
HAL Id: hal-01767326
https://inria.hal.science/hal-01767326

Submitted on 16 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Timely Dataflow: A Model
Martín Abadi, Michael Isard

To cite this version:
Martín Abadi, Michael Isard. Timely Dataflow: A Model. 35th International Conference on Formal
Techniques for Distributed Objects, Components, and Systems (FORTE), Jun 2015, Grenoble, France.
pp.131-145, �10.1007/978-3-319-19195-9_9�. �hal-01767326�

https://inria.hal.science/hal-01767326
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Timely Dataflow: A Model

Mart́ın Abadi1,2 and Michael Isard3

1 Google, Mountain View, California, USA
2 University of California, Santa Cruz, California, USA
3 Microsoft Research, Mountain View, California, USA?

Abstract. This paper studies timely dataflow, a model for data-parallel
computing in which each communication event is associated with a vir-
tual time. It defines and investigates the could-result-in relation which
is central to this model, then the semantics of timely dataflow graphs.

1 Introduction

Timely dataflow is a model of data-parallel computation that extends tradi-
tional dataflow (e.g., [10]) by associating each communication event with a vir-
tual time [12]. Virtual times need not be linearly ordered, nor correspond to
the order in which events are processed. As in the Time Warp mechanism [7],
virtual times serve to differentiate between data in different phases or aspects
of a computation, for example data associated with different batches of inputs
and different loop iterations. Thus, an implementation may overlap, but still
distinguish, work that corresponds to multiple logical parts of a computation.

In this model, each node in a dataflow graph can request to be notified
when it has received all messages for a given virtual time. The facilities for
asynchronous processing and completion notifications imply that, even within
a single program, some components can function in batch mode (queuing in-
puts and delaying processing until an appropriate notification) and others in
streaming mode (processing inputs as they arrive). For example, an application
may process a stream of GPS readings; as these readings arrive, the application
may update a map and, after each batch of readings, recompute shortest paths
between landmarks.

The Naiad system [12] is the origin and an embodiment of timely dataflow.
Naiad aspires to serve as a coherent platform for data-parallel applications, of-
fering both high throughput and low latency. Timely dataflow is crucial to this
goal. Naiad contrasts with other systems that focus on narrower domains (e.g.,
graph problems) or on particular classes of programs (e.g., without loops).

The development and presentation of timely dataflow in the context of Naiad
was fairly precise but informal. Only one of its critical components (a distributed
algorithm that keeps track of virtual times for which there may remain work)
was rigorously specified and verified [4]. Moreover, in the context of Naiad, def-
initions focus on particular structures of dataflow graphs and particular types

? Most of this work was done at Microsoft Research.

of nodes. Specifically, Naiad supports iterative computations, with loops that
include special nodes for ingress, feedback, and egress, and with a set of virtual
times that includes coordinates for input epochs and loop counters.

The goal of this paper is to provide a general, rigorous definition of timely
dataflow. We allow arbitrary graph structures, partial orders of virtual times,
and stateful local computations at each of the nodes. The local computations
are deterministic (only for simplicity); non-determinism is introduced by the
ordering of events. We specify the semantics of timely dataflow graphs using a
linear-time temporal logic. In this setting, we explore some of the fundamental
concepts and properties of the model. In particular, we study the could-result-in
relation, which drives completion notifications; for instance, we investigate how
it applies to recursive dataflow computations, which are beyond Naiad’s present
scope. The semantics serves as the basis for rigorous proofs, as we demonstrate
with an example application. We are finding the semantics valuable in other,
more substantial applications. Specifically, the results of this paper have already
been useful to us in our work on information-flow security properties [1] and on
fault-tolerance [2]. Our rather elementary formulation of the semantics amply
suffices for these present purposes; we leave algebraic or categorical presentations
(see, e.g., [6]) for further work.

The next section defines dataflow graphs and other basic notions. Section 3
concerns the could-result-in relation. Section 4 describes the semantics of graphs,
and Section 5 applies it. Section 6 concludes. Because of space constraints, proofs
are omitted.

2 Dataflow Graphs, Messages, and Times

As is typical in dataflow models, we specify computations as directed graphs,
with distinguished input and output edges. The graphs may contain cycles. Dur-
ing execution, stateful nodes send and receive timestamped messages, and in ad-
dition may request and receive notifications that they have received all messages
with a certain timestamp. This section defines the graphs and the behavior of
individual nodes; later sections cover more global aspects of the semantics.

