
HAL Id: hal-01765642
https://inria.hal.science/hal-01765642

Submitted on 13 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Out-degree reducing partitions of digraphs
Jørgen Bang-Jensen, Stéphane Bessy, Frédéric Havet, Anders Yeo

To cite this version:
Jørgen Bang-Jensen, Stéphane Bessy, Frédéric Havet, Anders Yeo. Out-degree reducing partitions
of digraphs. Theoretical Computer Science, 2018, 719, pp.64-72. �10.1016/j.tcs.2017.11.007�. �hal-
01765642�

https://inria.hal.science/hal-01765642
https://hal.archives-ouvertes.fr


Out-degree reducing partitions of digraphs

J. Bang-Jensen1, S. Bessy2, F. Havet3 and A. Yeo1,4

September 28, 2017

1 Department of Mathematics and Computer Science, University of Southern Denmark, Odense DK-5230,
Denmark, Email: {jbj,yeo}@imada.sdu.dk. Financial support: Danish research council, grant number

1323-00178B and Labex UCN@Sophia
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Abstract

Let k be a fixed integer. We determine the complexity of finding a p-partition (V1, . . . , Vp)
of the vertex set of a given digraph such that the maximum out-degree of each of the digraphs
induced by Vi, (1 ≤ i ≤ p) is at least k smaller than the maximum out-degree of D. We show that
this problem is polynomial-time solvable when p ≥ 2k and NP-complete otherwise. The result
for k = 1 and p = 2 answers a question posed in [3]. We also determine, for all fixed non-negative
integers k1, k2, p, the complexity of deciding whether a given digraph of maximum out-degree p
has a 2-partition (V1, V2) such that the digraph induced by Vi has maximum out-degree at most
ki for i ∈ [2]. It follows from this characterization that the problem of deciding whether a digraph
has a 2-partition (V1, V2) such that each vertex v ∈ Vi has at least as many neighbours in the set
V3−i as in Vi, for i = 1, 2 is NP-complete. This solves a problem from [6] on majority colourings.

Keywords: 2-partition, maximum out-degree reducing partition, NP-complete, polynomial al-
gorithm.

1 Introduction

Notation and terminology generally follow [2]. However we recall the useful notations and definitions
in Section 2. A p-partition of a graph or digraph G is a vertex partition (V1, V2, . . . , Vp) of its vertex
set V (G).

It is a well-known and easy fact that every undirected graph G admits a 2-partition such that the
degree of each vertex in its part is at most half of its degree in G and such a partition can be found
by a greedy algorithm (or by considering a maximum-cut partition). So we have the following.

Proposition 1.1.

(i) Every graph G has a 2-partition (V1, V2) such that dG〈Vi〉(v) ≤ dG(v)/2 for all i ∈ {1, 2} and all
v ∈ Vi.

(ii) Every graph G has a 2-partition (V1, V2) with ∆(G〈Vi〉) ≤ ∆(G)/2 for i = 1, 2.

Thomassen [10] constructed an infinite class of strongly connected digraphs T = T1, T2, . . . , Tk, . . .
with the property that for each k, Tk is k-out-regular and has no even directed cycle. As remarked
by Alon in [1] this implies that we cannot expect any directed analogues of the statements in Propo-
sition 1.1.

Proposition 1.2. Let k be a positive integer. For every 2-partition (V1, V2) of Tk, some vertex has
all its k out-neighbours in the same part as itself, so max{∆+(D〈V1〉),∆+(D〈V2〉)} = ∆+(D).

1



This is due to the simple fact that if a digraph D has a 2-partition (V1, V2) such that the bipartite
digraph induced by the arcs between the two sets has minimum out-degree at least 1, then this digraph,
and hence also D, has an even directed cycle.

Alon [1] also remarked that it is always possible to split V (D) into three sets such that each of the
induced subdigraphs has smaller maximum out-degree than D (see Theorem 6.5). In Proposition 5.1,
we generalize this to all values of k. We show that for every positive integer k, there is a (2k + 1)-
partition of V (D) such that the out-degree of every vertex x in its part is at most d+D(x) − k or 0 if
d+D(x) < k.

The digraphs in T show that one cannot always obtain a 2-partition of a digraph such that in
each subdigraph induced by the parts, the out-degree of every vertex or the maximum out-degree is
smaller than in the original graph. So it is natural to ask whether the existence of such a partition
can be decided in polynomial time.

A k-all-out-degree-reducing p-partition of a digraph D is a p-partition (V1, . . . , Vp) of V such
that d+

D〈Vi〉
(v) ≤ max{0, d+D(v) − k} for all 1 ≤ i ≤ p and all v ∈ Vi. A k-max-out-degree-

reducing p-partition of a digraph D is a p-partition (V1, . . . , Vp) of V such that ∆+(D〈Vi〉) ≤
max{0,∆+(D)− k} for i ∈ [p]. Observe that a k-all-out-degree-reducing p-partition is also a k-max-
out-degree-reducing p-partition. However the converse is not necessarily true. So for fixed integers k
and p, we are interested in the problems of deciding whether a given digraph admits one of the above
defined partitions.

Problem 1.3 (k-all-out-degree-reducing p-partition).
Input: a digraph D;

Question: Does D have a p-partition (V1, V2) with d+
D〈Vi〉

(v) ≤ max{0, d+D(v)− k} for i ∈ [p]?

Problem 1.4 (k-max-out-degree-reducing p-partition).
Input: a digraph D;
Question: Does D have a p-partition (V1, V2) with ∆+(D〈Vi〉) ≤ max{0,∆+(D)− k} for i ∈ [p]?

We first consider the case of 2-partitions. The complexity of 1-max-out-degree-reducing 2-
partition was posed in the paper [3] in which the complexity of a large number of other 2-partition
problems is established. We also consider a closely related kind of 2-partitions: A (∆+ ≤ k1,∆+ ≤ k2)-
partition of a digraph is a 2-partition (V1, V2) such that ∆+(D〈Vi〉) ≤ ki for i ∈ {1, 2}. Note that if a
digraph is r-out-regular, then a (∆+ ≤ r−k,∆+ ≤ r−k)-partition is also a k-max-out-degree-reducing
2-partition and a k-all-out-degree-reducing 2-partition. We thus consider the following problem.

