless, there
are alternatives worth investigating. One plausible solution is to exercise the sys-
tem in a test-bed to obtain input traces and compute the optimal network for
the observed set of traces, with the assumption that the traces after deployment
will involve similar communication flows. However, this kind of approach is not
considered in [34].

Adequate solutions to this problem are probably even harder to come up with
when proper distributed system constraints are considered, such as computation
asynchrony, distributed clocks, and the possibility of partial failure. In practi-
cal settings, cases may even arise whereby one has to content with conflicting
criteria. For instance, certain locations may not allow monitor processing and
analysis to be carried out locally, forcing events to be communicated remotely
to the analysing monitor. This, in turn, may conflict with confidentiality and
security concerns.

Monitorability and Correctness In general, the use of runtime analysis im-
pinges on the extent to which a correctness property can be verified.

This aspect is often referred to as monitorability. One of the first works that
introduces a notion of monitorability by defining classes of reactive languages
that can be monitored is Viswanathan [92]. Later, D’Angelo et al. [40] defined
monitorability for stream runtime verification on finite traces as the class of
specifications for which e�cient monitors can be generated. Pnueli and Zaks
[85] formalised monitorability for LTL as the possibility of a finite trace to be
extended to a finite witness of a specification satisfaction or violation. A similar
notion was presented by Bauer et al. [13] and proved equivalent by Falcone et al.
[48]. This notion was generalised to !-regular languages by Falcone et al. [47] and
Bauer [10], and later extended by Diekert et al. [44]. The tight complexity of this
notion of monitorability was finally captured in [5]. An alternative definition of
monitorability is given by Francalanza et al. [56] where the fragment of formulas
of a given branching time logic that can be monitored at runtime is captured.

Decentralised and distributed monitoring introduces further restrictions and
raises additional issues that may a↵ect the monitorability of certain correctness
properties. A first solution to decentralised monitorability was given recently
by El-Hokayem and Falcone [45], but further work will be necessary to study its
full applicability and possible extensions.
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Concurrent and distributed systems are notoriously hard to get right and
these complications extend also to distributed runtime verification: errors arise
only for particular sequences of events that are hard to simulate using pre-
deployment techniques such as testing, and are also hard to trace and reproduce
for analysis once they occur. It is thus imperative to continue to extend existing
work on developing methods for ascertaining the correctness of the decentralised
and distributed monitoring setups constructed along the lines of [50, 16, 55].

6.2 Conclusion

In this chapter we have surveyed the literature on runtime verification for dis-
tributed systems. After showing some practical motivations that have justified
the study of monitoring techniques for distributed and decentralised systems,
we identified a series of features that characterize and that allow to classify the
di↵erent problems and approaches. These criteria include whether the solution
involves or exploits the description of the system under analysis, whether there
is a single central monitor or the monitoring task is distributed, whether there
is an assumption on a global clock, and whether the system tolerates failures
or perturbs the execution. Finally, we showed a comprehensive list of results
proposed in the literature and listed some challenges for future work.
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Abstract. The chapter will focus on experiences the authors had in applying
runtime verification in industrial settings, in particular on financial transaction
systems. We discuss how runtime verification can be introduced in the software
development lifecycle and who are the people to be involved and when. Further-
more, we investigate what kind of properties have been found useful in practise
and how these were monitored to keep intrusion to a minimum. Next, we describe
two significant case studies which have been successfully carried out in the past,
and conclude by outlining a number of challenges which we believe still need to
be addressed for runtime verification to become more mainstream in industrial
settings.

1 Introduction

As software systems increased in size and complexity, it was quickly recognised that
many problems which arise in system development can be addressed by adopting a
well-defined, more rigorous process, moving from an individual-based craft view of
programming to a process (and team) based engineering approach [29]. Di↵erent soft-
ware engineering processes have been advocated and adopted by industry, and today it
is unthinkable that any non-trivial software be developed in an ad-hoc manner. These
software engineering processes have shaped the organisation of industry, and any novel
element part of the software development process stands little chance of being adopted
in the short-term unless it finds a home as part of this organisational structure. Runtime
monitoring and verification have been advocated as very industry-friendly techniques,
especially due to their scalability to large systems, and accessibility to traditionally
trained software engineers. Surprisingly, however, the literature describing the use of
runtime verification in industry and evidence of its adoption remains sparse and far be-
tween. Use of formal methods (and in particular runtime verification) in the literature
tends to consider the adoption of formal tools throughout the development process —
for instance, in [28] one of the few papers which reports on the experience of integrating
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?? Project GOMTA financed by the Malta Council for Science & Technology through the Na-
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runtime verification into the development process of an industry-grade project, model
checking is initially used to verify at the design and code level, thus providing formal
properties to be used with the runtime verification tool, an unrealistic assumption in
most industrial settings.

