Collaborative Filtering Under a Sybil Attack: Similarity Metrics do Matter!

Abstract : Recommendation systems help users identify interesting content, but they also open new privacy threats. In this paper, we deeply analyze the effect of a Sybil attack that tries to infer information on users from a user-based collaborative-filtering recommendation systems. We discuss the impact of different similarity metrics used to identity users with similar tastes in the trade-off between recommendation quality and privacy. Finally, we propose and evaluate a novel similarity metric that combines the best of both worlds: a high recommendation quality with a low prediction accuracy for the attacker. Our results, on a state-of-the-art recommendation framework and on real datasets show that existing similarity metrics exhibit a wide range of behaviors in the presence of Sybil attacks, while our new similarity metric consistently achieves the best trade-off while outperforming state-of-the-art solutions.
Type de document :
Rapport
[Research Report] Inria Rennes - Bretagne Atlantique. 2018
Liste complète des métadonnées

Littérature citée [40 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01767059
Contributeur : Davide Frey <>
Soumis le : dimanche 15 avril 2018 - 09:56:46
Dernière modification le : mercredi 18 avril 2018 - 01:18:38

Fichier

technicalReport.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01767059, version 1

Citation

Antoine Boutet, Florestan De Moor, Davide Frey, Rachid Guerraoui, Anne-Marie Kermarrec, et al.. Collaborative Filtering Under a Sybil Attack: Similarity Metrics do Matter!. [Research Report] Inria Rennes - Bretagne Atlantique. 2018. 〈hal-01767059〉

Partager

Métriques

Consultations de la notice

82

Téléchargements de fichiers

16