Problem 1.5 ((∆+ ≤ k1,∆+ ≤ k2)-Partition).
Input: a digraph D;
Question: Does D have a 2-partition (V1, V2) with ∆+(D〈Vi〉) ≤ ki for i ∈ {1, 2}?

When k1 = k2 = 0 the problem is the same as just asking whether D is bipartite which is clearly
polynomial-time solvable. If D is a symmetric digraph, then there is a one-to-one correspondence
between the set of (∆+ ≤ k,∆+ ≤ k)-partitions of D and the so-called k-improper 2-colourings of
UG(D), the underlying (undirected) graph of D. A 2-colouring is k-improper if no vertex has more
than k neighbours with the same colour as itself. Cowen et al. [4] proved that for any k ≥ 1, deciding
whether a graph has a k-improper 2-colouring is NP-complete. Consequently, (∆+ ≤ k,∆+ ≤ k)-
Partition is NP-complete for all k ≥ 1.

On the other hand, Proposition 1.1 (ii) can be translated as follows to symmetric digraphs.

Proposition 1.6. Every symmetric digraph with maximum out-degree K has a (∆+ ≤ bK/2c,∆+ ≤
bK/2c)-partition.

As we saw in Proposition 1.2, this result does not extend to general digraphs. Hence it is natural
to ask about the complexity of (∆+ ≤ k1,∆

+ ≤ k2)-Partition when restricted to digraphs with
small maximal out-degree.

In the first part of the paper, we prove that 1-all-out-degree-reducing 2-partition and
1-max-out-degree-reducing 2-partition can be solved in polynomial time. This answers the
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question posed in [3] affirmatively. Then we derive a complete characterization of the complexity of
Problem 1.5 in terms of the values of k1, k2 and use it to prove that k-all-out-degree-reducing
2-partition and k-max-out-degree-reducing 2-partition are NP-complete for all values of k
higher than 1. As a consequence of these results, we solve an open problem from [6] on majority
colourings.

Next, in Section 5, we consider p-partitions for p ≥ 3. We show that every digraph admits a k-all-
out-degree-reducing (2k+1)-partition. This implies that k-all-out-degree-reducing p-partition
and k-max-out-degree-reducing p-partition are polynomial-time solvable for p ≥ 2k + 1 as
the answer is always ‘Yes’. We also characterize the digraphs having a k-all-out-degree-reducing 2k-
partition, which implies that k-all-out-degree-reducing 2k-partition and k-max-out-degree-
reducing 2k-partition are polynomial-time solvable. Finally, we show that, for any k > 1 and
3 ≤ p ≤ 2k− 1, the problems k-all-out-degree-reducing p-partition and k-max-out-degree-
reducing k-partition are NP-complete.

We conclude with some remarks and related open problems.

2 Notation and definitions

We use the shorthand notation [k] for the set {1, 2, . . . , k}. Let D = (V,A) be a digraph with vertex
set V and arc set A.

Given an arc uv ∈ A, we say that u dominates v and v is dominated by u. If uv or vu (or
both) are arcs of D, then u and v are adjacent. If neither uv or vu exist in D, then u and v are
non-adjacent. The underlying graph of a digraph D, denoted by UG(D), is obtained from D by
suppressing the orientation of each arc and deleting multiple copies of the same edge (coming from
directed 2-cycles). A digraph D is connected if UG(D) is a connected graph, and the connected
components of D are those of UG(D).

A (u, v)-path is a directed path from u to v. A digraph is strongly connected (or strong) if it
contains a (u, v)-path for every ordered pair of distinct vertices u, v. A digraph D is k-strong if for
every set S of less than k vertices the digraph D − S is strong. A strong component of a digraph
D is a maximal subdigraph of D which is strong. A strong component is trivial, if it has order 1.
An initial (resp. terminal) strong component of D is a strong component X with no arcs entering
(resp. leaving) X in D.

The subdigraph induced by a set of vertices X in a digraph D, denoted by D〈X〉, is the digraph
with vertex set X and which contains those arcs from D that have both end-vertices in X. When X
is a subset of the vertices of D, we denote by D−X the subdigraph D〈V \X〉. If D′ is a subdigraph
of D, for convenience we abbreviate D − V (D′) to D −D′.

The in-degree (resp. out-degree) of v, denoted by d−D(v) (resp. d+D(v)), is the number of arcs
from V \ {v} to v (resp. v to V \ {v}). A digraph is k-out-regular if all its vertices have out-degree
k and it is k-regular if every vertex has both in-degree and out-degree k. A sink is a vertex with
out-degree 0 and a source is a vertex with in-degree 0. The degree of v, denoted by dD(v), is given
by dD(v) = d+D(v) + d−D(v). Finally the maximum out-degree and maximum in-degree of D are
respectively denoted by ∆+(D) and ∆−(D).

An out-tree rooted at the vertex s, also called an s-out-tree, is a connected digraph T+
s such that

d−
T+
s

(s) = 0 and d−
T+
s

(v) = 1 for every vertex v different from s. Equivalently, for every v ∈ V (T+
s )\{s}

there is a unique (s, v)-path in T+
s .

An oriented graph is a digraph with no directed 2-cycle. A tournament is a digraph is an
oriented graph in which any two vertices are adjacent; in other words, for every two distinct vertices
u and v, either uv or vu is an arc but not both.

A k-colouring of a graph G is a function f : V (G)→ [k]. A colouring f is proper if f(u) 6= f(v)
for every edge uv ∈ E(G). A graph is k-colourable if it admits a proper k-colouring. It is k-
degenerate if each of its subgraphs has a vertex of degree at most k. It is well-known that a
k-degenerate graph is (k + 1)-colourable.