One can argue that dynamic monitoring and verification has featured in software
development since the first software systems — adding auxiliary code to check what
the system is doing, and assertions to check predicates in order to identify and report
or react to unexpected behaviour, is nothing but a primitive form of runtime monitoring
and verification. More recent structured approaches to runtime verification, which focus
on separating the concerns of system development and the specification of monitors
and verification code, allow for greater independence between the process of system
and monitor development. However, the integration of runtime verification in standard
software engineering practice remains a little explored area. Although some work (e.g.
[37]) does look at how the development process can be adapted to incorporate runtime
analysis concerns, a shift in existing software engineering practice is di�cult to achieve,
and thus, integration into existing practice is crucial to widespread industrial adoption
of runtime verification.

In the past decades, as software dependability became increasingly important, test-
ing was promoted to a first-class concern in the development process, with approaches
such as test-driven development becoming the norm in many settings. It is natural to
ask whether runtime verification can simply piggy-back onto the integration of test-
ing in the software engineering process. The most important common concern between
testing and runtime verification is the development of oracles able to flag unexpected
system behaviour. However, the two also di↵er substantially in other aspects, making
their merging in the software engineering process di�cult. The fact that, unlike testing,
runtime verification code (sometimes) is intended to be executed alongside the system
post-deployment puts extra demands on this code, and requires a spread in the concern
of software engineering from mainly the development time towards the runtime [6].
Also, although oracles and verification checks have a similar goal, in practice tests tend
to hard code input behaviour and output pairs, whereas in runtime verification it is nec-
essary to abstract the oracle to all potential input behaviour. These di↵erences indicate
that depending on the quality assurance infrastructure already existent in most software
companies, adopting runtime verification might not be as straightforward as one might
hope.

In this chapter, we present a number of industrial case studies which we have been
involved in, and discuss what worked and what issues arose in the process. A secondary
aim of the chapter is to assess, albeit in a qualitative and anecdotal manner, the chal-
lenges runtime verification faces before it can be adopted in the industry. Furthermore,
it is worth noting that all case studies discussed in this chapter are in the financial soft-
ware sector.

Case studies 1 and 2 were carried out with two di↵erent companies1. Both cases
were the outcome of employees from the companies attending research talks and show-
ing interest in adopting aspects of the runtime technologies we spoke about. We then

1 Due to non-disclosure agreements, one of the companies cannot be named. However, it is
worth noting that both companies had a R&D team of 50–100 persons.
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set up a process of giving hands-on talks on site to company employees about the more
pragmatic aspects of runtime verification. This was followed by being on their site to
work on an initial proof-of-concept implementation with the hope of bootstrapping the
use of runtime verification in a more widespread fashion within the companies’ prod-
ucts.

Despite the limited technological success of these initial experiences, the collabo-
ration has led to two formal projects being setup with one of the companies, indicating
that the technology does hold promise to the industry. Project 12 [13] is an ongoing
project GOMTA (Generation Online Monitors from Tests) between the University of
Malta and Ixaris Ltd. in which the focus was to address one of the challenges identi-
fied in our initial collaboration — that of specifying appropriate properties for runtime
verification. Project 23 [5, 4] is another ongoing project with Ixaris Ltd, where the run-
time verification aspect is more ambitious, since runtime verification is integrated as a
core part of the compliance engine of the OPE (Open Payments Ecosystem) platform.
Also of interest is that the development of the platform and the compliance engine are
being done concurrently, unlike the other use cases, in which integration of runtime
verification was attempted a posteriori to the system development.

All these use cases are discussed in more detail in the rest of the chapter.

2 Financial Transaction Systems

Over the past years, we have worked on various industrial financial transaction systems.
In this section we combine the common aspects into a single description, highlighting
any di↵erences only when necessary. Although financial transaction systems face var-
ious challenges, from fraud and security, to functional correctness, all the work we
discuss focusses on the functional correctness, since various third-party tools already
address issues such as fraud detection and security e↵ectively.

The transaction systems we interacted with, handle credit card transactions and are
thus composed of two sub-systems: one which handles the part of the transaction tak-
ing place between the customer and the transaction system, and another handling the
transaction between the transaction system and the bank. These will be referred to as
the transaction handling system and the processor communication system respectively.

A transaction is processed by going through a number of states such as authorisa-
tion, communication with the user interface, inserting the transaction in the database
and communicating with the commercial entity involved in the transaction. Each type
of transaction will have its particular chain of states through which it must go to be suc-
cessfully completed. Similarly, system user accounts also go through a cycle of events
including registration, logging in, performing financial activities, suspension, etc. The
interaction between these two life cycles as well as its implications on the amount limits
are among the most commonly specified properties:

Life cycles Entities in a transaction system, particularly users and transactions, go
through a life cycle of stages. Each stage will determine how the entity can be-
have and stages it can transition to in the future. For example, a user who has been

2 https://www.um.edu.mt/ict/cs/research/projects/gomta
3 https://www.openpaymentsecosystem.eu
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suspended should not be allowed to perform any financial transactions. Similarly,
a transaction which is in the processing stage, should not be modifiable.

Real-time A transaction system typically has real-time aspects such as a transaction
should not take longer than 500 milliseconds to complete. Naturally, real-time prop-
erties can also be related to life cycles, e.g., once a user has been inactive for three
months, then the account should be frozen.

