Collaborative Filtering Under a Sybil Attack: Similarity Metrics do Matter!

Abstract : Recommendation systems help users identify interesting content, but they also open new privacy threats. In this paper, we deeply analyze the effect of a Sybil attack that tries to infer information on users from a user-based collaborative-filtering recommendation systems. We discuss the impact of different similarity metrics used to identity users with similar tastes in the trade-off between recommendation quality and privacy. Finally, we propose and evaluate a novel similarity metric that combines the best of both worlds: a high recommendation quality with a low prediction accuracy for the attacker. Our results, on a state-of-the-art recommendation framework and on real datasets show that existing similarity metrics exhibit a wide range of behaviors in the presence of Sybil attacks, while our new similarity metric consistently achieves the best trade-off while outperforming state-of-the-art solutions.
Type de document :
[Research Report] Inria Rennes - Bretagne Atlantique. 2018, pp.1-12
Liste complète des métadonnées

Littérature citée [35 références]  Voir  Masquer  Télécharger
Contributeur : Antoine Boutet <>
Soumis le : lundi 7 mai 2018 - 11:22:39
Dernière modification le : jeudi 15 novembre 2018 - 11:59:02


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01767059, version 3


Antoine Boutet, Florestan De Moor, Davide Frey, Rachid Guerraoui, Anne-Marie Kermarrec, et al.. Collaborative Filtering Under a Sybil Attack: Similarity Metrics do Matter!. [Research Report] Inria Rennes - Bretagne Atlantique. 2018, pp.1-12. 〈hal-01767059v3〉



Consultations de la notice


Téléchargements de fichiers