
HAL Id: hal-01767469
https://hal.inria.fr/hal-01767469

Submitted on 16 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

An Institution for Event-B
Marie Farrell, Rosemary Monahan, James Power

To cite this version:
Marie Farrell, Rosemary Monahan, James Power. An Institution for Event-B. 23th International
Workshop on Algebraic Development Techniques (WADT), Sep 2016, Gregynog, United Kingdom.
pp.104-119, �10.1007/978-3-319-72044-9_8�. �hal-01767469�

https://hal.inria.fr/hal-01767469
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


An Institution for Event-B

Marie Farrell?, Rosemary Monahan, and James F. Power

Dept. of Computer Science, Maynooth University, Co. Kildare, Ireland

Abstract. This paper presents a formalisation of the Event-B formal
specification language in terms of the theory of institutions. The main ob-
jective of this paper is to provide: (1) a mathematically sound semantics
and (2) modularisation constructs for Event-B using the specification-
building operations of the theory of institutions. Many formalisms have
been improved in this way and our aim is thus to define an appropriate
institution for Event-B, which we call EVT . We provide a definition of
EVT and the proof of its satisfaction condition. A motivating example
of a traffic-light simulation is presented to illustrate our approach.

Keywords: Event-B; institutions; refinement; formal methods; modular
specification; formal specification

1 Introduction and Motivation

Event-B is an industrial-strength, state-based formalism for system-level mod-
elling and verification, combining set theoretic notation with event-driven mod-
elling. However, Event-B lacks well-developed modularisation constructs and it
is not easy to combine specifications in Event-B with those written in other for-
malisms [6]. Our thesis, presented in this paper, is that the theory of institutions
can provide a framework for defining a rich set of modularisation operations and
promoting interoperability and heterogeneity for Event-B.

This paper is centered around an illustrative example of a specification writ-
ten in Event-B, inspired by one in the Rodin Handbook [7], which we present in
the remainder of Section 1. We define our institution for Event-B, called EVT , in
Section 2, prove that it is a valid institution, and define a comorphism between
the institution for first-order predicate logic with equality and EVT in Section 3.
In Section 4 we use this institution to recast our Event-B example in modular
form using specification-building operators and address refinement, since this is
of central importance in Event-B. We summarise our contributions and outline
future directions in Section 5.

1.1 Formal Specification of a Traffic-Lights System in Event-B

Figure 1 presents an Event-B machine for a traffic-lights system with one light
signalling cars and one signalling pedestrians [2]. The goal of the specification
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is to ensure that it is never the case that both cars and pedestrians receive the
“go” signal at the same time (represented by boolean flags on line 2). Machine
specifications typically contain variable declarations (line 2), a variant expression
(none in this example), invariants (lines 3–6) and event specifications (lines 7–
21). Contexts in Event-B can be used to model the static properties of a system
(constants, axioms and carrier sets). Figure 2 provides a context giving a spec-
ification for the data-type COLOURS . The axiom on line 5 explicitly restricts
the set to only contain the constants red, green and orange.

Figure 1 specifies five different events (including a starting event called Init-

ialisation defined on lines 8–10). Each event has a guard, specifying when it
can be activated, and an action, specifying what happens when the event is
activated. For example, the set peds go event as specified on lines 11–13, has
one guard expressed as a boolean expression (line 12), and one action, expressed
as an assignment statement (line 13). Moreover, each event has a status, which
can be either ordinary, convergent, or anticipated. If the status is different
from ordinary, then the event is concerned with the variant expression, i.e.
with a natural-number expression used in proving termination properties. Our
example has no variant so all events have the status ordinary.

Figure 3 shows an Event-B machine specification for mac2 that refines the
machine mac1 (Figure 1). The machine mac1 is refined by first introducing the
new context on line 1 and then by replacing the truth values used in the abstract
machine with new values from the carrier set COLOURS . This new data type
is included into mac2 using the SEES construct on line 1 of Figure 3. During
refinement, the user typically supplies a gluing invariant relating properties of
the abstract machine to their counterparts in the concrete machine [2]. The
gluing invariants in Figure 3 (lines 6 and 8) define a one-to-one mapping between
the concrete variables introduced in mac2 and the abstract variables of mac1. The
concrete variables (peds colour and cars colour) can be assigned either red or
green, thus the gluing invariants map true to green and false to red.