Amount and frequency limits Other commonly occurring properties in financial trans-
action systems involve amounts and frequencies of transactions and transaction
amounts, e.g., a user cannot transfer more than e2000 a week. These limits may
also be related to the life cycle, e.g., a user who has registered but has not yet been
fully approved, cannot withdraw more than e100 per week from the account.

Other There are a number of other properties which are di�cult to classify under
the previous headings. For example, to ensure adherence to VISA regulations, the
transaction system cannot store credit card numbers. Another practical property is
to ensure that a transaction is not initiated twice by the user mistakenly clicking the
submit button twice.

3 Runtime Verification from a Process and Software Engineering
Point of View

While making runtime verification attractive to industry necessarily requires the inves-
tigation of the appropriate process and software engineering practices, these elements
remain largely unexplored in the literature.

The software testing community has had to solve a similar problem when it came to
integrating testing in the development life cycle of software, requiring years of experi-
mentation with di↵erent setups. To some extent engineering of properties for monitor-
ing is similar to the engineering of test oracles in that both are meant to tag behaviour as
good or bad by observing the system’s behaviour. However, there is a major di↵erence
between the two, namely that test oracles are typically designed to handle only the test
case it has been written for. On the other hand, a monitor oracle needs to be generic
enough to handle any observed behaviour. This makes the problem significantly dif-
ferent and given the lack of published material on this topic in the context of runtime
verification, in this section we simply give some anecdotal reporting on what we have
done and how it worked out.

3.1 Process Engineering Challenges

The first problem when introducing a new verification technique such as runtime verifi-
cation within a software company is to identify the people who will be interacting with
the technique. This section will analyse a number of questions which arise from process
engineering point of view.

Engineering the properties When attempting to start the process of engineering prop-
erties for our industrial partners, a number of questions started to emerge:

4



IWhich properties are useful to monitor Identifying which properties are to be mon-
itored might in itself be a challenging aspect for the success of a runtime verification
project. If the involved people do not see the benefit of monitoring, then it is likely
that monitoring will be sidelined. Our case studies have taught us that a number
of meetings might be required before the right kind of properties are identified for
monitoring (Experience 3.1). Even the notion of a property itself is usually alien
in the context of the software development industry (typically the word property
is taken to refer to an object attribute). However, once the initial communication
hurdles are overcome, appropriate system-wide properties — typically having a
temporal aspect — start to emerge.

Which properties are worth monitoring?
A number of discussions were needed with our industrial partners simply to
identify which properties are worth the e↵ort of monitoring. At first the ex-
ample properties which were being suggested were deemed to be superfluous
given the way the system had been engineered. For example checking that
the balance is correct after a transaction was well tested, would have simply
wasted resources to monitor it. Similarly, properties found in runtime verifi-
cation literature at the time — mainly focusing on properties extracted from
the Javadoc of Java libraries such as those concerning iterators, maps, etc. [10,
9] — while useful, were not deemed to warrant the introduction of runtime
verification technology (opting instead to use code reviews, etc to eliminate
such standard bugs).
Following more discussions and involvement of di↵erent people in the organ-
isation, it started to emerge that the most useful properties were those which
crosscut the system across its modules or history. The crosscutting nature of
properties such as: “ensure the credit card numbers are never stored inside
our system”, “ensure a user does not carry out any transaction when sus-
pended”, or “the user should follow a particular cycle throughout its life-
time”, made it hard to check them (without monitoring) in a straightforward
manner, i.e., without cluttering the code and risking introducing additional
bugs in the process.

Experience 3.1. Taken from case studies #1,#2.

IWho is responsible? Once a number of example properties are identified, the next
challenge is to identify who would be responsible to express them in a monitorable
format. As Experience 3.2 shows, when the runtime verification engineer started to
work at the site of our industrial partner, it was not straightforward to pinpoint the
team which could most naturally handle property writing. The issues involved were
not limited to who has the knowledge of the system at the right level of abstraction,
but also who is willing to do the work while finding it beneficial (Experience 3.3).
The conclusion of our case studies was that the people who tick all the identified
boxes in a software development organisation are the QA personnel who have a
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vested interest in ensuring that the system as a whole works as expected. Runtime
verification provides them with a methodological approach of specifying properties
and a way of automatically checking them.

I In what format should properties be expressed? Identifying an appropriate format
for expressing the properties is crucial to enable the identified personnel to ex-
press the properties. Admittedly, we have not experimented with di↵erent specifica-
tion languages. However, our use of automata-flavoured notation (more specifically
[25]) has proved e↵ective with non-academics who used it.

Which team will host the runtime verification engineer?
One of the interesting characteristics which emerged from both case study
#1 and #2 was how many times the researcher had to change the team he was
working with: In the case of the first case study, the researcher was first placed
with the security team. Soon it was realised that the runtime checking of func-
tional aspects had little to do with security. Next, the researcher was placed
within the development team: This move facilitated the familiarisation of the
researcher with the system code, but did little to help him understand the prop-
erties of interest. Next, the researcher had a meeting with the system architects
and this proved to be a swift way of obtaining a bird’s eye view of the system,
including some of its main properties. Finally, the researcher found it best to
work closest to the testing team whose system-level tests were closest to what
the runtime monitors were expected to do. A similar experience of moving
from one team to another could be recounted for the second case study. The
situation was however di↵erent in that testing was mostly carried out by the
developers themselves. This meant that developers were mainly responsible
for testing their own modules while there was a dedicated team for quality as-
surance (QA) which performed some testing and dealt with customer issues.
This time the researcher found it best to interact with the QA team to identify
the properties of interest. The main di↵erence between the kind of proper-
ties identified by the QA team and those identified by interacting with the
architects is that the former are more likely to actually be violated at runtime
(e.g., a fee which is charged twice to the customer), while the others are more
fundamental but usually highly unlikely to be violated (e.g., the sequence of
states a customer goes through: from registered, to active, to suspended, etc).