We write ∅ both for the empty sequence and for the empty set. We write
〈〈m0,m1, . . .〉〉 for the sequence (finite or infinite) that consists of m0, m1, We
use “·” for sequence concatenation and also for appending elements to sequences,
for example writing m·u instead of 〈〈m〉〉·u, where u is a sequence and m an
element. A mapping f on elements is extended to a mapping on sequences by
letting f(〈〈m0,m1,m2, . . .〉〉) = 〈〈f(m0), f(m1), . . .〉〉, and to a mapping on sets by
letting f(S) = {f(s) : s ∈ S}. When A is a set, we write P(A) for its powerset,
and A∗ and Aω, respectively, for the sets of finite and infinite sequences of
elements of A. When f is a function with a domain that includes A, we write
f�A for the restriction of f to A. When B is also a set, we write Πx∈A.B
for the set of functions that map each x ∈ A to an element of B; if A is a
finite set {a1, . . . , ak} and b1, . . . , bk are elements of B, we write such a function
〈a1 7→ b1, . . . , ak 7→ bk〉.

2

2.1 Basics of Graphs, Messages, and Times

We assume a set of messages M , a partial order of times (T,≤), and a time
time(m) ∈ T for each m ∈ M . We also assume a finite set of nodes (proces-
sors) P , and a set of local states ΣLoc for them. Finally, we assume a set of
edges (channels), partitioned into input edges I, internal edges E, and output
edges O. Edges have sources and destinations (not always both): for each i ∈ I,
dst(i) ∈ P , and src(i) is undefined; for each e ∈ E, src(e), dst(e) ∈ P , and we
require that they are distinct; for each o ∈ O, src(o) ∈ P , and dst(o) is undefined.

Input edges are not essential for computations getting started, because nodes
can initially create data in response to notifications. We include input edges as
a convenience, and because they can serve for connecting graphs.

We allow (but do not require) the set of times to be the disjoint union of mul-
tiple “time domains”. For example, a node may receive inputs tagged with GMT
times, and produce outputs tagged with GMT times, PST times, or perhaps with
sequence numbers, and may even send outputs in different time domains along
different edges. In Naiad, the nodes for loop ingress and egress, respectively, add
and remove time coordinates that represent loop counters. Accordingly, we do
not assume, for example, that it is always immediately meaningful to compare
the times of inputs and outputs.

2.2 Processor Behavior

Timely dataflow supports stateful computations in which each node maintains
local state. For each node p, a subset Initial(p) of ΣLoc × P(T) describes the
possible initial states and initial notification requests for p. A local history for
p is a finite sequence of the form 〈〈(s,N), x1, . . . , xn〉〉 where (s,N) ∈ Initial(p),
n ≥ 0, and each xi is either a pair (d,m) where m ∈ M and d ∈ I ∪ E with
dst(d) = p, or a time t ∈ T . In this context, we call a pair (d,m) or a time
t an event . Thus, a local history records the order in which a node consumes
events; it also determines what the node does in response to these events, via the
function g1 introduced below. We write Histories(p) for the set of local histories
of node p.

For each node p, the function g1(p) maps ΣLoc × (T ∪ ({d ∈ I ∪E | dst(d) =
p}×M)) to ΣLoc×P(T)× (Π{d∈E∪O|src(d)=p}.M

∗). Intuitively g1 describes one
step of computation by one node:

– g1(p)(s, t) = (s′, {t1, . . . , tn}, 〈e1 7→µ1, . . . , ek 7→µk〉) means that, in response
to a notification for time t and at a state s, the node p can move to state s′, re-
quest notifications for times t1, . . . , tn, and add message sequences µ1, . . . , µk

on outgoing edges e1, . . . , ek, respectively.

– g1(p)(s, (d,m)) = (s′, {t1, . . . , tn}, 〈e1 7→µ1, . . . , ek 7→µk〉) means that, in re-
sponse to a message m on incoming edge d and at a state s, the node p can
move to state s′, request notifications for times t1, . . . , tn, and add message
sequences µ1, . . . , µk on outgoing edges e1, . . . , ek, respectively.

3

We could easily restrict these definitions so that a message for time t cannot
appear in a history to the right of a notification for time t, and so that notifica-
tions appear only in response to notification requests. However, such restrictions
do not seem necessary; each node can enforce them.

We extend the function g1 to a function g that applies to local histories. For
each node p, g(p) maps Histories(p) to ΣLoc ×P(T)× (Π{d∈E∪O|src(d)=p}.M

∗),
and is defined inductively by:

– g(p)(〈〈(s,N)〉〉) = (s,N, 〈e1 7→∅, . . . , ek 7→∅〉)
– If g(p)(h) = (s′, N, 〈e1 7→µ1, . . . , ek 7→µk〉), h′ = h·t, and g1(p)(s′, t) = (s”,
N ′, 〈e1 7→µ′1, . . . , ek 7→µ′k〉), then

g(p)(h′) = (s”, N − {t} ∪N ′, 〈e1 7→µ1·µ′1, . . . , ek 7→µk·µ′k〉)

– If g(p)(h) = (s′, N, 〈e1 7→µ1, . . . , ek 7→µk〉), h′ = h·(d,m), and g1(p)(s′, (d,m))
= (s”, N ′, 〈e1 7→µ′1, . . . , ek 7→µ′k〉), then

g(p)(h′) = (s”, N ∪N ′, 〈e1 7→µ1·µ′1, . . . , ek 7→µk·µ′k〉)

Given a triple (s,N, 〈e1 7→µ1, . . . , ek 7→µk〉), perhaps obtained via one of these
functions, we write: ΠLoc(s,N, 〈e1 7→µ1, . . . , ek 7→µk〉) for s, ΠNR(s,N, 〈e1 7→µ1,
. . . , ek 7→µk〉) for N , and Πei(s,N, 〈e1 7→µ1, . . . , ek 7→µk〉) for µi.