Event-B permits the addition of new variables and events: button pushed

(line 2) and press button (lines 30–31). The existing events from mac1 are re-
named to reflect refinement; for example, the event set peds green is declared
to refine set peds go (lines 14–15). This event has also been altered via the addi-
tion of a guard (line 16) and an action (line 18) that incorporate the functionality
of a button-controlled pedestrian light. This example highlights features of the
Event-B language, but notice how the same specification has to be provided
twice in Figure 1. The events set peds go and set peds stop are equivalent,
modulo renaming of variables, to set cars go and set cars stop. Ideally, writ-
ing and proving the specification for these events should only be required once.
Our approach addresses these issues as will be seen in Section 4.

1.2 Related Work: Institutions and Modularisation

Originally, Event-B was not equipped with any modularisation constructs. Be-
cause of this, several approaches have been suggested for modularising Event-B
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1 MACHINE mac1
2 VARIABLES cars go, peds go
3 INVARIANTS
4 inv1: cars go ∈ BOOL
5 inv2: peds go ∈ BOOL
6 inv3: ¬ (peds go = true

∧ cars go = true)
7 EVENTS
8 Initialisation ordinary
9 then act1: cars go := false

10 act2: peds go := false
11 Event set peds go =̂ ordinary
12 when grd1: cars go = false
13 then act1: peds go := true
14 Event set peds stop =̂ ordinary
15 then act1: peds go := false
16 Event set cars go =̂ ordinary
17 when grd1: peds go = false
18 then act1: cars go := true
19 Event set cars stop =̂ ordinary
20 then act1: cars go := false
21 END

Fig. 1: Event-B machine specification
for a traffic system.

1 CONTEXT ctx1
2 SETS COLOURS
3 CONSTANTS red, green, orange
4 AXIOMS
5 axm1: partition(COLOURS,

{red}, {green}, {orange})
6 END

Fig. 2: Event-B context specification for
the colours of a set of traffic–lights.

1 MACHINE mac2 refines mac1 SEES ctx1
2 VARIABLES cars colour, peds colour,
3 buttonpushed
4 INVARIANTS
5 inv1: peds colour ∈ {red, green}
6 inv2: (peds go = true)

⇔ (peds colour = green)
7 inv3: cars colour ∈ {red, green}
8 inv4: (cars go = true)

⇔ (cars colour = green)
9 inv5: buttonpushed ∈ BOOL

10 EVENTS
11 Initialisation ordinary
12 then act1: cars colour := red
13 act2: peds colour := red
14 Event set peds green =̂ ordinary
15 refines set peds go
16 when grd1: cars colour = red
17 grd2: buttonpushed = true
18 then act1: peds colour := green
19 act2: buttonpushed := false
20 Event set peds red =̂ ordinary
21 refines set peds stop
22 then act1: peds colour := red
23 Event set cars green =̂ ordinary
24 refines set cars go
25 when grd1: peds colour = red
26 then act1: cars colour := green
27 Event set cars red =̂ ordinary
28 refines set cars stop
29 then act1: cars colour := red
30 Event press button =̂ ordinary
31 then act1: buttonpushed := true
32 END

Fig. 3: A refined Event-B machine speci-
fication for a traffic system.

specifications. Abrial first proposed two styles of decomposition based on identi-
fying shared variables and shared events [3]. Elaborating these approaches, ap-
proximately 8 modularisation plugins have been developed for various versions
of Rodin, each offering a different perspective on implementing modularisation.
By defining an institution for the Event-B formalism, we can modularise Event-
B specifications using specification-building operators [11], and thus provide an
approach to developing modular specifications that is consistent with the state
of the art in formal specification.