Experience 3.2. Taken from case studies #1,#2.

Engineering the verification code Once the properties are available, the next chal-
lenge is to engineer the corresponding code to check for their violation. Typically, the
purpose of writing the properties formally is to exploit some runtime verification tool
which is able to generate the code for the properties automatically. On the other hand,
programming the verification code from scratch is also an option, but this would mean
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Who will write the properties?
In both case study #1 and #2, when developers were asked to write properties
to be monitored at runtime, they felt that they were simply redoing work al-
ready done while at the same time their view of the system was focused on
their particular module, making it di�cult to capture system-wide properties.
Instead, runtime verification monitors were more naturally expressed by high
level testers/QA personnel who view properties as a concise way of express-
ing complex system properties and providing them with a kind of dashboard
through property violation reporting. Furthermore, since the people writing
the properties were not the same ones who programmed the system, this ap-
proach yielded better results in identifying bugs.

Experience 3.3. Taken from case studies #1,#2.

that the property engineering step is skipped. Furthermore, taking this option would
also usually mean that the code would not be separate from the system code, and con-
sequently, this is programmed directly by the programmers (in the case of our first
experience (see Experience 3.4) since the testing team was closely involved in the de-
velopment process and had ample experience in writing system-wide scripts, it was
responsible for integrating the runtime verification code). If the verification code is not
integrated with the system — usually when the verification does not take place in sync
with the system — then the code can be maintained by a team other than that of the
system developers, e.g., the QA team (this was the case with the second experience
mentioned in Experience 3.4).

Who manages the verification code?
In the first experience, since runtime verification was carried out in an online
fashion, the testing team had to be involved to help set up the necessary scripts
to integrate the monitoring within the system code. The reason for involving
the testing team was that they had ample experience with launching the sys-
tem through script writing. Unfortunately, the system was never updated after
the introduction of runtime verification code, meaning that we cannot com-
ment further on this experience regarding the management of synthesis and
synthesised code.
In the second experience, runtime verification was carried out in an o✏ine
fashion and therefore this could be fully managed by the QA team with little
involvement from the development team in case required logs were missing
or in an unexpected format.

Experience 3.4. Taken from case studies #1,#2.
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Considering the option of automated synthesis, two separate choices have to be
made: (i) concerning the synthesis code and (ii) concerning the synthesised code. If the
latter is to be integrated with the system, then one would typically expect the system de-
velopers to be responsible for it. However, if the generated code is to be used separately
from the system, then once more there is the option of involving other teams. As for the
synthesis code, since this does not directly interact with the system and it would proba-
bly be a third party tool, then its management need not be tied to the system developers’
team.

Recommended procedure for introducing runtime verification Based on our experience,
in an ideal scenario, we recommend the following procedure when introducing runtime
verification in a company not familiar with the technology:

Initial meetings An initial meeting where an overview of the system and teams in-
volved (including architects, developers, and QA) is provided by the company.
Next, another meeting where the ideas behind runtime verification are presented
to the teams by the runtime verification engineers.

Information gathering Following the meetings, all relevant specifications, architec-
tural designs, etc. should be made available to the runtime verification engineers.
This is then followed up with meeting with relevant parties to fill in any gaps in
such documents.

Meeting with QA The QA team can provide information regarding the kind of prob-
lems they worry about the most on a day-to-day basis. These are usually the areas
where runtime verification can be useful. Properties can then be composed based
on these revelations.

Implementation phase Once properties are at hand, input is likely to be required the
system architects and developers.

Testing phase Finally, when monitors are running, one would likely need to verify any
detected violations with the QA team. It is probable that the first issues encountered
would be the result of miscommunicated requirements, requiring fine-tuning of the
properties.

Delegation phase If monitors are running as expected, then it would be the right time
for the responsibility to pass on from the runtime verification engineers to the teams
in their respective roles: the architects to ensure the monitoring code is well inte-
grated in the system design, the developers to manage the code, and QA personnel
to maintain the properties.

3.2 Monitor Design Challenges

A significant challenge from a software engineering point of view with respect to run-
time verification is to keep the concern separate from the system’s logic while at the
same time making it easy to integrate the two.

Furthermore, this has to be achieved while keeping the runtime overhead to a min-
imum. The following subsections deals with elements one should be aware of when
designing the verification code. It is worth noting that many of these elements are inter-
connected and one choice influences others. One important starting factor when consid-
ering these options is that of what properties one is interested in, and when and how one
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is to react to their violation. Such considerations already restricts architecture choices,
and event extraction mechanisms. The

Architecture Design One important question to be addressed is that of how the high-
level architecture combining the system and the verification units is designed. In both
case studies 1 and 2, the verification modules were developed a posteriori, and had to
be integrated to systems which had been in production for various years, which proved
to be an extra challenge in that limited architectural choices were available.

