
HAL Id: hal-01765253
https://inria.hal.science/hal-01765253

Submitted on 12 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Development of Capability Driven Development
Methodology: Experiences and Recommendations

Janis Stirna, Jelena Zdravkovic, Jānis Grabis, Kurt Sandkuhl

To cite this version:
Janis Stirna, Jelena Zdravkovic, Jānis Grabis, Kurt Sandkuhl. Development of Capability Driven
Development Methodology: Experiences and Recommendations. 10th IFIP Working Conference on
The Practice of Enterprise Modeling (PoEM), Nov 2017, Leuven, Belgium. pp.251-266, �10.1007/978-
3-319-70241-4_17�. �hal-01765253�

https://inria.hal.science/hal-01765253
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Development of Capability Driven Development
Methodology: Experiences and Recommendations

Janis Stirna1, Jelena Zdravkovic1, Jānis Grabis2, Kurt Sandkuhl3

1Department of Computer and Systems Sciences, Stockholm University, PO Box 7003,
164 07, Kista, Sweden

2Institute of Information Technology, Riga Technical University, Kalku 1, Riga, Latvia
3Institute of Computer Science, Rostock University, 18051 Rostock, Germany

 [js, jelenaz]@dsv.su.se, grabis@rtu.lv, kurt.sandkuhl@uni-
rostock.de

Abstract. The field of Information Systems (IS) and Enterprise Modeling (EM)
is continuously striving to address the challenges of the practice by developing
new methods and tools. This paper presents experiences and lessons learned
from the Method Engineering of the Capability Driven Development (CDD)
methodology. The CDD methodology supports organizations operating in
dynamic environments and integrates EM with information system (IS)
development taking into account changes as the application context. The main
focus is on presenting the CDD meta-model and the associated development
activities as well as sharing the experience and recommendations for
developing similar methods and tools.

Keywords: Enterprise Modeling, Meta-modeling, Method Engineering,
Capability Driven Development

1 Introduction

Information Systems (IS) have to dynamically adapt to new and unexpected, often
drastic, business opportunities and threats. To respond to this challenge of continuous
adaptation, the EU FP7 project “Capability as a Service in digital enterprises” (CaaS)
[1] developed a methodology for capturing and analyzing the influence of the
business application context on the IS using the notion of capability. The concept of
capability is generally used as an abstraction to define what a core business does [2].
For instance, “an ability and a capacity for an enterprise to deliver value, either to
customers or shareholders, right beneath the business strategy” [3], or “the ability of
one or more resources to deliver a specified type of effect or a specified course of
action” [4]. The CaaS project has developed an integrated methodology for context-
aware business and IT solutions: Capability Driven Development (CDD). It consists
of a modeling language and guidelines for the way of working. The areas of modeling
performed as part of CDD are Enterprise Modeling (EM), context modeling,
variability modeling, adjustment algorithms, and patterns for capturing best practices.

The development of the CDD methodology followed principles defined during
analysis of use case requirements and documented in [5]:
─ The CaaS project should not develop a single methodology mandatory for all

business cases, but a reference methodology for using in majority of cases and
pathways of extending the reference methodology to proprietary methodologies.

─ All concepts of the methodology should be based on a common meta-model.
─ The CDD methodology should not be a monolithic block but component-

oriented to allow flexible use of selected method components depending on the
intentions of an organization and a particular development situation.

─ Integration of existing methods or method components should be given
preference before substituting them with new.

─ The CDD methodology is to be supported by the CDD Environment, a part of
which is the Capability Design Tool (CDT) implemented in Eclipse.

The objectives of this paper are (i) to report on the process that led to development
of the CDD methodology, (ii) to share the experiences method development, and (iii)
to formulate a set of guidelines for development of EM methods.

The research approach followed the principles of design science [8] and consisted
of several design and evaluation cycles. The proposed CDD methodology has been
applied and validated in 4 use case companies of the CaaS project.

The rest of the paper is organized as follows. Section 2 presents the research
approach taken, while section 3 gives a background to method development. The
process of method development that took place is presented in section 4 while the
CDD meta-model and the CDD process is summarized in section 5. Section 6
presents the experiences and recommendations for method development, while
section 7 summarizes and provides concluding remarks.