In this model, each node can consume and produce multiple events in one
atomic action. For example, a node may simultaneously dequeue an input mes-
sage and produce two output messages on each of two distinct edges. Alter-
native models could be more asynchronous; in our example, the node would
first dequeue the input message, and after some delay produce the two out-
put messages one after the other. Fortunately, such an asynchronous model
can be seen as a special case of ours: in our model, asynchronous behavior
can be produced by buffering (see, e.g., [14]). We say that p ∈ P is a buffer
node if there exist exactly one e1 ∈ I ∪ E such that dst(e1) = p and exactly
one e2 ∈ E ∪ O such that src(e2) = p, and g1(p)(s, t) = (s, ∅, 〈e2 7→∅〉) and
g1(p)(s, (e1,m)) = (s, ∅, 〈e2 7→〈〈m〉〉〉). Such a node p is simply a relay between
queues. (The term “buffer” comes from the literature.) In order to simulate a
more asynchronous semantics, we could require that every non-buffer node has
its output edges going into buffer nodes. However, we do not need to impose this
constraint.

3 Pointstamps and the Could-result-in Relation

As indicated in the Introduction, each node can request to be notified when it has
received all messages for a given virtual time. Furthermore, “under the covers”,
an implementation may benefit from knowing that a virtual time is complete in
order to reclaim associated resources. Thus, the notion of completion of virtual
times is central to timely dataflow and to its practical realization. Reasoning
about completion is based on the could-result-in relation on pointstamps. In this
section we define this relation and establish some of its properties.

4

3.1 Defining Could-result-in

A pointstamp is a pair (x, t) of a location x (node or edge) in a graph and a
time t. Thus, the set of pointstamps is ((I ∪ E ∪ O) ∪ P) × T . We say that
pointstamp (x, t) could-result-in pointstamp (x′, t′), and write (x, t) (x′, t′),
if a message or notification at location x and time t may lead to a message or
notification at location x′ and time t′. We define via an auxiliary relation
 1 that reflects one step of computation.

Definition 1. (p, t) 1 (d, t′) if and only if src(d) = p and there exist a history
h for p and a state s such that

g(p)(h) = (s, . . .)

and an event x such that either x = t or x = (e,m) for some e and m such that
t = time(m), and

g1(p)(s, x) = (. . . , 〈. . . d7→µ . . .〉)
where some element of µ has time t′.

Definition 2. (x, t) (x′, t′) if and only if

– x = x′ and t ≤ t′, or
– there exist k > 1, distinct xi for i = 1 . . . k, and (not necessarily distinct) ti

for i = 1 . . . k, such that x = x1, x′ = xk, t ≤ t1, and tk ≤ t′, and for all
i = 1 . . . k − 1:
• xi ∈ I ∪ E, xi+1 ∈ P , dst(xi) = xi+1, and ti = ti+1, or
• xi ∈ P , xi+1 ∈ E ∪ O, src(xi+1) = xi, and there exist t′i ≥ ti and
t′′i ≤ ti+1 such that (xi, t

′
i)

1 (xi+1, t
′′
i).

In the first case, we say that the proof of (x, t) (x′, t′) has length 1; in the
second, that it has length k. (These lengths are helpful in inductive arguments.
Different proofs of (x, t) (x′, t′) may in general have different lengths.)

This definition captures the semantics of an arbitrary node p, via the func-
tions g1 and g. The function g is applied to a local history to generate a state s,
then g1 is applied at s. Thus, the definition restricts attention to states s that
can arise in some execution with p. However, we do not attempt to guarantee
that this execution is one of those that can occur in the context of the other
nodes in the graph of interest, in order to avoid a circularity: this latter set of
executions is itself defined in terms of the relation (in Section 4.2).

An implementation, such as Naiad’s, may soundly use simple, conservative
approximations to the relation as we define it here. In Naiad, for most
nodes p, it is assumed that (p, t) 1 (e, t) for all t and each outgoing edge e;
certain nodes (loop ingress, feedback, and egress) receive special treatment.

The definition implies that is reflexive. The following proposition asserts
a few of the additional properties of that we have found useful.

Proposition 1. 1. If (p, t1) (e, t2) then there are e′ ∈ E ∪ O and t′ ∈ T
such that src(e′) = p, (p, t1) (e′, t′) and (e′, t′) (e, t2), with the proof of
(e′, t′) (e, t2) strictly shorter than that of (p, t1) (e, t2).