In our NP-completeness proofs we use reductions from the well-known 3-SAT problem and from
Monotone Not-all-equal-3-SAT. The later is the variant where the boolean formula F to be
satisfied consists of clauses all of whose literals are non-negated variables and we seek a truth assign-
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ment such that each clause will get both a true and a false literal. This problem is also NP-complete
[8].

3 1-out-degree reducing partitions of digraphs

In this section we prove that 1-all-out-degree-reducing 2-partition and 1-max-out-degree-
reducing 2-partition are solvable in polynomial time for k = 1.

Part (i) of the theorem below follows from a result of Seymour [9] (see also [6]) but we include
the short proof for completeness (and we use the same idea to prove (ii)). We shall use the following
result, due to Robertson, Seymour, and Thomas.

Theorem 3.1 (Robertson, Seymour, and Thomas [7]). Deciding whether a given digraph has an even
directed cycle is polynomial-time solvable.

Theorem 3.2. Let D be a digraph.

(i) D admits a 1-all-out-degree-reducing 2-partition if and only if every non-trivial terminal strong
component contains an even directed cycle.

(ii) D admits a 1-max-out-degree-reducing 2-partition if and only if every terminal strong component
contains an even directed cycle or a vertex with out-degree less than ∆+(D).

In both cases above, the desired 2-partition can be constructed in polynomial time when it exists.

Proof. Let X1, . . . , Xr be the terminal strong components of D ordered in such a way that X1, . . . , Xq

are non-trivial and Xq+1, . . . , Xr are trivial. Set S =
⋃r

i=q+1 V (Xi). Observe that S is the set of sinks
of D.

(i) Suppose first that D admits a 1-all-out-degree-reducing 2-partition, then that partition re-
stricted to Xi, 1 ≤ i ≤ q, would induce a bipartite spanning subdigraph of Xi with an even directed
cycle.

Assume now that Xi contains an even directed cycle Ci for all i ∈ [q]. First properly 2-colour
all the cycles C1, C2, . . . , Cq and colour the vertices of S with colour 1. If there exists an uncoloured
vertex, then there must also exist an uncoloured vertex with an arc to a coloured one (as we have
coloured at least one vertex in every terminal strong component). Give this vertex the opposite colour
of its coloured out-neighbour. Repeating this procedure until all vertices have been coloured gives us
a 2-colouring where every vertex not in S has an out-neighbour of different colour to itself. From this
2-colouring, we obtain the desired partition.

(ii) The necessity is seen as above. Now assume that every terminal component Xi, i ∈ [r], contains
either an even directed cycle or a vertex of out-degree less than ∆+(D). Pick an even directed cycle
Ci for each terminal component with such a cycle and a vertex zj with d+(zj) < ∆+(D) for the other
terminal components (this includes the trivial ones). Let Z be the union of the vertices zj . Now
2-colour all the even directed cycles and colour the vertices of Z with colour 1. As above we can
extend this colouring into a 2-colouring of D where every vertex not in Z has an out-neighbour of
different colour to itself. This 2-colouring correspond to the desired partition.

The complexity claim follows from Theorem 3.1 and the fact that our proof is constructive. �

We will show in Theorem 4.8 that k-all-out-degree-reducing 2-partition and k-max-out-
degree-reducing 2-partition are NP-complete for k > 1.

4 2-partitions with restricted maximum out-degrees

In this section we consider Problem 1.5 and determine its complexity for all possible values of the
parameters k1, k2. By symmetry, we may assume that we always have k1 ≤ k2. Recall that when
k1 = k2 = 0 the problem is the same as just asking whether D is bipartite which is polynomial-time
solvable, so we may assume below that k2 > 0.
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The following gadget, depicted in Figure 1, turns out to be very useful in our constructions.
An (x, y)-(i, p)-connector is the digraph with vertex set {x, y, s} ∪ T ∪ U ∪ U ′ with |T | = i and
|U | = |U ′| = p with all arcs from x to T , all arcs from T to U , all arcs between U and U ′, except one
arc u′u for some u ∈ U and u′ ∈ U ′, all arcs from s to U ′ \ {u′} arcs u′s and sy. Observe that in
an (x, y)-(i, p)-connector, all vertices have out-degree p except x and y which have out-degree i and 0
respectively.

The next two lemmas illustrate the usefulness of connectors.

x T

U \ {u}

u

U ′ \ {u′}

u′

s y

Figure 1: An (x, y)-(i, p)-connector, where |T | = i and |U \ {u}| = p− 1 and |U \ {u′}| = p− 1.

Lemma 4.1. Let k1, k2, i be three positive integers, with 1 ≤ k1 ≤ k2, let D be a digraph and let x, y
be two vertices in D. Let D′ be the digraph obtained from D by adding an (x, y)-(i, p)-connector. D′

has a (∆+ ≤ k1,∆+ ≤ k2)-partition if and only if D has one.

Proof. Clearly, if D′ has a (∆+ ≤ k1,∆
+ ≤ k2)-partition, then its restriction to V (D) is also a

(∆+ ≤ k1,∆+ ≤ k2)-partition.
Assume now that D has a (∆+ ≤ k1,∆

+ ≤ k2)-partition (V1, V2). By symmetry, we may assume
that x ∈ V1. Now one easily checks that (V1 ∪U ∪{s}, V2 ∪T ∪U ′) is a (∆+ ≤ k1,∆+ ≤ k2)-partition
of D′. Indeed, even if y ∈ V1 we have d+V1

(s) ≤ 1 ≤ k1. �

Lemma 4.2. Let k1, k2, p be non-negative integers with 0 ≤ k1 ≤ k2. If (∆+ ≤ k1,∆
+ ≤ k2)-

Partition is NP-complete for digraphs with maximum out-degree p, then (∆+ ≤ k1,∆
+ ≤ k2)-

Partition is also NP-complete for digraphs for strong (p+ 1)-out-regular digraphs.