2 Research Methodology

Within IS engineering, Design Science Research (DSR) is a problem-solving
paradigm which aims to resolve problems by creating innovative scientific artifacts
through development- and evaluation cycles within an operating context
(organizational domain, social setting, environment, etc.) [8]. The creation of artifacts
evolves iteratively and incrementally through a research process and results in a
practical solution. The DSR process consists of the explication of the problem, an
outline of the artifact with the related requirements, artifact’s design and
development, as well as its demonstration, evaluation, and communication.

Our research concerns the CDD methodology as the main design artifact, for
enabling IS development to capture changes in business context through variability
terms and to accordingly adapt using adjustment algorithms. This design artifact is
composite because the components of the methodology, e.g. the meta-model, are also
design artifacts. Furthermore it is closely related to another design artifact of the
project – the CDD Environment. This paper presents the experience of applying the
DSR paradigm to the development CDD methodology and environment. The DSR
process of constructing the artifact according to needs of multiple stakeholders was

iterative and incremental. Participatory modeling workshops, focus-groups sessions,
and questionnaires were the main techniques used for requirements elicitation. The
artifact was developed and validated during a number of design cycles, notably, two
cycles of initial feasibility design and analysis [5], three parallel cycles of application
of the methodology at the use case companies leading to the reference CDD
methodology [6], followed by a number of design-validation cycles for development
of extensions of the methodology (available from [1]).

3 Background to Method Development

Method engineering (ME) is the engineering discipline to design, construct and adapt
methods, techniques and tools for the development of information systems [9]. One of
the first efforts in modeling of modeling methods (meta-modeling) was proposed by
[10] and development of customizable tools for supporting various modeling
approaches (meta-tools) by [11]. The main motivation was to search and adopt or
tailor existing methods, as well as, to develop a new method by designing its
modeling language, way of working, and tool support. The efforts concentrating on
tool support became known as Computer Aided Method Engineering, c.f. [12, 13].

The need to adapt methods and tools according to organizational needs has been
addressed by Situational Method Engineering (SME) [14]. Recently it has been
systematically presented in [15]. In a nutshell, SME is an ME approach that includes
all aspects of creating, using and adapting an IS development method based on local
conditions. This is achieved by designing method parts, i.e. method chunks [16],
supporting the realization of some specific IS development activity as well as by
tailoring by extracting a set of appropriate method parts assessed based on local
situational factors (e.g. the business sector, or size of the business). Each method part
is represented according to a same template and adheres to a unique meta-model.

Another practicable ME approach was proposed in [17]; it sets a high attention on
the elaboration of method parts such as the procedures for meta-modeling, i.e. for
choosing appropriate concepts for inclusion.

Since the CDD methodology aimed for creating a new method for IS development
based on the notion of capability because any similar has not existed, the core concern
was to correctly identify the main method parts and their relevant concepts. For that
reason, the approach described in [17] has been chosen. It proposes that methods are
to be described in terms of the following aspects:
─ Purpose: every method component has to clearly state its purpose, e.g. what

modeling or problem-solving task it supports. Furthermore, a method usually
describes the procedure for the modeling task from a particular perspective (e.g.
business goals, process), which influences what is considered important when
following the procedure. This perspective should also be stated explicitly.

─ Overview to method components describes the relationships between the
individual method components, i.e. which components are to be used and under
what conditions, as well as the sequence of the method components (if any).

─ Method component defines in operational terms what are the modeling language
(in terms of concepts and notation) and procedure to be used. The concepts
specify what aspects of reality are regarded as relevant in the modeling process,
i.e. what is important and what should be captured a model. These relevant
concepts and their relationships should be named in the method component and
explained if necessary. The procedure describes how to identify the relevant
concepts in a method component. It may also state prerequisites, resources,
input, output, and tool support. In some cases it includes guidelines of modeling
and assessing model quality. The notation specifies how the result of the
procedure is to be documented, i.e. the graphical symbols, providing appropriate
representation for each concept and for the relationships between them.

