D. Kempe, J. Kleinberg, and . Tardos, Maximizing spread of influence through a social network, SIGKDD, pp.137-146, 2003.

A. Goyal, W. Lu, and L. V. Lakshmanan, CELF++: optimizing the greedy algorithm for influence maximization in social networks, pp.47-48, 2011.

W. Chen, Y. Wang, and S. Yang, Efficient influence maximization in social networks, SIGKDD, pp.199-208, 2009.
DOI : 10.1145/1557019.1557047

C. Wang, W. Chen, and Y. Wang, Scalable influence maximization for independent cascade model in large-scale social networks, Data Mining and Knowledge Discovery, vol.25, issue.3, p.545, 2012.
DOI : 10.1007/s10618-012-0262-1

K. Jung, W. Heo, and W. Chen, IRIE: Scalable and robust influence maximization in social networks, ICDM, pp.918-923, 2012.

D. Golovin and A. Krause, Adaptive submodularity: A new approach to active learning and stochastic optimization, COLT, pp.333-345, 2010.

, Adaptive submodularity: theory and applications in active learning and stochastic optimization, Journal of Artificial Intelligence Research, vol.42, issue.1, pp.427-486, 2011.

A. Badanidiyuru, C. Papadimitriou, A. Rubinstein, L. Seeman, and Y. Singer, Locally adaptive optimization: Adaptive seeding monotone submodular functions, SODA, pp.414-429, 2016.
DOI : 10.1137/1.9781611974331.ch31

URL : https://epubs.siam.org/doi/pdf/10.1137/1.9781611974331.ch31

Y. Singer, Influence maximization through adaptive seeding, ACM SIGecom Exchanges, vol.15, issue.1, pp.32-59, 2016.
DOI : 10.1145/2994501.2994503

L. Seeman and Y. Singer, Adaptive seeding in social networks, FOCS, pp.459-468, 2013.

A. Rubinstein, L. Seeman, and Y. Singer, Approximability adaptive seeding under knapsack constraints, pp.797-814, 2015.
DOI : 10.1145/2764468.2764512

URL : http://www.cs.cornell.edu/%7Elseeman/Docs/AdaptiveSeedingKnapsack.pdf

T. Horel and Y. Singer, Scalable methods for adaptively seeding a social network, pp.441-451, 2015.
DOI : 10.1145/2740908.2744108

URL : http://arxiv.org/pdf/1503.01438

J. Correa, M. Kiwi, N. Olver, and A. Vera, Adaptive rumor spreading, WINE, pp.272-285, 2015.
DOI : 10.1007/978-3-662-48995-6_20

URL : https://doi.org/10.1007/978-3-662-48995-6_20

S. Dhamal, K. J. Prabuchandran, and Y. Narahari, Information diffusion in social networks in two phases, IEEE Transactions on Network Science and Engineering, vol.3, issue.4, pp.197-210, 2016.
DOI : 10.1109/tnse.2016.2610838

URL : http://arxiv.org/pdf/1706.07739

G. Tong, W. Wu, S. Tang, and D. Du, Adaptive influence maximization in dynamic social networks, IEEE/ACM Transactions on Networking, vol.25, issue.1, pp.112-125, 2016.
DOI : 10.1109/tnet.2016.2563397

URL : http://arxiv.org/pdf/1506.06294

J. Yuan and S. Tang, No time to observe: Adaptive influence maximization with partial feedback, IJCAI, pp.3908-3914, 2017.
DOI : 10.24963/ijcai.2017/546

URL : https://www.ijcai.org/proceedings/2017/0546.pdf

S. Mondal, S. Dhamal, and Y. Narahari, Two-phase influence maximization in social networks with seed nodes and referral incentives, ICWSM, pp.620-623, 2017.

J. Leskovec and J. J. Mcauley, Learning to discover social circles in ego networks, Advances in neural information processing systems, pp.539-547, 2012.

Z. Zhang, H. Wu, K. Yue, J. Li, and W. Liu, Influence maximization for cascade model with diffusion decay in social networks, ICYCSEE, pp.418-427, 2016.
DOI : 10.1007/978-981-10-2053-7_37