5

2. If (x, t1) (x, t2) then t1 ≤ t2.
3. If (x1, t1) (x2, t2), t′1 ≤ t1, and t2 ≤ t′2, then (x1, t

′
1) (x2, t

′
2).

The definition is designed to be convenient in proofs and to reflect impor-
tant aspects of implementations (and of Naiad’s specifically). In particular, the
distinctness requirement (“there exist k > 1, distinct xi for i = 1 . . . k”) means
that proofs and implementations do not need to chase around cycles.

On the other hand, because of the distinctness requirement, the definition
does not immediately yield that is transitive, as one might expect, and as one
might often want in proofs. More broadly, the definition of may not corre-
spond to the intuitive understanding of could-result-in without some additional
assumptions, which we address next.

3.2 On Sending Notification Requests and Messages into the Past

In timely dataflow, and in Naiad in particular, it is generally expected that
events do not give rise to other events at earlier times. When those other events
are notification requests, the required condition is easy to state. When they
are messages, it is not, because we do not wish to compare times across time
domains. In this section we formulate and study these two conditions.

The first considers the generation of notification requests, which the definition
of ignores. We formulate it via an additional relation N , a local variant of
the could-result-in relation that focuses on the generation of notification requests.
(This relation is not intended to be reflexive or transitive.)

Definition 3. (p, t) N (p, t′) if and only if there exist a history h for p and a
state s such that

g(p)(h) = (s,N1, . . .)

and an event x such that either x = t′′ for some t′′ such that t ≤ t′′, or x = (e,m)
for some e and m such that t ≤ time(m), and

g1(p)(s, x) = (. . . , N, . . .)

where some element of N −N1 is ≤ t′.

Using this relation, we can express that an event at time t can trigger noti-
fication requests only at greater times t′:

Condition 1 If (p, t) N (p, t′) then t ≤ t′.

The question of the transitivity of is closely related to the expectation
that nodes should not be allowed to send messages into the past. Indeed, a suf-
ficient condition for transitivity is that, for all pointstamps (x, t) and (x′, t′),
if (x, t) (x′, t′) then t ≤ t′ (as implied by Theorem 1, below). However, the
converse does not hold, for trivial reasons. For example, in a graph with a sin-
gle node, the relation will always be transitive but we may not have that
(x, t) (x′, t′) implies t ≤ t′. Still, we can compare times at a node and at its in-
coming edges, and fortunately such comparisons suffice, as the following theorem
demonstrates.

6

Condition 2 For all p ∈ P , e ∈ E with dst(e) = p, and t, t′ ∈ T , if (p, t)
(e, t′) then t ≤ t′.

Theorem 1. The relation is transitive if and only if Condition 2 holds.

Conditions 1 and 2 both depend on the semantics of individual nodes; Con-
dition 2 also depends on the topology of the graph. Although we assume them
in some of our results, we do not discuss how they can be enforced. In practice,
Naiad simply assumes analogous properties, but type systems and other static
analyses may well help in checking them.

The following proposition offers another way of thinking about transitivity
by comparing times at different nodes and edges, via an embedding of these
times into an additional partial order (T ′,�). One may view (T ′,�) as a set of
times normalized into a coherent universal time—the “GMT” of timely dataflow.
(This proposition is fairly straightforward, and we do not need it below.)

Proposition 2. The relation is transitive if and only if there exist a partial
order (T ′,�) and a mapping E from the set of pointstamps ((I ∪E∪O)∪P)×T
to T ′ such that, for all (x, t) and (x′, t′), (x, t) (x′, t′) if and only if E(x, t) �
E(x′, t′).

3.3 Closure

We say that a set S of pointstamps is upward closed if and only if, for all
pointstamps (x, t) and (x′, t′), (x, t) ∈ S and (x, t) (x′, t′) imply (x′, t′) ∈ S.
For any set S of pointstamps, Close↑(S) is the least upward closed set that
contains S. Assuming that is transitive, the following proposition provides a
simpler formulation for Close↑.

Proposition 3. Assume that Condition 2 holds. Then Close↑(S) = {(x′, t′) |
∃(x, t) ∈ S.(x, t) (x′, t′)}.

3.4 Recursion

Naiad focuses on iterative computation, and the could-result-in relation for the
nodes that support iteration (loop ingress, feedback, and egress) has been dis-
cussed informally [12]. We could revisit iteration using our definitions. However,
the definitions are much more general. We demonstrate the value of this gener-
ality by outlining how they apply to recursive dataflow computation (e.g., [5]).

Let us consider a dataflow graph that includes a distinguished input node in

with no incoming edges, a distinguished output node out with no outgoing edges,
some ordinary nodes for operations on data, and other nodes that represent
recursive calls to the entire computation. For simplicity, we let I = O = ∅,
and do not consider multiple mutually recursive graphs and other variants. We
assume that every node is reachable from in, out is reachable from every node,
and there is a path from in to out that does not go through any call nodes. In
order to make the recursion explicit, we modify the dataflow graph by splitting

7

each call node c into a call part call-c and a return part ret-c, where the
former is the source of a back edge to in and the latter is the destination of a
back edge from out.