─ Forms of cooperation: many modeling tasks require a range of specialist skills
or cooperation between different stakeholder and developer types, i.e. roles in
the project. The skills and roles are described along with the responsibilities and
the forms of cooperation, e.g. who will take responsibility for each task or
method component, will it be participatory or analyst-driven modeling.

The conceptualization of the relevant aspects is an important concern when
designing method components. This is typically done using meta-modeling to specify
a modeling language in a declarative manner, to generate a tool for its support. A key
challenge is to organize ME and tool development in such a way that it is based on
common modeling constructs and structure. In this regard MOF meta-modeling
architecture [18] defining four modeling layers – from M3 (meta-meta model layer) to
M0 (instance layer). Modeling languages are typically specified at M2 (meta-model
layer). Once they are used to describe models reflecting reality, M1 model layer is
populated. When the models at M1 level are instantiated M0 level is reached.

The CDD methodology has been defined by an M2 model, and as we show in
section 5, we have obtained it starting from a conceptual M2 model to enable
communication as well as to reach the agreement for the meta-model requirements
among the methodology’s stakeholders.

4 Overview of the Process of Method Development

The following phases of method development took place: (i) requirements elicitation
and analysis of the business motivators; (ii) method development first iteration – base
line methodology, (iii) second iteration of method development, focusing on fine-
tuning the base line methodology and the creation of regular CDD methodology as
well as elaborating method extensions; (iv) integration of the method extensions and
packaging for exploitation – final version of the CDD methodology.

4.1 Requirements Elicitation

The motivation for the CDD methodology development was analyzed in the initial
requirements elicitation phase of the project. This was done by interviews with the
use case companies, survey with a large number of external companies, as well as by

several iterations of methodology development and capability designs for the four use
case companies in order to validate the initial versions of the modeling language. This
allowed us to elaborate the overall goals (see Fig. 1) and requirements for the CDD
methodology, define an initial conceptual meta-model for representing capability
designs, and to outline method components. Results of this work are reported in [5].

Fig. 1. A goal model fragment for the CDD methodology, adapted from [5]

4.2 Development of the of the CDD Methodology – Base Line

The CDD methodology defines both aspects that comprise a modeling methodology –
(1) the modeling language in terms of concepts, relationships, and notations used to
represent the modeling product, i.e. the models of capability designs created, and (2)
the way of working, the procedures and tools used, to arrive at a capability design of
good quality i.e. the modeling process. The CDD methodology consists of a number
of interlinked method components [6] described according to the framework of [17].

The CDD method components were divided into upper-level method components
and method extensions. At this stage the upper-level components were designed
according to the requirements and business goals elicited in the previous phase and
the initial versions were documented. The resulting methodology was denoted, base
line methodology and it included the following components:
─ Capability Design Process. It describes an overview on how to design

capabilities by using process models, goal models and other types of models.
─ Enterprise Modeling. The component guides the creation of enterprise models

that are used as input for capability design. We have incorporated the 4EM
approach for the purpose of this component.

─ Context Modeling. It describes the method components needed for analyzing the
capability context, and the variations needed to deal with variations.

─ Reuse of capability design. This component contains guidelines for the
elicitation and documentation of patterns for capability design.

─ Run-time Delivery Adjustment for development of capability runtime
adjustments including implementation of capability delivery adaptation
algorithms.

The base line methodology was applied and validated by application in the following
use case companies:
─ SIV AG (Germany) for business processes outsourcing (BPO) and execution

capability.
─ Fresh T Limited (UK) for maritime compliance capability.
─ CLMS Ltd (UK) for collaborative software development using the MDD

technology and i-Symbiosis application in particular.
─ Everis (Spain) for service promotion capability, marriage registration capability,

government SOA platform management capability.

4.3 Development of the of the CDD Methodology – Regular Methodology

The base line methodology was applied in the use case companies of the CaaS project
and the application results contributed to further improvements and development of
the next version of the CDD methodology, denoted regular methodology.