An attempt was previously made to provide an institution and correspond-
ing morphisms for Event-B and UML [4]. However, the definitions of Event-B
sentences and models were vague, making it difficult to evaluate their semantics
in a meaningful way. Also, the models described resemble the set-theoretic foun-
dations of B specifications, whereas here we concentrate on event-based models.
Our presentation of an illustrative example in both Event-B and its modular
institutional version is an important element of developing this work.

Our approach provides scope for the interoperability of Event-B and other
formalisms via institution (co)morphisms. Those familiar with the institution for
UML state machines, UML, may notice that we have based the construction of
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our institution for Event-B, EVT , on UML[8]. Both institutions describe state-
based formalisms so, by keeping UML in mind during the development of EVT ,
it will be possible to design meaningful translations between them in the future.

2 An Institution for Event-B

The theory of institutions, originally developed by Goguen and Burstall in a
series of papers originating from their work on algebraic specification, provides
a general framework for defining a logical system [5].

Definition 1 (Institution). An institution INS for some given formalism
will consist of definitions for:
Vocabulary: a category Sign whose objects are called signatures and whose
arrows are called signature morphisms.

Syntax: a functor Sen : Sign → Set giving a set Sen(Σ) of Σ-sentences
for each signature Σ and a function Sen(σ) : Sen(Σ) → Sen(Σ′) for each
signature morphism σ : Σ → Σ′.

Semantics: a functor Mod : Signop → Cat giving a category Mod(Σ) of
Σ-models for each signature Σ and a functor Mod(σ) : Mod(Σ′)→Mod(Σ)
for each signature morphism σ : Σ → Σ′.

Satisfaction: for every signature Σ, a satisfaction relation |=INS,Σ between
Σ-models and Σ-sentences.

An institution must uphold the satisfaction condition: for any signature
morphism σ : Σ → Σ′ and translations Mod(σ) of models and Sen(σ) of
sentences we have for any φ ∈ Sen(Σ) and M ′ ∈ |Mod(Σ′)|.

M ′ |=INS,Σ′ Sen(σ)(φ) ⇐⇒ Mod(σ)(M ′) |=INS,Σ φ

There are two basic languages within the Event-B language. The first one
is the Event-B mathematical language (propositional/predicate logic, set-theory
and arithmetic) and the second is the Event-B modelling language [1]. To rep-
resent the latter, we propose a new custom solution; for the former, however,
we can use FOPEQ, the institution of first-order logic with equality. Thus, our
institution for Event-B is built on FOPEQ.

Definition 2 (FOPEQ-Signature). A signature in FOPEQ, ΣFOPEQ =
〈S,Ω,Π〉, is a tuple where S is a set of sort names, Ω is a set of operation names
indexed by arity and sort, and Π is a set of predicate names indexed by arity.

Definition 3 (ΣFOPEQ-Sentence). For any ΣFOPEQ = 〈S,Ω,Π〉, ΣFOPEQ-
sentences are closed first-order formulae built out of atomic formulae using
∧,∨,¬,⇒, ⇐⇒ ,∃,∀. Atomic formulae are equalities between 〈S,Ω〉-terms, pred-
icate formulae of the form p(t1, . . . , tn) where p ∈ Π and t1, . . . , tn are terms
(with variables), and the logical constants true and false.

Definition 4 (ΣFOPEQ-Model). Given a signature ΣFOPEQ = 〈S,Ω,Π〉, a
model over FOPEQ consists of a carrier set |A|s for each sort name s ∈ S, a

4



function fA : |A|s1 × · · · × |A|sn → |A|s for each operation name f ∈ Ωs1...sn,s
and a relation pA ⊆ |A|s1 × · · · × |A|sn for each predicate name p ∈ Πs1···sn ,
where s1, . . . , sn, and s are sort names.

The satisfaction relation in FOPEQ is the usual satisfaction of first-order
sentences by first-order structures.

2.1 Defining EVT
Definition 5 (EVT -Signature). A signature in EVT is a five-tuple ΣEVT =
〈S,Ω,Π,E, V 〉 where 〈S,Ω,Π〉 is a standard FOPEQ-signature as described
above, E is a set of events, i.e. of pairs 〈event name, status〉 where status belongs
to the poset {ordinary < anticipated < convergent}, and V is a set of sorted
variables. We assume that every signature has an initial event, called Init, whose
status is always ordinary.