Proof. First assume that 1 ≤ k1 ≤ k2. Then we can use Lemma 4.1 quite directly. Consider a digraph
D with maximum out-degree p, and let {v1, . . . , vn} be its vertex set. For j ∈ [n], let ij = p+1−d+D(vj).
Informally, ij is the number of out-neighbours we must add to vj so that it gets out-degree p + 1.
Observe that for every j we have ij ≥ 1, because ∆+(D) ≤ p. Let D′ be the digraph obtained by
adding a (vj , vj+1)-(ij , p + 1)-connector for every j ∈ [n] (with vn+1 = v1). It is simple matter to
check that D′ is (p + 1)-out-regular and strong because every ij is at least 1. Moreover, Lemma 4.1
implies that D′ has a (∆+ ≤ k1,∆+ ≤ k2)-partition if and only if D has one.

Now assume that we have 0 = k1 < k2. In this case we will need to put connectors between adjacent
vertices to insure that Lemma 4.1 holds. Indeed if a digraph D has a (∆+ = 0,∆+ ≤ k2)-partition and
xy is an arc of D, then the digraph obtained from D by adding an (x, y)-(p+ 1− d+D(x), p)-connector
to D admits also a (∆+ = 0,∆+ ≤ k2)-partition. The proof of this statement is similar to the one of
Lemma 4.1 using the fact that as xy is an arc of D then we cannot have x ∈ V1 and y ∈ V1 in any
(∆+ = 0,∆+ ≤ k2)-partition (V1, V2) of D.
Now let D be a digraph with maximum out-degree p. It is easy to check that the digraph obtained
by adding a new vertex to D with two out-neighbours in D has a (∆+ = 0,∆+ ≤ k2)-partition if and
only if D has one. So let s a new vertex and let T be a binary s-out-tree with |V (D)| leaves (i.e. every
vertex of T has out-degree 2 except the leaves which have out-degree 0). We construct D′ by adding
a copy of T to D and identifying the vertices of D with the leaves of T . Note that V (D′) = V (T ). By
repeating the previous remark, we obtain that D′ admits a (∆+ = 0,∆+ ≤ k2)-partition if and only
if D has one. To conclude we build D′′ by adding a (v, u)-(p+ 1− d+D′(v), p+ 1)-connector to D′ for
every arc uv of the copy of T and a (s, w)-(p− 1, p+ 1)-connector for an out-neighbour w of s. Using
the modified version of Lemma 4.1 for (∆+ = 0,∆+ ≤ k2)-partitions, we conclude that D has such
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a partition if, and only if, D′′ has one. Moreover, by construction, it is clear that D′′ is strong and
(p+ 1)-out-regular. �

Obviously every digraph of maximum out-degree k ≤ max{k1, k2} has a (∆+ ≤ k1,∆
+ ≤ k2)-

partition. As we now show, just increasing the maximum out-degree one above this value results in a
shift in complexity from trivial to NP-complete, even if we also require that the digraph is strongly
connected and out-regular.

Theorem 4.3. For every choice of non-negative integers k1, k2 with max{1, k1} < k2, the (∆+ ≤
k1,∆

+ ≤ k2)-Partition problem is NP-complete for strong (k2 + 1)-out-regular digraphs.

Proof. Let us call a 2-colouring c : V→{1, 2} good if the 2-partition induced by c is a (∆+ ≤ k1,∆+ ≤
k2)-partition. We start by describing a reduction from 3-SAT to (∆+ ≤ k1,∆

+ ≤ k2)-Partition in
graphs of maximum out-degree k2 + 1 and then show how to modify the proof to work for strong and
(k2 + 1)-out-regular digraphs using Lemma 4.1.

We first make some observations about gadgets that force certain vertices to have colour 1 or 2 in
any good 2-colouring. Let X be the digraph that we obtain from a copy of the Thomassen digraph
Tk2−1 (it exists because k2 > 1) by adding one new vertex v and all possible arcs from V (Tk2−1) to
v. It follows from Proposition 1.2 that in any good 2-colouring c of a digraph containing an induced
copy of X the vertex v must have c(v) = 2. Let Z be the digraph obtained by taking k2 + 1 copies Xi,
i ∈ [k2 + 1] of X, where vi denotes the copy of v in Xi, i ∈ [k2 + 1] and a new vertex w and adding
the arcs of {v1v1+i | i ∈ [k2]} ∪ {v1w}. By the remark above, for every good 2-colouring of a digraph
containing an induced copy of Z, we have c(w) = 1.

When we say below that a certain vertex u has colour 1 or colour 2 we mean that we use a
private copy of either Z with u = w or X with u = v to enforce that in all good 2-colourings of D
the vertex u will have the desired colour. Now let W be a digraph containing k1 + k2 + 2 vertices
v, v̄, a1, . . . , ak1 , b1 . . . , bk2 and the arcs of {vv̄, v̄v} ∪ {a1v, a1v̄, b1v, b1v̄} ∪ {a1aj+1 | j ∈ [k1 − 1]} ∪
{b1bj+1 | j ∈ [k2− 1]}. By adding suitable copies of X,Z we can ensure that for every good colouring
of the digraph we construct below we have c(ah) = 1 for h ∈ [k1] and c(bh) = 2 for h ∈ [k2]. This
implies that in every good colouring we have c(v) = r and c(v̄) = 3− r for some r ∈ {1, 2}.

Now we are ready to construct a digraph D = D(F) from a given instance F of 3-SAT. Let F
have variables x1, x2, . . . , xn and clauses C1, C2, . . . , Cm: represent each variable xi by a copy Wi of W
where the vertices vi, v̄i correspond to v and v̄ in W and play the role of xi, x̄i, respectively. For each
clause Cj , we add a new vertex cj of colour 2, k2 − 2 arcs from cj to private (to ck) vertices of colour
2 and three arcs from cj to the three vertices that correspond to its literals. So, if Cj = (x1 ∨ x̄8 ∨x9)
then we add the arcs cjv1, cj v̄8 and cjv9. This completes the construction of D. Clearly D can be
constructed in polynomial time given F . The fact that cj must have colour 2 and already has k2 − 2
out-neighbours of colour 2 implies that at least one of the vertices corresponding to the literals of Cj

must have colour 1 in any good colouring. Now it is easy to see that if we associate colour 1 with true,
then D has a good colouring if and only if F is satisfiable. This proves that (∆+ ≤ k1,∆

+ ≤ k2)-
Partition is NP-complete for digraphs of maximum out-degree k2 + 1 as it is easy to check that
∆+(D) ≤ k2 + 1.