I Synchronous vs. asynchronous vs. o✏ine monitoring One major choice to make
when integrating runtime verification and the system-under-scrutiny, is whether the
composition of the two is (i) online synchronous, in that after each relevant step, the
system will pause for the verification component to complete and announce com-
pliance before proceeding further, or (ii) online asynchronous, in which the monitor
is running with the system but steps of the system are checked asynchronously i.e.,
the system continues as the monitor does its verification; or (iii) o✏ine, in which
the system simply dumps relevant information during its execution, and the veri-
fication is carried out completely independently of the system, possibly even after
the system has finished executing. The choice of architecture impacts how much the
monitors can help the system react to errors, but also the overheads of the deployed
monitoring. We had di↵erent experiences with possible composition approaches,
as discussed in Experience 3.5.

IManaging communication between system and monitors When monitoring takes
place in a white box fashion, i.e., with full knowledge and access of the system
code, monitors might be inlined directly along with the system code. This is typi-
cally done through the use of aspect-oriented programming [32] although it is com-
mon to write assertions by hand. To keep concerns more separate, e.g., if the system
and the monitor are running on di↵erent resources and/or implemented in di↵erent
technologies, one might opt for a less tightly coupled form of communication such
as the use of TCP/IP [20]. When monitoring in a black box fashion, the separa-
tion between system and monitors is naturally bigger and thus less direct ways of
communication would be typically employed. For example, the monitor might use
a tracing facility at the virtual machine level to pick up events of interest. Similarly,
the monitor might be able to indirectly detect system API calls by tapping into
the system’s communication channel. Opting for even less interaction, the monitor
might simply process logs which the system would have saved in a database or text
file during its execution.

Event Extraction Design Runtime monitoring requires an awareness of the system
behaviour, typically by capturing relevant events4. In what follows, we describe three
kinds of software events and outline ways these can be captured and communicated to
the monitor:

4 Other than software events, one may for example capture the state of the hardware, or perform
regular sampling of the variables. However, in this chapter we focus on the more commonly
used software events
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How to synchronise between the system and the monitors?
In case study 1, we started by implementing online synchronous verification
on a sandboxed system. However, in the second case study we had to forgo
synchrony due to (i) lack of trust impeding the integration of the runtime ver-
ification tool as part of the development toolset; (ii) fear of overheads due to
online monitoring impacting the system, particularly at times of peak transac-
tion tra�c. The solution initially adopted to enable verification was, in both
use cases, to adopt an o✏ine policy [1, 25, 26]. Given that the interested events
of the systems were already logged by systems in use by both companies, it
was simply a matter of accessing existing logs and connecting them with our
runtime verification tool.a The results were su�ciently convincing that the
monitoring was considered to be adopted on a nightly basis, running it on the
logs of the day. This led to the realisation that an important feature of a run-
time verifier is e�cient bootstrapping — starting up the verification process in
a fast manner, without having to rerun full historic traces every time. This led
to a solution which was e↵ective enough to be used in the nightly verification
process [22].
The use of o✏ine monitoring also enabled further trust in the verification
package, which enabled further investigation, even if online overheads were
still considered prohibitive since they were not planned for in the original
system design. Financial systems typically handle long-lived transactions —
financial transactions which last far too long to justify locking of resources
(e.g., user’s bank account) in order to ensure consistency. The solution prac-
tically universally adopted in this industry is that of using compensations, ef-
fectively computations which can approximate the undoing of part of a trans-
action. In this manner, transactions are allowed to proceed unchecked, and in
case of a late discovered failure, the transaction is “rewound” to just before
the event that broke consistency constraints. This led to the development of
a novel quasi-synchronous runtime verification [24, 23] in which the moni-
tor was deployed asynchronously (though online) with the system, but upon
identifying a violation, compensations were triggered to enable recovery in
the state of the system where the violation actually occurred.

a It is worth noting that although the required events were logged, many
events unnecessary for our properties were also logged, so using the logs
as a starting point for identifying points-of-interest in the system is not
necessarily a useful procedure.

Experience 3.5. Taken from use cases #1,#2.
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IMethod-call-based events Method calls frequently provide the right correspondence
between the system’s behaviour and the monitor events of interest. For example if
the monitor is interested in money transfers, probably one can easily find a method
which performs the money transfer, providing access to the parameter representing
the amount being transferred. Method entry and exit points are typically captured
through aspect-oriented programming (this was the case with our case studies, see
Experience 3.6), or a tracing mechanism which the virtual machine provides.

I Communication events While in Java it feels natural to capture method call entry or
exit, other programming languages or system organisations may provide di↵erent
useful points of interest. A prevalent one of these is message communication in the
case of languages such as Erlang [19] or organisations such as the service-oriented
architecture [18]. Once again, such communication can be captured using similar
techniques, as applicable, such as aspect-oriented programming and tracing.