A stack ∫ is a finite sequence of call nodes. We let
.
 be the least reflexive,

transitive relation on pairs (p, ∫) such that

1. (call-c, ∫) .
 (in, ∫ ·c);

2. symmetrically, (out, ∫ ·c)
.
 (ret-c, ∫); and

3. if p is not call-c and p′ is not ret-c for any c, and there is an edge from
p to p′, then (p, ∫) .

 (p′, ∫).

We will have that
.
 is a conservative approximation of .

At each node p, we define a pre-order on stacks: ∫ �p ∫ ′ if and only if
(p, ∫) .

 (p, ∫ ′). We write (Tp,≤p) for the partial order induced by �p (so, Tp
identifies ∫ and ∫ ′ when both ∫ �p ∫ ′ and ∫ ′ �p ∫). The partial order is thus
different at each node. The partial order of virtual times (T,≤) is the disjoint
(“tagged”) union of the partial orders (Tp,≤p) for all the nodes. We write [∫]p
for the element of T obtained by tagging the equivalence class of ∫ at p.

We assume that each node p uses the appropriate tags for its outgoing mes-
sages and notification requests, and ignores inputs and notifications not tagged
with p, and also that the behavior of p, as reflected in the relation 1 , conforms
to what the relation

.
 expresses:

If (p, [∫]q) 1 (d, [∫ ′]p′) then q = p, p′ = dst(d), and (p, ∫) .
 (p′, ∫ ′).

We obtain:

Proposition 4. If (p, [∫]p) (p′, [∫ ′]p′) then (p, ∫) .
 (p′, ∫ ′).

Proposition 5. If (p, [∫]q) (p′, [∫ ′]q′) and p 6= p′, then q = p and q′ = p′.

Applying Theorem 1, we also obtain:

Proposition 6. The relation is transitive.

Furthermore, the relation
.
 can be decided quite simply by finding the

first call in which two stacks differ and performing an easy check based on that
difference. This check relies on an alternative modified graph, in which we split
each call node c into a call part call-c and a return part ret-c, but add a direct
forward edge from the former to the latter (rather than back edges). Suppose
(without loss of generality) that ∫ is of the form ∫1·∫2 and ∫ ′ is of the form ∫1·∫ ′2,
where ∫2 and ∫ ′2 start with c and c’ respectively if they are not empty. We assume
that c and c’ are distinct if ∫2 and ∫ ′2 are both non-empty (so, ∫1 is maximal).
Let l be ret-c if ∫2 is non-empty, and be p if it is empty; let l′ be call-c’ if ∫ ′2
is non-empty, and be p′ if it is empty. Then we can prove that (p, ∫) .

 (p′, ∫ ′) if
and only if there is a path from l to l′ in the alternative modified graph.

Special cases (in particular, special graph topologies) may allow further sim-
plifications which could be helpful in implementations.

8

4 Semantics

We describe the semantics of timely dataflow graphs in a state-based frame-
work [3, 11]. In this section, we first review this framework, then specify the
semantics. Finally, we discuss matters of compositionality.

4.1 The Framework (Review)

The sequence 〈〈s0, s1, s2, . . .〉〉 is said to be stutter-free if, for each i, either si 6=
si+1 or the sequence is infinite and si = sj for all j ≥ i. We let \σ be the stutter-
free sequence obtained from σ by replacing every maximal finite subsequence
si, si+1, . . . , sj of identical elements with the single element si. A set of sequences
S is closed under stuttering when σ ∈ S if and only if \σ ∈ S.

A state space Σ is a subset of ΣE×ΣI for some sets ΣE of externally visible
states and ΣI of internal states. If Σ is a state space, then a Σ-behavior is an
element of Σω. A ΣE-behavior is called an externally visible behavior. A Σ-
property P is a set of Σ-behaviors that is closed under stuttering. When Σ is
clear from context or is irrelevant, we may leave it implicit. We sometimes apply
the adjective “complete”, as in “complete behavior”, in order to distinguish
behaviors and properties from externally visible behaviors and properties.

A state machine is a triple (Σ,F,N) where Σ is a state space; F , the set
of initial states, is a subset of Σ; and N , the next-state relation, is a subset of
Σ × Σ. The complete property generated by a state machine (Σ,F,N) consists
of all infinite sequences 〈〈s0, s1, . . .〉〉 such that s0 ∈ F and, for all i ≥ 0, either
〈si, si+1〉 ∈ N or si = si+1. The externally visible property generated by a state
machine is the externally visible property obtained from its complete property
by projection onto ΣE and closure under stuttering. For brevity, we do not
consider fairness conditions or other liveness properties that can be added to
state machines; their treatment is largely orthogonal to our present goals.