The main tasks at this stage was development of new subcomponents for the
upper-level components, defining additional and more detailed procedures for the
ways of working, as well as refinement of the meta-model, e.g. changes of
multiplicities representing model integrity rules, and introducing new components
needed for representing information needed by the newly developed method
subcomponents. In addition, method extensions addressing specific business
challenges to which the regular methodology can be applied were developed as part of
the process of applying the base line methodology (c.f. [1]). The main purpose of the
method extensions is to broaden the range of problems to which CDD can be applied.
There following method extensions were developed:
─ The Capability Ready Business Services covers the transition from textual

instructions and activity descriptions to process models. With this extension
many more BPO services can be designed as capabilities.

─ The Prepare Local and Global Optimization improves service delivery by
balancing the local optimization of services provided to a client and global
optimization from a Business Service Provider (BSP) perspective.

─ The Evolutionary Development of Business Information Exchange Capability
helps organizations to develop capabilities in the case when pre-existing
capability delivery solution must be tailored to the needs of a new client.

─ The Integration of CDD and MDD for analyzing the potential for integrating
MDD and CDD concepts. MDD is sharing a common ground with the CDD
approach because both use models for analysis and design.

─ The Analysis of Capability Relationships is proposing an analysis of capability
relationships and mapping capabilities to delivered services including those
offered by external partners.

─ The Predictive analysis describes capability delivery adjustment using predicted
context values to attain proactive behavior.

─ The Capacity evaluation evaluates capability delivery capacity requirements to
determine capability’s suitability to context ranges.

4.4 Development of the Final version of the CDD Methodology

At this stage the upper level method components and method extensions had been
applied and tested in several iterations in the use case companies and hence were
considered relatively stable, i.e. only minor refinements to the documentation were
performed, e.g. for eliminating redundancies and inconsistencies in the
documentation, improving the understandability of the definitions.

Considering the project’s aim to deliver a method for practical use, an additional
method component to Support Executive Decision Making for the adoption of CDD in
organizations. This method component defines the steps for CDD adoption as well as
specifies the organizational roles needed for its successful and long-term use. The
final version of the CDD methodology is reported in [19].

CDD was also analyzed with respect to the current EM and Enterprise Architecture
contributions that include the concept of capability for similar purposes [20].

5 Overview of the CDD Meta-model

For the purpose of providing background, this section briefly presents the Capability
Meta-model and the CDD way of working, the two aspects to which the experiences
and lessons learned are related. The theoretical and methodological foundations for
CDD are provided by the conceptual core CaPability Meta-model (CPM) in Fig. 2,
c.f. [6] for details. CPM was developed on the basis of requirements from the
industrial project partners and related research. It has three main sections:

a) Enterprise model representing organizational designs with Goals, KPIs,
Processes (with concretizations as Process Variants) and Resources;

b) Context model represented with Context Set for which a Capability is designed
and Context Situation at runtime that is monitored and according to which the
deployed solutions should be adjusted. Context Indicators are used for measuring the
context properties (Measuring Property); and
c) Patterns and variability model for delivering Capability by reusable solutions for
reaching Goals under different Context Situations. Each pattern describes how a
certain Capability is to be delivered within a certain Context Situation and what
Processes Variants and Resources are needed to support a Context Set.

Note that this is a simplified version of the CPM showing the key components of
CDD; the version including definitions of components and associations is available in
[19].

Fig. 2. A core meta-model for supporting Capability Driven Development [5]

Table 1. Concepts of the core capability meta-model

Concept Description
Capability Capability is the ability and capacity that enable an enterprise to achieve a

business Goal in a certain context (represented by Context Set).
KPI Key Performance Indicators (KPIs) are measurable properties that can be

seen as targets for achievement of Goals.
Context Set Context Set describes the set of Context Elements that are relevant for

design and delivery of a specific Capability.
Context
Element Range

Context Element Range specifies boundaries of permitted values for a
specific Context Element and for a specific Context Set.

Context
Element

A Context Element is representing any information that can be used to
characterize the situation of an entity.

Measurable
Property

Measurable Property is any information about the organization’s
environment that can be measured.

Context
Element Value

Context Element Value is a value of a specific Context Element at a given
the runtime situation, calculated from several Measurable Properties.