I Events-by-design Rather than relying on naturally occurring execution points in the
system (such as method call entry/exit points and communication events), another
option is to explicitly plan points-of-interest when to raise an event in the system de-
sign. From a monitoring point of view, this approach naturally represents the most
straightforward one as the system emits events automatically without the need to
capture them. At their most basic, such events may take the form of logging events
in a text file or database. In other cases, events might be broadcast to interested
subscribers, one of which might be the monitor.

How to capture system events?
In both case studies, the events of interest could be directly mapped to method
calls. For this reason, it was natural to opt for method-call-based events. Fur-
thermore, given the maturity of tools supporting aspect-orientation, we chose
a well-known aspect-oriented extension for Java, AspectJ. A significant di↵er-
ence between the two case studies is that the first was carried out online while
the second was carried out o✏ine by connecting to a database. We note that
AspectJ could not be used to directly interact with an SQL database. How-
ever, by using a Java event replayer we were able to use AspectJ for both case
studies.

Experience 3.6. Taken from use cases #1,#2.

Verification Design Challenges Having events of interest reaching the monitor, we
now focus on how the monitor will process them. The main concern in this respect is
how to keep the runtime overheads to a minimum and avoid memory leaks which might
cause the monitor to take more resources to the detriment of the system.

I Keeping runtime work to a minimum One choice when designing the verifier is
whether to explore the monitored logic a priori to avoid having to unfold it during
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runtime. For example in the case of LTL [35], one would generate the equivalent
automaton such that at runtime one would simply need to move from one state to
another rather than rewriting the formula. The approach we took in our case studies
(see Experience 3.7) is to some extent even more extreme as we chose to allow the
users to program the properties directly as automata5. In this way, we pass on the
control of (most of) the overheads to the user.

I Bounded resources and garbage collection If the chosen specification language sup-
ports monitoring using bounded memory, one may carefully implement the verifier
such that the resource boundedness is exploited. The approach adopted for the case
studies was to have a fixed set of user-defined states and thus memory leaks can
only be introduced by the user through the Java code which can be used in transi-
tion conditions and actions.
Furthermore, another concern is the garbage collection of monitors — unused mon-
itors can cause a memory leak. In general it is not trivial to identify monitors which
can be discarded, since monitors are typically stateful and discarding part of the
state might lead to incorrect monitoring. For our case studies (Experience 3.7) we
chose to allow the user to explicitly mark states as accepting, meaning that once an
automaton reaches that state it can be garbage collected.

How to design the verifier?
For both case studies we used the runtime verification tool Larva [25] to gen-
erate the monitors. Two important choices in the generated verification code
were: (i) to use explicit automata, meaning that at runtime only simple if-
conditions are evaluated (apart from conditions and actions explicitly pro-
grammed by the user); and (ii) to generate a hashing function for monitors
(building on the user-defined hashing function of the monitored object) so
that monitor lookup takes place in constant time. The first case study, in par-
ticular, served as the first testbed for the Larva tool and several modifications
were introduced based on the experience. One such modification is the intro-
duction of accepting states, i.e., states which signify property satisfaction and
hence that that particular automaton can be garbage collected. Providing a
means of garbage collection proved crucial to have monitors which are usable
in real-life.

Experience 3.7. Taken from use cases #1,#2.

3.3 Conclusions

In this section we have presented the main challenges we have encountered when in-
troducing runtime verification into an environmental setting. The challenges fall under

5 Users all had an undergraduate degree which covered automata and they did not have full
formal training in using formal logics such as LTL, they were comfortable using automata.
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two clear categories (i) how the introduction of monitoring will impact the management
of the software design and development process, and (ii) the technical challenges as to
how to capture events and process them, i.e. the monitoring architecture, for the system
at hand. A number of observations we made from our experiences were the following:

1. Companies do not trust new software easily, especially if it interacts with their live
system at runtime.

2. Overheads are a worry, even when they might not be a real concern.
3. A major challenge is to have existing company structures organised to fit their cur-

rent software engineering process absorb runtime verification without reorganisa-
tion.

4. Attractive, low-cost applications of monitoring have been found to be statistics
gathering and user interface traversal analysis.

4 Challenges in Adoption of Runtime Verification

After presenting the challenges and design issues involved in introducing runtime mon-
itoring in industry, this section presents a number of proposals and describes how these
are being taken on board in two ongoing projects:

Project 1 — OPE The Open Payments Ecosystem (OPE) is an EU-funded Horizon
2020 project, aiming at creating a single pan-European cloud-based marketplace al-
lowing third party developers to create payments applications and service providers
(e.g., banks) to provide a range of services (e.g., card authorisation, ACH transfer,
Swift) to support these applications. As a core component of the OPE infrastruc-
ture, is a verification engine which allows for matching applications with service
providers based on their requirements, and to runtime verify the behaviour of these
applications to ensure compliance to legislation, risk restrictions and other rules as
required.

Project 2 — GOMTA The GOMTA project — Generating Online Monitors from Tests
Automatically — is a project funded by the Malta Council for Science and Tech-
nology (MCST). The project aims to facilitate the adoption of runtime monitoring
by saving the user the specification of the properties, extracting them instead from
the test suite.