Although we are not fully formal in the use of TLA [11], we generally follow
its approach to writing specifications. Specifically, we express state machines by
formulas of the form:

∃y1, . . . , yn. F ∧ [N]v1,...,vk

where:

– state functions that we write as variables represent the state;

– we distinguish external variables and internal variables, and the internal
variables (in this case, y1, . . . , yn) are existentially quantified;

– F is a formula that may refer to the variables;

– is the temporal-logic operator “always”;

– N is a formula that may refer to the variables and also to primed versions of
the variables (thus denoting the values of those variables in the next state);

– [N]v1,...,vk abbreviates N ∨ ((v′1 = v1) ∧ . . . ∧ (v′k = vk)).

9

4.2 Semantics Specification

In our semantics, the externally visible states map each e ∈ I∪O to a value Q(e)
in M∗. In other words, we observe only the state of input and output edges. The
internally visible states map each e ∈ E to a value Q(e) in M∗, and each p ∈ P
to a local state LocState(p) ∈ ΣLoc and to a set of pending notification requests
NotRequests(p) ∈ P(T).

An auxiliary state function Clock (whose name comes from Naiad, and is
unrelated to “clocks” elsewhere) tracks pointstamps for which work may remain:

Clock
∆
= Close↑

{(e, time(m)) | e ∈ I ∪ E ∪O,m ∈ Q(e)}
∪

{(p, t) | p ∈ P, t ∈ NotRequests(p)}


We define an initial condition, the actions that constitute a next-state rela-

tion, and finally the specification.

Initial condition:

InitProp
∆
=

∀e ∈ E ∪O.Q(e) = ∅ ∧ ∀i ∈ I.Q(i) ∈M∗
∧
∀p ∈ P.(LocState(p),NotRequests(p)) ∈ Initial(p)


Actions:

1. Receiving a message:

Mess
∆
= ∃p ∈ P.Mess1 (p)

Mess1 (p)
∆
=

(
∃m ∈M.∃e ∈ I ∪ E such that p = dst(e).
Q(e) = m·Q′(e) ∧Mess2 (p, e,m)

)

Mess2 (p, e,m)
∆
=



let
{e1, . . . , ek} = {d ∈ E ∪O | src(d) = p},
s = LocState(p),
(s′, N, 〈e1 7→µ1, . . . , ek 7→µk〉) = g1(p)(s, (e,m))
in
LocState ′(p) = s′

∧
NotRequests ′(p) = NotRequests(p) ∪N
∧
Q′(e1) = Q(e1)·µ1 . . . Q

′(ek) = Q(ek)·µk

∧
∀q ∈ P 6= p.LocState ′(q) = LocState(q)
∧
∀q ∈ P 6= p.NotRequests ′(q) = NotRequests(q)
∧
∀d ∈ I ∪ E ∪O − {e, e1, . . . , ek}.Q′(d) = Q(d)


10

These formulas describe how a node p dequeues a message m and reacts to
it, producing messages and notification requests.

2. Receiving a notification:

Not
∆
= ∃p ∈ P.Not1 (p)

Not1 (p)
∆
=


∃t ∈ NotRequests(p).
∀e ∈ I ∪ E such that dst(e) = p.(e, t) 6∈ Clock
∧
Not2 (p, t)



Not2 (p, t)
∆
=



let
{e1, . . . , ek} = {d ∈ E ∪O | src(d) = p},
s = LocState(p),
(s′, N, 〈e1 7→µ1, . . . , ek 7→µk〉) = g1(p)(s, t)
in
LocState ′(p) = s′

∧
NotRequests ′(p) = NotRequests(p)− {t} ∪N
∧
Q′(e1) = Q(e1)·µ1 . . . Q

′(ek) = Q(ek)·µk

∧
∀q ∈ P 6= p.LocState ′(q) = LocState(q)
∧
∀q ∈ P 6= p.NotRequests ′(q) = NotRequests(q)
∧
∀d ∈ I ∪ E ∪O − {e1, . . . , ek}.Q′(d) = Q(d)


These formulas describe how a node p consumes a notification t for which it
has an outstanding notification request, and how it reacts to the notification,
producing messages and notification requests.

3. External input and output changes:

Inp
∆
=



∀i ∈ I.Q(i) is a subsequence of Q′(i)
∧
∀p ∈ P.LocState ′(p) = LocState(p)
∧
∀p ∈ P.NotRequests ′(p) = NotRequests(p)
∧
∀d ∈ E ∪O.Q′(d) = Q(d)



Outp
∆
=



∀o ∈ O.Q′(o) is a subsequence of Q(o)
∧
∀p ∈ P.LocState ′(p) = LocState(p)
∧
∀p ∈ P.NotRequests ′(p) = NotRequests(p)
∧
∀d ∈ I ∪ E.Q′(d) = Q(d)


11

External input changes allow the contents of input edges to be extended
rather arbitrarily. We do not assume that such extensions are harmonious
with notifications and the use of Clock ; from this perspective, it would be
reasonable and straightforward to add the constraint Clock ′ ⊆ Clock to Inp.
Similarly, external output changes allow the contents of output edges to be
removed, not necessarily in order. We ask that Q(i) be a subsequence of
Q′(i) and that Q′(o) be a subsequence of Q(o), so that it is easy to attribute
state transitions. While variants on these two actions are viable, allowing
some degree of external change to input and output edges seems attractive
for composability (see Section 4.3).