Goal Goal is a desired state of affairs that needs to be attained. Goals should
typically be expressed in measurable terms such as KPIs.

Process Process is series of actions that are performed to achieve a result. A
Process supports Goals, has input and produces output in terms of
information and/or material.

Pattern Patterns are reusable solutions for reaching business Goals under specific
situational contexts. The context defined for the Capability (Context Set)
should match the context in which the Pattern is applicable.

Process Variant Process variant is a part of the Process, which uses the same input and
delivers the same outcome as the Process in a different way.

The overall CDD process includes three cycles – capability design; capability
delivery; and capability refinement/updating. It usually starts with Enterprise
Modeling, i.e. by a business request for a new capability - the request might be
initiated by strategic business planning, changes in context, or new business
opportunities requiring reconfiguration of existing or the creation of, e.g. new goals,
business processes. This is followed by capability design – a formalized definition of
requested capabilities and of relevant contexts, linking with relevant capability
delivery patterns, as well as with supporting IT applications. The designed capability
is then deployed and executed; this process is called capability delivery.

6 Experiences of the CDD Methodology Development

This section presents our findings in terms of development of the CDD methodology
and Environment.

6.1 Iterative and incremental development of the meta-model

The work started by iterative development of the CPM in Fig. 2. It was used
throughout the methodology development process. At first it presented the overall
vision of the project consortium, the main components of a capability design, such as,
capability, context, KPI, business process, which became clear in the early stages of
the project. This was then validated in several iterations of, first instantiating the
CPM, c.f. [5], and later applying to model the capability designs of the use case
companies. All components in the meta-model had a textual description according to
the following fields, component’s name, description, purpose explaining why it
should be used, associations including their purpose, and attributes.

There were four major versions of the CPM (Fig. 3) based on the initial version of
the CDD methodology as well as 4EM that provided a core set of EM concepts. The
initial CPM was developed prior to considering use cases, documented in [21]. It
introduced concepts distinctive to capability, namely, context, indicators, patterns,
and variants.

The first CPM development iteration within the project focused on the refinement
of the existing concepts. This was based on high-level use case requirements for
CDD. Initial capability models were developed as instantiations of the CPM. These
capability models were further elaborated during analysis and design of the use cases,
and this information was used in the second version. The main group of concepts
added concern variability modeling as the use case partners found it important to
represent contextual causes of variability in their capability models.

The next use case development stage focused on the actual implementation and
delivery of capabilities and the CPM was extended to represent capability delivery
aspects, which are the main executable parts of the capability design. The concepts of
calculations and adjustments were added [22]. The former concerns transformation of
contextual and performance data into context elements and indicators while the latter
concerns definition of the capability delivery adaptation logics.

Fig. 3: Evolution of the CPM

In addition to the aforementioned iterations and the use case validations, further
refinements were introduced after interactions with the CDD Environment
development team. Some modeling components were difficult to understand by some
method and tool developers in the project and discussing them from the point of view
of meta-model and creating examples of capability models based on the meta-model
proved useful. The most frequent changes were of multiplicities representing integrity
constraints of the CDD methodology. There was a need to balance capability analysis
and high level design needs with capability implementation and delivery needs. It was
decided that the CPM v1 is used to communicate capability design concepts to
business owners and analysts, while elements representing implementation details are
defined in a separate view of the capability model (CPM v3).

Meta-modeling was instrumental to the process of designing method components
with a clear purpose and precise semantics. This process was iterative during which
CPM constructs and definitions were discussed in the method developer team to reach
common understanding. A notable characteristic of CDD in comparison with other
methods is that the same meta-model components are used by a considerably large
number of method components and extensions. E.g. the constructs related to context
modeling are used by almost all methodology components.

Development of all new method components started with the inclusion of the new
modeling components in the CPM, which included certain restructuring and defining
links to the existing components.

In summary, the following recommendations can be formulated:
─ Develop the meta-model in design-validate iterations;
─ Develop textual descriptions of the meta-model;
─ Relate all method components to the common meta-model.