4.1 Challenge 1: Monitoring Overhead

Based on our experience with industrial case studies, monitoring overheads (primarily
time, but also memory) have proved to be a major challenge and hurdle in the adoption
of runtime verification in industrial-grade systems. The runtime verification community
has focussed on the use of techniques at two di↵erent levels of abstraction: system level
monitoring vs. business logic. The former, focussing on elements of lower-level code
and libraries (e.g., iterators), implies higher requirement of low overheads of moni-
toring due to the denser spread of events, while the latter can make do with higher
overhead per event since the events being monitored are typically substantially sparser.
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Industry tends to invest substantial resources in identifying the right infrastructure and
libraries, with trustworthiness being one of the important metrics used. Due to this, it
was observed that the use of runtime verification techniques was seen by the industrial
collaborators solely as a means of verifying their business logic. This reduces the re-
quirements as to what are reasonable overheads, but it is worth noting di↵erent issues
related to overheads which have been identified in the past use cases:

Worst-case overheads: The main concern with overheads is how large they can grow
per event. However, given that runtime verification is a technique which (may)
use the history of the system to deduce correctness, a concern is also that certain
properties might require more time to check as the history grows longer, unless
techniques such as incrementally verifiable properties are used to ensure this does
not happen.

Variability of overheads: Another concern is that the overheads might change as the
system evolves, leading to variability in quality-of-service measures over time.

Overhead spikes: In many transaction systems, there are (sometimes predictable) spikes
of usage. For instance, on the payment portal of an online betting service, one gets
high numbers of transactions just before an important sports event. This results in
a proportionate spike in overheads, but is also the moment when fast reactivity is
of high importance. A decrease in transaction processing speed could have a pro-
portionately decrease in income. Catering for these moments of high server stress
through hardware redundancy is only part of the solution here, and techniques to
deal with monitoring in the presence of such spikes is a challenge still to be ad-
dressed.

Throughput: In a financial transaction system, all the concerns above are ultimately
transaction, rather than event centric. In other words, transaction throughput is a
key measure used by this industry. This means than looking at overheads at the
quantum of transactions (which are variable compounds of events) gives a better
hold on the applicability of the techniques in this domain.

Many techniques have been developed in the runtime community to address the
issue of overheads. From the adoption of additional hardware for verification e.g., us-
ing GPUs [8, 34] or FPGAs [31] to adaptive techniques to manage monitors through
measures of criticality e.g., [7], much runtime verification literature is concerned with
this issue. From a more pragmatic perspective, it is still the case that choosing which
architecture to adopt — in particular whether online or o✏ine monitoring — is largely
motivated by the requirements on overheads.

Work on the use of static analysis techniques in order to partially verify require-
ments and thus alleviating runtime verification overhead is also showing promising
results e.g., [16, 11, 30, 36, 3, 15, 38]. Recently, we have started adopting such a tech-
nique (in ongoing project 1 — see Experience 4.1), which uses static analysis to reduce
dynamic properties, thus lowering overheads.
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Combining static and dynamic analysis
In the OPE project, one important functionality of the framework is to enable
a developer to submit a payment app (or rather a model of the app), which
is automatically matched with an appropriate service provider, based on ca-
pabilities, risk analysis and other aspects. In order to perform this matching,
static analysis of the model submitted by the developer is performed [4].
This gave the opportunity to include further static analysis to reduce runtime
verification overheads in the compliance engine, which has to check that (i)
the application adheres to the model supplied by the user; and (ii) that it does
not violate legislation, service provider risk limits, etc. For example, accord-
ing to English legislation, the customer should always have the possibility of
redeeming money from his or her account after closure. Using the app model,
we statically check that this possibility is in fact supported — noting that this
would otherwise have to be runtime checked frequently (even when no re-
demption is carried out). Moreover, regulations also state that money redemp-
tion should occur at par value and without delay. However, it is not possible
to statically verify that these hold as the model does not contain this level of
detail, which leaves parts to be checked dynamically (in this case, for exam-
ple, timely redemption is not statically verifiable at the level of abstraction of
the model). These remaining checks are delegated to be carried out through
runtime monitoring.

Experience 4.1. Taken from ongoing project #1.
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4.2 Challenge 2: Proposals for Runtime Verification from the Software
Engineering Point of View

Introducing runtime verification within a software development life cycle presents a
number of challenges as highlighted in the previous section. In what follows, we attempt
to address them below by describing di↵erent approaches we have adopted in ongoing
projects.

Monitoring as part of system design One of the main drawbacks of our previous ex-
periences was that monitoring was not included in the original design of the system
being monitored. Instead, monitoring had to be somehow retrofitted into the sys-
tem architecture. In the OPE project (see Experience 4.2) runtime verification was
included from the start and used to ensure the reliability of the framework.

Monitor architecture The underlying system architecture naturally has a direct e↵ect
on the monitor architecture. In traditional monolithic systems, without significant
e↵ort, the choice is usually limited to online or o✏ine monitoring. System archi-
tectures which allow submodules to be more decoupled such as actor systems and
those based on the service-oriented architecture, allow more monitoring options.
The OPE (see Experience 4.3) is based on a micro-services architecture and there-
fore it was natural to have monitoring as a service and the system may decide to
wait or not for the monitor verdict depending on the context.