To obtain the result on strong (k2 + 1)-out-regular digraphs, we first show how to obtain a strong
superdigraph D′ of D with the desired colouring property. First observe that in D no arc enters a
copy of X unless this is inside a copy of Z and for every copy of Z one copy of X has no arcs entering
it. By adding a new vertex s, sufficiently (but still polynomial in the size of F) many new vertices
and the arcs of an out-tree of maximum out-degree k2 rooted at s, we can obtain that s is the root
of an out-tree T+

s whose only intersection with V (D) is in its leaves where T+
s has exactly one leaf in

each copy of X.
Note that every vertex corresponding to a literal has out-degree 1 and that every vertex which

does not correspond to a literal has a directed path to at least one vertex that corresponds to a
literal (here we use that Tk2−1 is strongly connected). Thus if we add the arcs of the directed cycle
C = sv1v2 . . . vns, we obtain the desired strong digraph D′ with ∆+(D′) = k2 + 1. Clearly D is a
subdigraph of D′ so every good 2-colouring of D′ induces a good 2 colouring of D. Conversely, if c is
a good 2-colouring of V (D), then it is still a good 2-colouring of D∪A(C) because k2 ≥ 2 and we can
extend c to the non-leaf vertices of T+

s (colouring them by 2) because they have out-degree at most
k2.
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It remains to prove that we can also achieve a (k2 + 1)-out-regular digraph D′′ which is strong and
has a good 2-colouring if and only if F is satisfiable. To show this we just have to observe that, by
Lemma 4.1, for every vertex w with out-degree k < k2 + 1 we can add a private (w,w) − (k2 + 1 −
k, k2 + 1)-connector. �

Note that we used the fact that k2 > 1 at several places in the proof above. One of these was the
use of Tk2−1. Hence there still remains the complexity of (∆+ ≤ 0,∆+ ≤ 1)-Partition. This was
solved by Fraenkel.

Theorem 4.4 (Fraenkel [5]). (∆+ ≤ 0,∆+ ≤ 1)-Partition is NP-complete on the class of digraphs
with in- and out-degree at most 2.

In order to strengthen this and to unify our results we need the following result which can be
obtained by modifying the proof in [5]. We give a proof for completeness.

Theorem 4.5. For all p ≥ 2, (∆+ ≤ 0,∆+ ≤ 1)-Partition is NP-complete on the class of strong
p-out-regular digraphs.

Proof. By Lemma 4.2, it suffices to prove the statement for p = 2. A kernel in a digraph D is an
independent set K of vertices such that every vertex in V (G) \K has an out-neighbour in K. Note
that (V1, V2) is a (∆+ ≤ 0,∆+ ≤ 1)-partition of a 2-out-regular digraph D if and only if V1 is a kernel
of D. We first recall a (slightly simpler version of) the proof from [5] that deciding whether a digraph
has a kernel is NP-complete for digraphs of maximum out-degree 2 and then modify that reduction
to show that it is NP-complete for strong 2-out-regular digraphs.

Let W denote the digraph defined by

V (W ) = {z1, . . . , z9} and A(W ) = {z1z2, z2z3, z3z1, z3z4, z4z5, z5z6, z5z7, z6z8, z7z9}.

Now let F be an instance of 3-SAT with variable x1, . . . , xn and clauses C1, . . . , Cm. Free to duplicate
one clause, we may assume that m is odd. Form the digraph G = G(F) by taking one copy Wj of W
for each clause Cj , j ∈ [m] (denoting the vertices of Wj by zj,q, q ∈ [9]) and adding 2n new vertices
v1, v̄1, . . . , vn, v̄n, where vi, v̄i correspond to the literals xi, x̄i as well as the arcs viv̄i, v̄ivi for i ∈ [n].
Finally, we add three arcs from each Wj to the vertices that correspond to its literals so that the
vertex zj,8 is joined to the vertex corresponding to the first literal and the vertex zj,9 is joined to
the two vertices corresponding to the second and third literal of Wj . Thus if Wj = (x4 ∨ x5 ∨ x̄8),
then we add the arcs zj,8v4, zj,9v5, zj,9v̄8. This completes the construction of G. Note that if K is
a kernel of G, then for every j ∈ [m] we have either {zj,2, zj,4, zj,6} ⊂ K or {zj,2, zj,4, zj,7} ⊂ K (or
both) and this implies that |K ∩ {zj,8, zj,9}| ≤ 1. From this it follows that at least one of the vertices
corresponding to the literals of Cj will belong to K. For each i ∈ [n] we have precisely one of vi, v̄i in
K as these vertices are adjacent. Now it is easy to see that G has a kernel if and only if F is satisfiable.
This shows that deciding whether a digraph has a kernel and hence (∆+ ≤ 0,∆+ ≤ 1)-Partition is
NP-complete for digraphs of maximum out-degree 2.

Let us now prove that it is NP-complete for strong 2-out-regular digraphs. Note that in G every
vertex has out-degree at least 1. Let H be the digraph on six vertices a, b, c, d, e, f and the arcs
de, ef, fd, da, eb, fc, ae, bd, bf, cd, ce. Let G′ be the digraph obtained from the disjoint union of G and
H and a directed path a1a2 . . . am by identifying a and a1 and adding the arc amzm,3, the arcs ajzj,1
for j ∈ [m] and the arcs ud for every vertex u having out-degree 1 in G. Clearly, the digraph G′ is
strong and 2-out-regular.