6.2 Method Components and Integration with Existing Methods

One of the initial decisions of methodology development was to base the CDD on
existing methods and method components. The concept of method component proved
to be very suitable because it allowed the development of support for the core tasks of
CDD concurrently and in a modular fashion based on common principles.

It was assumed that capability design is based on EM and the CPM contains
elements commonly used in EM. Hence, it was decided to incorporate an existing EM
approach for the CDD tasks that are aligned to EM tasks. The 4EM approach was
chosen because of three primary reasons: (1) 4EM sub-models are similar to method
components and they are suited for modeling the perspectives of an organizational

4EM meta-
model

• Goals
• Concepts
• Processes
• Actors
• Rules

Intial CPM

• Capability
• Context
• Indicators
• Patterns
• Variants

CPM v1

• Refined
context
modeling

CPM v2

• Variability
modeling

CPM v3

• Adjustments
• Calculations

design (goals, business rules, process, concepts, actors and IS requirements) that are
relevant for capability design, (2) the 4EM meta-model is formally defined, and (3)
two of 4EM developers and authors of [7] participated the CDD method development.

Once the initial assessment of the suitability of 4EM was done, we investigated
how the elements in the CPM correspond to the elements of the 4EM sub-models.
Fig. 4 depicts this on a conceptual level with the dashed links showing the
correspondence between the modeling perspectives of CDD and 4EM. The links show
which sub-models of CDD can be supported by 4EM in the way that they use and
where needed extend the 4EM models.

Fig. 4 Alignment of sub-models of capability meta-model and 4EM framework

Link-1: CPM goals and KPIs represent the intentional dimension of capability
design and they correspond to the 4EM Goals Model components, namely, goal,
problem, opportunity, cause, and relationships, namely, supports, hinders, and AND
and OR refinement. Hence 4EM Goals Model was incorporated in CDD.

Link-2: Capability design is specified in terms of business process, process variants
and resources, which can be addressed by 4EM Business Process Model and Actors
and Resources Model. However, considering that the use case companies were more
acquainted with the BPMN and that CDD Environment was developed in the Eclipse

Environment for which there was an available BPMN plug-it it was decided to use
BPMN instead, which considerably reduced the implementation costs of the tool.

Link-3: CPM constructs for representing capability context, such as context
element, context indicator, and measurable property define properties of things and
phenomena, which makes them, in principle, appropriate for modeling with the 4EM
Concepts Model. However, analyzing the use case requirements led to a conclusion
that a specific modeling guidance is needed and it was decided to develop a dedicated
modeling component and a distinct notation for context modeling.

In summary, the following recommendations can be formulated:
─ Structure method into components (which and consist of sub-components);
─ Consider competence of the method and tool development team;
─ Assess the suitability of existing method components; components with similar

modeling languages and notations should be considered for the inclusion,
components requiring new ways of working might be too difficult to include;

─ Consider tool implementation, e.g. available components, ease of use.

6.3 Use of Various Meta-models with Different Purposes

The purpose of the CPM in Fig. 2 is to present the modeling components of CDD and
how they are related conceptually. It also includes the main integrity constraints based
on association multiplicities, e.g. that each capability is motivated by exactly one
goal. This version was extensively used in discussions with the use case partners and
within the methodology development team. It was the main reference model for the
development of the methodology steps.

Fig. 5. A fragment of the language meta-model showing Capability relationships

with Goal and Context Set
The core meta-model, is however insufficiently detailed for developing a modeling

language to the full extent as well as to develop a supporting modeling tool. Hence a
language meta-model containing detailed components the modeling language was
created. Fig.5 shows a fragment of the language meta-model for relationships
“Capability fulfills a Goal” and “Capability is designed for Context Set” in the CPM
(Fig.2). The relationship names “fulfills” and “is designed for” are changed to
“requires”, because it was deemed that the latter reflects the true nature of this
relationship more precisely because a capability that is not associated to any goal or
any context set would be seen as incompletely designed. The main difference between
the language meta-model and core meta-model is that associations and association
roles are modeled as classes to specify which association types are permitted between

which modeling component types. The language meta-model was developed
analytically – by considering the purpose of each component in the CPM and how it
could be represented by a modeling language taking the constructs and notation of
4EM a starting point. The resulting meta-model was also useful in discussions
between method developer and tool developer teams. It was later extended to
represent information needed for other parts of the CDD methodology, such as
variables and calculations for adjustment algorithms, which were not part of the
modeling language but were needed for capability monitoring at runtime.