The high-level specification:

ISpec
∆
= InitProp ∧ [Mess ∨Not ∨ Inp ∨Outp]LocState,NotRequests,Q

Spec
∆
= ∃LocState,NotRequests, Q�E.ISpec

ISpec describes a complete property and Spec an externally visible property.
This specification is the most basic of several that we have studied. For

instance, another one allows certain message reorderings, replacing Mess1 (p)
with

∃m ∈M.∃e ∈ I ∪ E such that p = dst(e).∃u, v ∈M∗.
Q(e) = u·m·v ∧Q′(e) = u·v ∧ ∀n ∈ u.time(n) 6≤ time(m) ∧Mess2 (p, e,m)

Given a queue of messages Q(e), p is allowed to process any message m such
that there is no message n ahead of m with time(n) ≤ time(m). Mathematically,
we may think of Q(e) as a partially ordered multiset (pomset) [13]; with that
view, m is a minimal element of Q(e). This relaxation is useful, for example, for
enabling optimizations in which several messages for the same time are processed
together, even if they are not all at the head of a queue.

4.3 Composing Graphs

We briefly discuss how to compose graphs, without however fully developing
the corresponding definitions and theory (in part, simply, because we have not
needed them in our applications of the semantics to date).

We can regard the specifications of this paper as being parameterized by
a Clock variable, rather than as being specifically for Clock as defined in Sec-
tion 4.2. Once we regard Clock as a parameter, the specifications that correspond
to multiple dataflow graphs can be composed meaningfully, and along standard
lines [9]. Suppose that we are given graphs G1 and G2, with nodes P1 and P2, in-
put edges I1 and I2, internal edges E1 and E2, and output edges O1 and O2, and
specifications Spec1 and Spec2. We assume that P1 and P2, I1 and I2, E1 and E2,
and O1 and O2 are pairwise disjoint. We also assume that I1, I2, O1, and O2 are
disjoint from E1 and E2. We write X12 = I2 ∩O1 and X21 = I1 ∩O2. The edges
in X12 and X21 will connect the two graphs. We define a specification for the

12

composite system with nodes P = P1∪P2, input edges I = I1∪I2−X12−X21, in-
ternal edges E = E1∪E2∪X12∪X21, and output edges O = O1∪O2−X12−X21,
by

Spec12 = ∃Q�(X12 ∪X21).Spec1 ∧ Spec2 ∧ [¬(Acts1 ∧Acts2)]

where, for j = 1, 2,

Actsj =

∃i ∈ Ij .Q′(i) is a proper subsequence of Q(i)
∨
∃o ∈ Oj .Q(o) is a proper subsequence of Q′(o)


The formula [¬(Acts1 ∧Acts2)] ensures that the actions of the two subsystems
that are visible on their input and output edges are not simultaneous. It does
not say anything about internal edges, nor does it address notification requests.

It remains to study how Spec12 relates to the non-compositional specifica-
tion of the same system. Going further, the definition of a global Clock might
be obtained compositionally from multiple, more local could-result-in relations.
Finally, one might address questions of full abstraction. Although we rely on a
state-based formalism, results such as Jonsson’s [9] (which are cast in terms of
I/O automata) should translate. However, a fully abstract treatment of timely
dataflow would have interesting specificities, such as the handling of completion
notifications and the possible restrictions on contexts (in particular contexts
constrained not to send messages into the past).

5 An Application

In order to leverage the definitions and to test them, we state and prove a basic
but important property for timely dataflow. Specifically, we argue that, once a
pointstamp (e, t) is not in Clock , messages on e will never have times ≤ t. For
this property to hold, however, we require a hypothesis on inputs; we simply
assume that, for all input edges i, Q(i) never grows, though it may contain some
messages initially. (Alternatively, we could add the constraint Clock ′ ⊆ Clock to
Inp, as suggested in Section 4.2.)

First, we establish some auxiliary propositions:

Proposition 7. ISpec implies that always, for all p ∈ P , there exists a local
history H(p) for p such that LocState(p) = ΠLocg(H(p)) and NotRequests(p) =
ΠNRg(H(p)).

Proposition 8. Assume that Conditions 1 and 2 hold. Then ISpec implies

[(∀i ∈ I.Q′(i) is a subsequence of Q(i))⇒ (Clock ′ ⊆ Clock)]

13

Proposition 9.