Finally let us now prove that G′ has a kernel if and only if G has one. This will immediately imply
the result. If G has a kernel K, then one can easily check that K ∪ {b, c} ∪ {aj | j odd} is a kernel of
G′ (recall that m is odd and that K contains none of zj,1, zj,3). Assume now that G′ has a kernel K ′.
We have d /∈ K ′, for otherwise b and f are not in K ′ (because K ′ is an independent set) and so e has
no out-heighbour in K ′, a contradiction. Now all arcs leaving G in G′ have head d, so every vertex of
G has an out-neighbour in K ′ ∩ V (G). Hence K ′ ∩ V (G) is a kernel of G. �

Theorem 4.6. Let k, p be two positive integers k such that p ≥ k + 2. Then (∆+ ≤ k,∆+ ≤ k)-
Partition is polynomial-time solvable for digraphs of maximum out-degree k + 1 and NP-complete
on the class of strong p-out-regular digraphs.
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Proof. The first part of the claim follows from Theorem 3.2. Below we show how make a reduction
from Monotone Not-All-Equal 3-SAT to the (∆+ ≤ k,∆+ ≤ k)-partition problem in strong
(k + 2)-out-regular digraphs. Combining this with Lemma 4.2 proves the theorem, as k > 0.

The reduction makes use of the following forcing gadget, namely the digraph F whose vertex
set is the union of X = {x, x′}, Y = V (Tk) (Recall that Tk is Thomassen’s digraph defined in the
introduction.) and whose arc set is the union of the arcs of Tk and all possible arcs from Y to X. The
head of a forcing gadget is the set X.

Claim 4.6.1.

(i) In a forcing gadget, all vertices have out-degree k + 2, except those of the head which have
out-degree 0.

(ii) In any (∆+ ≤ k,∆+ ≤ k)-partition of a digraph which contains a copy of the forcing gadget as
an induced subdigraph, the two vertices of the head are in the same part.

Subproof. (i) follows from the definition of the forcing gadget as Tk is k-out-regular.
(ii) follows from the fact that F 〈Y 〉 = Tk has no (∆+ ≤ k − 1,∆+ ≤ k − 1)-partition, implying

that in any 2-partition (V1, V2) of F some vertex of Y already has its k out-neighbours in Y in the
same set Vi as itself and hence both x and x′ must belong to V3−i. ♦

Let F be an instance of Monotone Not-All-Equal (k+ 2)-SAT on n variables x1, . . . , xn and
m clauses C1, . . . , Cm. For every i ∈ [n], let j1(i) < j2(i) · · · < jm(i)(i) be the indices of those clauses
in which variable xi occurs and let J(i) = {j1(i), . . . , jm(i)(i)}. For each j ∈ [m] and q ∈ [k + 2], let
aq,j be the unique integer such that if Cj = xi1 ∨ xi2 ∨ xi3 , then xiq occurs exactly aq,j − 1 times
among the clauses C1, . . . , Cj−1.

Let DF be the digraph constructed as follows. For all i ∈ [n], we create a variable gadget V Gi

as follows. We first create the vertices {xji | j ∈ J(i)}. Then for all 1 ≤ p < m(i), we add a forcing

gadget with head {xjp(i)i , x
jp+1(i)
i }. Let Y p

i be the set corresponding to Y in this forcing gadget. This

will force all the vertices of {xji | j ∈ J(i)} to be in the same part for any (∆+ ≤ k,∆+ ≤ k)-partition.
Then for every clause Cj = xi1 ∨ xi2 ∨ . . . ∨ xik+2

, we add a vertex tj , all the arcs from the set
{xa1,j

i1
, x

a2,j

i2
, . . . , x

ak+2,j

ik+2
} to tj and the arcs of the complete digraph on {xa1,j

i1
, x

a2,j

i2
, . . . , x

ak+2,j

ik+2
}.

Let D′F be the digraph obtained from DF as follows. Add a set of 3m − n new vertices U =
{u1, . . . , u3m−n} and let f be a bijection between U and {Y p

i | i ∈ [n], 1 ≤ p ≤ m(i) − 1}. For
each j ∈ [3m − n], we add a (uj , vj)-(1, k + 2)-connector with vj being an arbitrary vertex in f(uj),
and a (uj , uj+1)-(k + 1, k + 2)-connector (with u3m−n+1 = u1). Finally, for each j ∈ [m], add a
(tj , u1)-(k + 2, k + 2)-connector. We can easily check that D′F is strong and (k + 2)-out-regular.

Let us now prove that D′F has a (∆+ ≤ k,∆+ ≤ k)-partition if and only if F admits a NAE-
assignment, that is a truth assignment such that each clause contains a true literal and a false literal.
By Lemma 4.1, as k > 0, it is equivalent to prove that DF has a (∆+ ≤ k,∆+ ≤ k)-partition if and
only if F admits a NAE-assignment.

First suppose that φ is a NAE-assignment. Define the following 2-colouring of V (DF ): for each

i ∈ [n] colour all vertices of {xji | j ∈ J(i)} by colour 1 and those of
⋃m(i)−1

p=1 Y p
i by 2 if φ(xi) = true

and otherwise colour all vertices of {xji | j ∈ J(i)} by 2 and those of
⋃m(i)−1

p=1 Y p
i by 1. Now each tj ,

j ∈ [m], has at least one in-neighbour of colour i for i ∈ [2]. If it has precisely one of colour i, we
colour it by colour i and otherwise we colour it arbitrarily. Now it is easy to see that letting Vi be the
set of vertices of colour i, i = 1, 2, we obtain the desired 2-partition of DF .

