R. A. Martin, Making security measurable and manageable, MILCOM 2008, 2008 IEEE Military Communications Conference, pp.1-9, 2008.
DOI : 10.1109/MILCOM.2008.4753203

J. A. Wang and M. Guo, OVM, Proceedings of the 5th Annual Workshop on Cyber Security and Information Intelligence Research Cyber Security and Information Intelligence Challenges and Strategies, CSIIRW '09, 2009.
DOI : 10.1145/1558607.1558646

, Common attack pattern enumeration and classification (CAPEC), " https://capec.mitre.org, MITRE, 2018.

, Common weakness enumeration (CWE), " https://cwe.mitre.org Common vulnerabilities and exposures (CVE), " https, 2018.

J. Navarro, V. Legrand, S. Lagraa, J. François, A. Lahmadi et al., HuMa: A Multi-layer Framework for Threat Analysis in a Heterogeneous Log Environment, FPS, ser, pp.144-159, 2017.
DOI : 10.1007/978-3-642-23088-2_15

I. V. Kotenko and E. Doynikova, The CAPEC based generator of attack scenarios for network security evaluation, 2015 IEEE 8th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), pp.436-441, 2015.
DOI : 10.1109/IDAACS.2015.7340774

S. Madria and A. Sen, Offline Risk Assessment of Cloud Service Providers, IEEE Cloud Computing, vol.2, issue.3, pp.50-57, 2015.
DOI : 10.1109/MCC.2015.63

S. Noel, Interactive visualization and text mining for the capec cyber attack catalog, Proceedings of the ACM Intelligent User Interfaces Workshop on Visual Text Analytics, 2015.

Z. Chen, Y. Zhang, and Z. Chen, A Categorization Framework for Common Computer Vulnerabilities and Exposures, The Computer Journal, vol.53, issue.5, pp.551-580, 2010.
DOI : 10.1093/comjnl/bxp040

D. Toloudis, G. Spanos, and L. Angelis, Associating the Severity of Vulnerabilities with their Description, CAiSE Workshops, ser. Lecture Notes in Business Information Processing, pp.231-242, 2016.
DOI : 10.1016/j.dss.2010.08.020

S. Neuhaus and T. Zimmermann, Security trend analysis with CVE topic models, " in ISSRE, pp.111-120, 2010.
DOI : 10.1109/issre.2010.53

URL : http://thomas-zimmermann.com/publications/files/neuhaus-issre-2010.pdf

J. A. Wang, H. Wang, M. Guo, L. Zhou, and J. Camargo, Ranking Attacks Based on Vulnerability Analysis, 2010 43rd Hawaii International Conference on System Sciences, pp.1-10, 2010.
DOI : 10.1109/HICSS.2010.313

N. Scarabeo, B. C. Fung, and R. H. Khokhar, Figure 8: Computational Time calculated by varying the number of Snort Alerts Messages to be mapped to the whole set of Capec Fields., PeerJ Computer Science, vol.12, issue.2, p.25, 2015.
DOI : 10.7717/peerj-cs.25/fig-8

T. Mikolov, K. Chen, G. Corrado, and J. Dean, Efficient estimation of word representations in vector space, 1301.

K. B. Lyons, F. Institute, . Of, . Wright-patterson-afb, . Oh et al., A recommender system in the cyber defense domain, 2014.

V. Martínez, F. Berzal, and J. C. Talavera, A Survey of Link Prediction in Complex Networks, ACM Computing Surveys, vol.49, issue.4, pp.1-6933, 2017.
DOI : 10.1140/epjb/e2009-00335-8

L. A. Adamic and E. Adar, Friends and neighbors on the Web, Social Networks, vol.25, issue.3, pp.211-230, 2003.
DOI : 10.1016/S0378-8733(03)00009-1

URL : http://ehv-srvhost-fe.fontys.nl/co/com2know/kennisbank-onderwijs/knipsels/Zweekhorst/Friends and neighbors on the web.pdf

T. Zhou, L. Lü, and Y. Zhang, Predicting missing links via local information, The European Physical Journal B, vol.30, issue.4, pp.623-630, 2009.
DOI : 10.1126/science.1073374

URL : http://arxiv.org/pdf/0901.0553

A. Barabási and R. Albert, Emergence of scaling in random networks, Science, vol.286, issue.5439, pp.509-512, 1999.

K. and S. Jones, A STATISTICAL INTERPRETATION OF TERM SPECIFICITY AND ITS APPLICATION IN RETRIEVAL, Journal of Documentation, vol.28, issue.1, pp.11-21, 1972.
DOI : 10.1002/asi.5090180209

R. Pech, D. Hao, L. Pan, H. Cheng, and T. Zhou, Link prediction via matrix completion, EPL (Europhysics Letters), vol.117, issue.3, p.38002, 2017.
DOI : 10.1209/0295-5075/117/38002

URL : http://arxiv.org/pdf/1606.06812

D. D. Lee and H. S. Seung, Algorithms for non-negative matrix factorization, NIPS, pp.556-562, 2000.

N. Japkowicz and M. Shah, Evaluating learning algorithms: a classification perspective, 2011.
DOI : 10.1017/CBO9780511921803

J. Huang and C. X. Ling, Using AUC and accuracy in evaluating learning algorithms, IEEE Transactions on Knowledge and Data Engineering, vol.17, issue.3, pp.299-310, 2005.
DOI : 10.1109/TKDE.2005.50

J. Leskovec, D. P. Huttenlocher, and J. M. Kleinberg, Predicting positive and negative links in online social networks, Proceedings of the 19th international conference on World wide web, WWW '10, 2010.
DOI : 10.1145/1772690.1772756

URL : http://www.cs.cornell.edu/Info/People/kleinber/www10-signed.pdf

P. Branco, L. Torgo, and R. P. Ribeiro, A Survey of Predictive Modeling on Imbalanced Domains, ACM Computing Surveys, vol.49, issue.2, pp.311-3150, 2016.
DOI : 10.1007/11766247_46

N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, SMOTE: Synthetic Minority Over-sampling Technique, Journal of Artificial Intelligence Research, vol.16, pp.321-357, 2002.
DOI : 10.1613/jair.953

J. Tang, X. Hu, and H. Liu, Social recommendation: a review, Social Network Analysis and Mining, vol.26, issue.3, 2013.
DOI : 10.1145/1772690.1772790