The CPM represented integrity and quality constraints assumed to be useful in the
CDD methodology, e.g. each capability requires exactly one context set. This,
however, does not take into account temporal states of the model, i.e. in an
incomplete model, once a capability is placed in a model it will exist without a link to
a context set until such a context set is created and an association to it is defined.

The language meta-model essentially served as the reference point for development
of the CDD Environment, but it was not useful for conceptual discussions, e.g., when
developing the different method components. Referring to MOF levels of meta-
models, the language meta-model followed the principles of M2 level, while Ecore
(meta-model of the Eclipse Modeling Framework) provided M3 level components.

In summary, the following recommendations can be formulated:
─ Develop several meta-models in parallel – core meta-model for discussions and

method development and language meta-model for tool development
─ Assess integrity constraints and quality criteria built in the meta-model.

Fig. 6. Components of the CDD Environment

6.4 Development of the CDD Environment

The language meta-model was subsequently implemented in the CDD Environment
consisting of a number of components (see fig.6.). Capability Design Tool (CDT) is
an Eclipse based graphical modeling tool for supporting the creation of models
according to the capability meta-model. It supports the CPM and its modeling
notation. Capability Navigation Application (CNA) uses capability models to monitor
the capability context by receiving the values of measurable properties (MP) and
handle run-time adjustments. CNA manages information at run-time defined
according to the meta-model. Capability Context Platform (CCP) distributes internal

and external context information to the CNA. It aggregates MPs into context elements
for models in CDT; it provides runtime values for external context elements (external
data providers - Internet, other organizations, individuals); it also allows defining new
context elements based on the existing MPs, and specifying KPIs based on MPs for
monitoring. Capability Delivery Application (CDA) represents the business
applications that are used to support the capability delivery. This can be a custom-
made or configured, e.g. an ERP, system. The CNA communicates or configures the
CDA to adjust for changing contexts during capability design and delivery. It also
receives MP values from the data providers internal to the organization. Capability
Pattern Repository (CPR) stores reusable capability designs. It supports the part of the
capability meta-model that is related to patterns and business processes.

The case of developing the CDD Environment differs from the more traditional
cases of developing tool support for modeling methods where a modeling language is
implemented only in a modeling tool. Because the CDD environment also included
other components, for example, the parts of the meta-model related to runtime
monitoring and adjustments had to be supported by other components of the CDD
environment. Similarly, the CCP was used for monitoring measurable properties and
context elements that had to be structured according to the meta-model. To simplify
deployment of the CDD environment, a cloud-based version of the environment was
also created supporting the final version of the methodology. Virtual instances of
CDT, CCP, and CNA are hosted on the common Apache CloudStack platform and
CDT was made accessible using web browser by means of desktop virtualization.

In summary, the following recommendations can be formulated:
─ Use the language meta-model for tool development
─ Include in the meta-model components that are not modeled in a traditional way,

such as for runtime data, adjustments
─ Consider that the meta-model will be used even outside the modeling tool
─ Use cloud based tools and services to support deployment

7 Concluding Remarks

The process of CDD methodology development followed the principles of DSR. The
main focus in this paper has been set on the development of the modeling language
using meta-modeling with a particular effort on integration with concepts of the 4EM
approach and on supporting the development of a modeling tool. A number of
experiences and recommendations have also been presented. The CDD methodology
and environment have been validated in real life capability design projects at four use
case companies as part of design-evaluation cycles of the project. The presented
recommendations are by no means exhaustive and more work on collecting such
experiences from other ME projects should be devoted.