Assume now that (V1, V2) is a good 2-partition of DF . The forcing gadgets ensure that in every
(∆+ ≤ k,∆+ ≤ k)-partition (V1, V2) of V (DF ) all vertices of {xji | j ∈ J(i)} belong to the same set
in the partition for all i ∈ [n]. Furthermore, because of the complete subdigraphs on the vertices
{xa1,j

i1
, x

a2,j

i2
, . . . , x

ak+2,j

ik+2
}, j ∈ [m], at least one of these vertices is in V1 and at least one of them is in

V2. Thus if we assign xi the value true if {xji | j ∈ J(i)} ⊂ V1 and false otherwise, each clause will
have at least one true and at least one false literal. �

Combining our results above we obtain the following complete classification in terms of k1, k2.
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Theorem 4.7. Let k1, k2 be non-negative integers. The (∆+ ≤ k1,∆+ ≤ k2)-Partition problem is

• polynomial-time solvable for all digraphs when k1 = k2 = 0;

• polynomial-time solvable for digraphs of maximum degree p ≤ max{k1, k2};

• NP-complete for strong p-out-regular digraphs for all p ≥ max{k1, k2}+ 1 when k1 6= k2;

• polynomial-time solvable for (k2 + 1)-out-regular digraphs and NP-complete for strong p-out-
regular digraphs for all p ≥ max{k1, k2}+ 2 when k1 = k2.

Theorems 4.6 and 3.2 immediately yield the following.

Theorem 4.8. k-all-out-degree reducing 2-partition and k-max-out-degree-reducing 2-
partition are polynomial-time solvable for k = 1 and NP-complete for all integers k ≥ 2 even when
the input is a strong out-regular digraph.

5 Out-degree reducing p-partitions for p ≥ 3.

All our complexity results so far dealt with 2-partition problems. In this section we deal with p-
partitions for p ≥ 3.

The next proposition implies that k-all-out-degree-reducing p-partition and k-max-out-
degree-reducing p-partition are polynomial-time solvable when p ≥ 2k + 1, because the answer
is trivially ‘yes’.

Proposition 5.1. Every digraph has a k-all-out-degree-reducing (2k + 1)-partition and this is best
possible.

Proof. Let D be a digraph. For each vertex v pick min{k, d+(v)} arcs with tail in v. Let H be
the subdigraph of D induced by these arcs. Then H has a vertex of degree at most 2k and this
holds for every subdigraph of H, so UG(H) is 2k-degenerate and hence it is 2k + 1-colourable. Let
(V1, V2, . . . , V2k+1) be a (2k + 1)-partition of D induced by a (2k + 1)-colouring of UG(H). It is easy
to check that this is a k-all-out-degree-reducing (2k + 1)-partition since every arc of H goes between
two different sets in the partition.

The k-out-regular tournaments show that 2k + 1 is best possible for each k ≥ 1. �

The next result implies that k-all-out-degree-reducing p-partition and k-max-out-degree-
reducing p-partition are also polynomial-time solvable when p = 2k.

Theorem 5.2. Let k ≥ 2. A digraph D admits a k-all-out-degree-reducing 2k-partition if and only if
no terminal strong component of D is a k-regular tournament.

Proof. First assume that some terminal component, Q, of D is a k-regular tournament. This implies
that every vertex in Q has out-degree k in D and for any 2k-partition of D there will be two vertices
from Q in the same part, as |V (Q)| = 2k+ 1. Therefore some vertex will have out-degree at least 1 in
its part and therefore not have reduced its out-degree by k. This proves one direction. We now prove
the opposite direction.

Let D be any digraph of order n and size m with no terminal component isomorphic to a k-regular
tournament. We will now show that D has a k-all-out-degree-reducing 2k-partition by induction on
n + m. Clearly this holds when n + m ≤ 3 so assume that it also holds for all digraphs, D′, with
|V (D′)|+ |E(D′)| < n+m. We may assume that D is connected as otherwise we are done by using
induction on each connected component. Let G be the underlying graph of D. We consider the
following three cases which exhaust all possibilities.

Case 1. There exists a vertex x ∈ V (D) with d+(x) > k. If N+(x) is independent then
let v ∈ N+(x) be arbitrary, and otherwise let u, v ∈ N+(x) be chosen such that uv ∈ A(D). Let
D′ = D \ xv (i.e. delete the arc xv from D). Let Q′ be any terminal component in D′. If x 6∈ V (Q′),
then Q′ is also a terminal component of D and therefore not a k-regular tournament. So suppose
x ∈ V (Q′). Recall that either N+(x) is independent or xuv is a path in D which implies that
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v ∈ V (Q′). Both cases imply that Q′ is not a tournament. Therefore, by induction, there is a k-
all-out-degree-reducing 2k-partition of D′ and therefore also of D (using the same partition). This
completes Case 1.

Case 2. ∆+(D) ≤ k and G is not 2k-regular. Let w be a vertex having degree at most 2k − 1
in G. Let D′ = D − w. Assume that some terminal component, Q′, in D′ is a k-regular tournament.
As ∆+(D) ≤ k, this implies that Q′ is also a terminal component in D, a contradiction. Therefore
no terminal component in D′ is a k-regular tournament and by induction there is a k-all-out-degree-
reducing 2k-partition of D′. Now add w to a different part to all of its at most 2k − 1 neighbours in
G. This gives a k-all-out-degree-reducing 2k-partition of D.

Case 3. ∆+(D) ≤ k and G is 2k-regular. Note that in that case D is an oriented graph
and D is k-regular. Now G is not a complete graph for otherwise D would be k-regular tournament.
Moreover, as k ≥ 2, the graph G is not an odd cycle. Therefore, by Brook’s Theorem, G admits a
proper 2k-colouring. This 2k-colouring gives us the desired k-all-out-degree-reducing 2k-partition of
D. �

Theorem 5.3. If k > 1 and 3 ≤ p ≤ 2k − 1, then k-all-out-degree-reducing p-partition and
k-max-out-degree-reducing p-partition are NP-complete.

Proof. We give a reduction from p-Colourability which consists in deciding whether a given digraph
is p-colourable. This problem is well-known to be NP-complete for all p ≥ 3.