[(∀i ∈ I.Q′(i) is a subsequence of Q(i))⇒ (Clock ′ ⊆ Clock)]
∧

[∀i ∈ I.Q′(i) is a subsequence of Q(i)]
⇒

∀e ∈ I ∪ E ∪O, t ∈ T.

 (e, t) 6∈ Clock
⇒

(e, t) 6∈ Clock


We obtain:

Theorem 2. Assume that Conditions 1 and 2 hold. Then ISpec and

[∀i ∈ I.Q′(i) is a subsequence of Q(i)]

imply

∀e ∈ I ∪ E ∪O, t ∈ T,m ∈M.

 (e, t) 6∈ Clock
⇒

(m ∈ Q(e)⇒ time(m) 6≤ t)


Previous work [4] studies a distributed algorithm for tracking the progress

of a computation, and arrives at a somewhat analogous result. This previous
work assumes a notion of virtual time but defines neither a dataflow model nor
a corresponding could-result-in relation (so, in particular, it does not treat ana-
logues of Conditions 1 and 2). In the distributed algorithm, information at each
processor serves for constructing a conservative approximation of the pending
work in a system. Naiad relies on such an approximation for implementing its
clock, which the state function Clock represents in our model.

6 Conclusion

This paper aims to develop a rigorous foundation for timely dataflow, a model for
data-parallel computing. Some of the ingredients in timely dataflow, as defined
in this paper, have a well-understood place in the literature on semantics and
programming languages. For instance, many programming languages support
messages and message streams. On the other hand, despite similarities to ex-
tant concepts, other ingredients are more original, so giving them self-contained
semantics can be both interesting and valuable for applications. In particular,
virtual times and completion notifications may be reminiscent of the notion of
priorities [15, 8], but a straightforward reduction seems impossible. More broadly,
there should be worthwhile opportunities for further foundational and formal
contributions to research on data-parallel software, currently a lively area of
experimental work in which several computational abstractions and models are
being revisited, adapted, or invented.

14

Acknowledgments

We are grateful to our coauthors on work on Naiad for discussions that led to this
paper. In addition, conversations with Nikhil Swamy and Dimitrios Vytiniotis
motivated our study of recursion.

References

1. Abadi, M., Isard, M.: On the flow of data, information, and time. In: Focardi, R.,
Myers, A. (eds.) Proceedings of the 4th Conference on Principles of Security and
Trust. Springer (2015), to appear.

2. Abadi, M., Isard, M.: Timely rollback: Specification and verification. In: Havelund,
K., Holzmann, G., Joshi, R. (eds.) Proceedings of the 7th NASA Formal Methods
Symposium. Springer (2015), to appear.

3. Abadi, M., Lamport, L.: The existence of refinement mappings. Theoretical Com-
puter Science 82(2), 253–284 (1991)

4. Abadi, M., McSherry, F., Murray, D.G., Rodeheffer, T.L.: Formal analysis of a
distributed algorithm for tracking progress. In: Formal Techniques for Distributed
Systems - Joint IFIP WG 6.1 International Conference, FMOODS/FORTE 2013.
pp. 5–19 (2013)

5. Blelloch, G.E.: Programming parallel algorithms. Communications of the ACM
39(3), 85–97 (Mar 1996)

6. Hildebrandt, T.T., Panangaden, P., Winskel, G.: A relational model of non-
deterministic dataflow. Mathematical Structures in Computer Science 14(5), 613–
649 (2004)

7. Jefferson, D.R.: Virtual time. ACM Transactions on Programming Languages and
Systems 7(3), 404–425 (Jul 1985)

8. John, M., Lhoussaine, C., Niehren, J., Uhrmacher, A.M.: The attributed pi-calculus
with priorities. Transactions on Computational Systems Biology 12, 13–76 (2010)

9. Jonsson, B.: A fully abstract trace model for dataflow and asynchronous networks.
Distributed Computing 7(4), 197–212 (1994)

10. Kahn, G.: The semantics of a simple language for parallel programming. In: IFIP
Congress. pp. 471–475 (1974)

11. Lamport, L.: Specifying Systems, The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley (2002)

12. Murray, D.G., McSherry, F., Isaacs, R., Isard, M., Barham, P., Abadi, M.: Naiad: a
timely dataflow system. In: ACM SIGOPS 24th Symposium on Operating Systems
Principles. pp. 439–455 (2013)

13. Pratt, V.: Modeling concurrency with partial orders. International Journal of Par-
allel Programming 15(1), 33–71 (1986)

14. Selinger, P.: First-order axioms for asynchrony. In: Mazurkiewicz, A.W., Win-
kowski, J. (eds.) CONCUR ’97: Concurrency Theory, 8th International Conference.
vol. 1243, pp. 376–390. Springer (1997)

15. Versari, C., Busi, N., Gorrieri, R.: An expressiveness study of priority in process
calculi. Mathematical Structures in Computer Science 19(6), 1161–1189 (2009)

15