References

1. EU FP7 CaaS Project. Capability as a Service for digital enterprises, proj. no. 611351
http://caas-project.eu/

2. Zdravkovic J., Stirna J., Grabis J., A Comparative Analysis of Using the Capability Notion
for Congruent Business and Information Systems Engineering, Complex Systems
Informatics and Modeling Quarterly, CSIMQ, no. 10, pp. 1–20, Available:
https://doi.org/10.7250/csimq.2017-10.01 (2017)

3. OPENGROUP TOGAF - enterprise architecture methodology, version 9.1,
http://www.opengroup.org/togaf/ (2012)

4. UK Ministry of Defence (2013) NATO Architecture Framework v4.0 Documentation,
http://nafdocs.org/modem

5. Bērziša, S. et al. (2014), Deliverable D1.4: Requirements specification for CDD, FP7 proj.
611351 CaaS, http://caas-project.eu/deliverables/

6. Bērziša, S. et al. (2015) Deliverable 5.2: The Initial Version of Capability Driven
Development Methodology, FP7 proj. 611351 CaaS, DOI: 10.13140/RG.2.1.2399.4965

7. Sandkuhl K., Stirna J., Persson A., Wißotzki M. (2014): Enterprise Modeling – Tackling
Business Challenges with the 4EM Method. Springer, ISBN 978-3-662-43724-7S.

8. Hevner A.R., March S.T., Park J., Ram S. (2004) Design Science in Information Systems
Research. MIS Quarterly 28(1): 75-105

9. Brinkkemper S. (1996) Method engineering: engineering of information systems
development methods and tools. Inform. Software Tech. 38(4): 275–280

10. Smolander K., OPRR: A Model for Modelling Systems Development Methods, in Next
Generation CASE tools, K.Lyytinen and V.-P.Tahvanainen (Eds.), IOS Press, 1991

11. Bergsten P., Bubenko J., Dahl R., Gustafsson M.R., Johansson L.A., RAMATIC - a CASE
shell for implementation of specific CASE tools, SISU, Stockholm, 1989

12. Marttiin P., Harmsen F., Rossi M., A Functional Framework for Evaluating Method
Engineering Environments: the case of Maestro II/Decamerone and MetaEdit+, University
of Jyväskylä, 1996

13. Kelly S. (1997) Towards a Comprehensive MetaCASE and CAME Environment:
Conceptual, Architectural, Functional and Usability Advances in MetaEdit+, PhD thesis,
University of Jyväskylä, Finland

14. Brinkkemper S., Saeki M., Harmsen F. (1999) Meta-modelling based assembly techniques
for situational method engineering. Inform. Syst. 24(3):209–228

15. Henderson-Sellers, B., Ralyté J., Ågerfalk P. J., Rossi M. (2014) Situational Method
Engineering. Springer 2014, ISBN 978-3-642-41466-4, pp. 1-274

16. Ralyté J., Backlund P., Kühn H., Jeusfeld M.A. (2006) Method Chunks for Interoperability.
ER 2006, Springer LNCS 4215, pp. 339-353

17. Goldkuhl G., Lind M., Seigerroth U. (1998) Method integration: the need for a learning
perspective, IEEE Proceedings Software, Vol 145 (4), pp 113-11

18. OMG (2015) OMG Meta Object Facility (MOF) Core Specification, Ver. 2.5
19. Grabis, J., M. Henkel, J. Kampars, H. Koç, K. Sandkuhl, D. Stamer, J. Stirna, F. Valverde,

J. Zdravkovic D5.3 The final version of Capability driven development methodology, FP7
proj. 611351 CaaS, DOI: 10.13140/RG.2.2.35862.34889

20. Zdravkovic, J., J. Stirna, J. Grabis, (2017) A Comparative Analysis of Using the Capability
Notion for Congruent Business- and Information Systems Engineering, CSIMQ, no. 10, pp.
1–20, Available: https://doi.org/10.7250/csimq.2017-10.01

21. Stirna, J., Grabis, J., Henkel, M., Zdravkovic, J. (2012) Capability Driven Development -
an Approach to Support Evolving Organizations. In: PoEM 2012, Springer, pp.117-131

22. Grabis, J., Kampars, J. (2016) Design of capability delivery adjustments, CAiSE 2016
Workshops, Springer LNBIP 249, pp. 52-62