We first need to define a gadgetD2(x, y) as follows. Let T be a regular or almost regular tournament
of order p− 1 and let V1 = {v | d+T (v) = k− 1}. Note that V1 is empty if p ≤ 2k− 2 and |V1| = k− 1 =
|V (T )|/2 if p = 2k − 1.

Let D2(x, y) be the digraph obtained from a copy of T by adding two vertices x, y and all arcs
from V (T ) \ V1 to {x, y}, all arcs from V1 to x and all arcs from y to V1. Note that d+(x) = 0 and
d+(y) = |V1|.

Note that in both cases above x and y are the only non-adjacent vertices inD2(x, y) and ∆+(D2(x, y)) ≤
k.

We now define the gadget Dn(x1, x2, . . . , xn) for n ≥ 3 as the union of D2(x1, x2), D2(x2, x3), ...,
D2(xn−1, xn), where the copies of T are disjoint. Note that d+(x1) = 0 and d+(xi) ≤ k − 1 for all
i = 2, 3, . . . , n (in fact d+(xi) = 0 if p < 2k − 1 and d+(xi) = k − 1 otherwise).

We will now reduce an instance of p-Colourability to an instance of k-max-out-degree-
reducing p-partition. Let G be a graph with vertex set v1, . . . , vn. We will now construct a
digraph D as follows. For each vertex vi ∈ V (G) we let Di be a copy of Dn(xi1, x

i
2, . . . , x

i
n). For each

edge vivj of G with i < j add an arc from xij to xij . Observe that the set of arcs added by this operation
are disjoint, so the resulting digraph D has out-degree at most k. Consequently, every k-max-out-
degree-reducing p-partition and every k-max-out-degree-reducing p-partition of D is equivalent to a
proper p-colouring of the underlying graph UG(D) of D.

Hence to prove the theorem, it is enough to show that UG(D) has a proper p-colouring if and only
if G does. But this follows directly from the following claim.

Claim 5.3.1. In any p-colouring of UG(Dn(x1, x2, . . . , xn)), all the vertices in {x1, x2, . . . , xn} must
be coloured the same. Furthermore, there exists a p-colouring of UG(Dn(x1, x2, . . . , xn)).

Proof of Claim 5.3.1. We show Claim 5.3.1 is true when n = 2 and then note that this implies that
Claim 5.3.1 is true for all n. Let n = 2. As x1 and x2 are the only non-adjacent vertices in D2(x1, x2)
and |V (D2(x1, x2))| = p+1 we note that x1 and x2 must have the same colour in a proper p-colouring
of UG(D2(x1, x2)). Conversely if x1 and x2 have the same colour all other vertices of D2(x1, x2) can
be given a distinct colour in order to obtain a proper p-colouring of the underlying graph. This proves
Claim 5.3.1 when n = 2.

When n ≥ 3 we note by the above that x1 and x2 must be in the same partite set. Analogously
x2 and x3 must be in the same partite set. Continuing this process we obtain the desired result for
n ≥ 3. This completes the proof of Claim 5.3.1. ♦ �
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6 Remarks and open questions

A majority k-colouring of a digraph D = (V,A) is a k-colouring of the vertices of V so that each

vertex v has at most d+(v)
2 out-neighbours with the same colour as itself. It is shown in [6] that

every digraph has a majority 4-colouring and the authors conjecture that, in fact, every digraph has
a majority 3-colouring. They also asked about the complexity of deciding whether a digraph has a
majority 2-colouring. Since a 3-out-regular digraph has a majority 2-colouring if and only if it has a
(∆+ ≤ 1,∆+ ≤ 1)-partition the following is an immediate consequence of Theorem 4.6.

Theorem 6.1. Deciding whether a digraph has a majority 2-colouring is NP-complete even when the
input is 3-out-regular and strongly connected.

In all our NP-completeness proofs above on out-regular digraphs, these are far from being also
in-regular. Thus it is natural to ask about the complexity in the case of regular digraphs.

Problem 6.2. What is the complexity of the (∆+ ≤ k1,∆+ ≤ k2)-partition problem for (max{k1, k2}+
1)-regular digraphs when k1 < k2?

Problem 6.3. What is the complexity of the (∆+ ≤ k,∆+ ≤ k)-partition problem for (k+2)-regular
digraphs?

Theorem 3.2 implies that Problem 6.3 becomes polynomial-time solvable if we replace (k + 2)-
regular by (k + 1)-regular and that when k ≥ 2 a (∆+ ≤ k,∆+ ≤ k)-partition always exists in every
(k + 1)-regular digraph as, by a result of Thomassen [11], these all have an even directed cycle (see
also [2, Theorem 8.3.7]).

Finally, we can also ask about 2-partitions where the maximum out-degree is reduced in one part
whereas it is the maximum in-degree that must be reduced in the other part.

Problem 6.4. What is the complexity of the (∆+ ≤ k1,∆− ≤ k2)-partition problem?

In this paper, we studied partitions such that the out-degree in (the digraph induced by) each part
is k smaller than the out-degree in the whole digraph for some value k which is fixed and the same
for each part. It would be interesting to study the analogous problem where k depends on the part.
In this vein Alon proved the following result.

Theorem 6.5 ([1]). Let D be a digraph of maximum out-degree ∆+ and let d1, d2, . . . , dp non-negative
integers satisfying d1 + d2 + . . . + dp + (p− 1) ≥ 2∆+. Then D has a p-partition (V1, V2, . . . , Vp) such
that ∆+(D〈Vi〉) ≤ di.

References

[1] N. Alon. Splitting digraphs. Combin. Probab. Comput., 15:933–937, 2006.

[2] J. Bang-Jensen and G. Gutin. Digraphs: Theory, Algorithms and Applications, 2nd Edition.
Springer-Verlag, London, 2009.

[3] J. Bang-Jensen and F. Havet. Finding good 2-partitions of digraphs I. Hereditary properties.
Theoretical Computer Science, 636:85–94, 2016.

[4] Robert Cowen. Some connections between set theory and computer science. In In: Computational
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