Extracting events Identifying system execution points of interest and intercepting them
through aspect-oriented programming proved to be a non-trivial task in previous
case studies. Having predefined, clearly specified events makes it significantly more
straightforward for components within the system to communicate as the events
serve as a common interface; not least for the monitor. In the OPE project (see
Experience 4.3), events from each micro-service are published with the monitor
simply listening out for the relevant ones.

Monitoring as part of the system design
In past case studies the monitor has always been introduced after the system
had already been developed. On the contrary, in the OPE the compliance unit
(of which runtime verification plays a major role) was part of the initial design
of the framework. This saved the OPE execution environment from having to
be inundated with checks to cater for the legislation. The design, in turn, was
taken into consideration when choosing the implementation framework and
as further elaborated in Experience 4.3, incorporating the monitor in the OPE
was straightforward.

Experience 4.2. Taken from ongoing project #1.
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Monitoring architecture in a micro-services architecture
Being programmed as a monolithic Java system, previous case studies relied
on aspect-oriented programming to embed the runtime verification code, re-
sulting in either fully synchronous or completely o✏ine monitoring. By con-
trast the OPE is organised in terms of micro-services, making it relatively easy
to have asynchronous monitoring on the live system: on the one hand, intro-
ducing the monitoring service was as straightforward as adding any other ser-
vice to the system; while on the other hand, using the native communication
infrastructure, all services can report events to the monitoring service.

Experience 4.3. Taken from ongoing project #1.

4.3 Challenge 3: Communication and Formalisation of Properties

One of the initial hurdles of introducing runtime verification in industry is that of ex-
pressing the system properties in a formal fashion. To address this problem, we are
working on two fronts:

Using a controlled natural language One way of easing the di�culty of expressing
correctness properties is by providing a specification language which does not re-
quire its users to have a background in formal methods. While automata have been
useful in previous experiences, their expressivity is substantially limited except
through the use of additional Java code on the transitions. One way of lifting this
limitation without impinging on the understandability of the language is through
the use of controlled natural languages [33]. These allow the creation of a custom
language whose expressivity matches that required in the context while the learning
curve can be kept to a minimum. We have experimented with the use of controlled
natural languages in such contexts in more academic projects [12, 21, 14] before,
but the OPE project (Experience 4.4) was the first industrial-project setting in which
we have used this approach, and which has so far proved to be e↵ective.

Generating monitors automatically Another approach being explored to simplify prop-
erty specification is to attempt to extract them automatically or otherwise from
available information already present in tests. There has been some previous work
on automated monitor synthesis from tests e.g. [27, 2], although these approaches
work at a level of abstraction which is not always available in real-life case studies.
For instance, [27] requires model-based test case generators which are infrequently
used in industry. There is some initial work to start from the (universally used in
industry) unit tests, but it is still unclear how much can be achieved automatically.
On the other hand, as a means of supporting manual property writing, there is no
denying that tests contain much information which can be used for property writing
(Experience 4.5).
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Developing a controlled natural language
The OPE project is concerned with alleviating the administrative burdens of
creating financial applications. As such, there are various laws and directives
which need to be taken into consideration (e.g., the Electronic Money Direc-
tive and the Anti-Money Laundering Regulations). The main challenge with
encoding such legislation into formal properties is that they are regularly up-
dated, and that lawyers need to be involved to confirm that what is being
specified corresponds to the law. Using a controlled natural language enabled
us to have a communication language with the non-technical lawyers, and at
the same time technical people would not need to be involved each time the
legislation is updated.

Experience 4.4. Taken from ongoing project #1.

Generating monitors automatically
While none of our industrial partners had been using runtime verification be-
fore our collaboration, they both had a formidable test suite with good cover-
age of the system’s functionality. This realisation led us to consider extracting
monitors from tests. While the investigation is still in its early phases, initial
experiments using the Daikon invariant inference engine suggest that a num-
ber of properties can indeed be extracted from tests automatically: depending
on some quality attributes of the test suite such as branch coverage, we were
able to exceed 70% specification recall, although admittedly precision is still
below 30% [17].

Experience 4.5. Taken from ongoing project #2.
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5 Conclusions

In this chapter we have presented an anecdotal view of the use of runtime verification
in an industrial setting. Although we focussed on our experiences in the domain of
financial transaction systems, much of the observations are not domain-specific, and
can be extrapolated for other application domains.

The challenges encountered can mostly be split into two categories — firstly how
runtime verification can be fitted into existing software engineering practices and man-
agement structures, and secondly technical ones, particularly tailoring the right runtime
verification flavour to match the requirements and system at hand. We have found that
some such choices tend to pave the way for smoother adoption of monitoring technolo-
gies — for instance, starting with o✏ine verification using existing system behaviour
logs can be an excellent way of showing potential benefit without having to surpass the
hurdle of introducing new code into the system. Finally, we have identified the major
challenges which we believe are still to be addressed before runtime verification can
find a foothold in industry, enabling its widespread use.
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