Notation: We write Σ in place of ΣEVT when describing a signature over our
institution for Event-B. For signatures over other institutions than EVT we
will use the subscript notation; e.g. a signature over FOPEQ is denoted by
ΣFOPEQ. For a given signature Σ, we access its individual components using a
dot-notation, e.g. Σ.V for the set V in the tuple Σ.

Definition 6 (EVT -Signature Morphism). A signature morphism σ :
Σ → Σ′ is a five-tuple containing σS , σΩ , σΠ , σE and σV . Here σS , σΩ , σΠ are
the mappings taken from the corresponding signature morphism in FOPEQ.
– σE : Σ.E → Σ′.E is a function such that for any mapping σE〈e, st〉 = 〈e′, st′〉

we have st ≤ st′; in addition, σE preserves the initial event: in symbols, we
have that σE〈Init, ordinary〉 = 〈Init, ordinary〉.

– σV : Σ.V → Σ′.V is a sort-preserving function on sets of variable names,
working similarly to the sort-preserving mapping for constant symbols, σΩ .

Definition 7 (ΣEVT -Sentence). A sentence over EVT is a pair 〈e, φ(x, x′)〉
where e is an event name in the domain of Σ.E and φ(x, x′) is an open FOPEQ-
formula over the variables x from Σ.V and their primed versions x′.

In the Rodin Platform, Event-B machines are presented (syntactically sug-
ared) as can be seen below, where I(x) represents the invariant over x.

The variant expression, denoted by n(x), is used
for proving termination properties. Events that
have a status of anticipated or convergent

must not increase and strictly decrease the
variant expression respectively. Events can have
parameter(s) as given by p. G(x, p) and W (x, p)
represent the guard(s) and witness(es) respec-
tively over the variables and parameter(s).
Actions are interpreted as before-after predi-
cates i.e. x := x+ 1 is interpreted as x′ = x+ 1.
Thus, BA(x, p, x′) represents the action(s) over

MACHINE m SEES ctx refines a
VARIABLES x
INVARIANTS I(x)
VARIANT n(x)
EVENTS
Initialisation ordinary

then act-name: BA(x, x′)
Event e =̂ status

any p
when guard-name: G(x, p)
with witness-name: W (x, p)
then act-name: BA(x, p, x′)

.

.

.
END
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the parameter(s) p and the sets of variables x and x′.
Sentences written in the mathematical language (such as axioms) are inter-

preted as sentences over FOPEQ. We can include these in specifications over
EVT using the comorphism which will be defined in Section 3. We represent the
Event-B event, variant and invariant sentences as sentences over EVT .

For each Event-B invariant sentence I(x) we form the open FOPEQ-sentence
I(x)∧I(x′). Since invariants must hold for all events in a machine, each invariant
sentence is paired with each event name e for all 〈e, s〉 ∈ Σ.E, where s is an event
status. Thus, we form the EVT sentence 〈e, I(x) ∧ I(x′)〉.

The variant expression applies to specific events, so we pair it with an event
name in order to meaningfully evaluate it. This expression can be translated into
an open FOPEQ-term, which we denote by n(x), and we use this to construct
a formula based on the status of the event(s) in the signature Σ.
– For each 〈e, anticipated〉 ∈ Σ.E we form the sentence 〈e, n(x′) ≤ n(x)〉.
– For each 〈e, convergent〉 ∈ Σ.E we form the sentence 〈e, n(x′) < n(x)〉.

Note that we are assuming the existence of a suitable type for variant expressions
and the usual arithmetic interpretation of the predicates < and ≤.

Event guard(s) and witnesses are also labelled predicates that can be trans-
lated into open FOPEQ-formulae over the variables x in V and parameters p.
These are denoted by G(x, p) and W (x, p) respectively. In Event-B, actions are
interpreted as before-after predicates, and so they can be translated into open
FOPEQ-formulae denoted by BA(x, p, x′). Thus for each event we form the
formula φ(x, x′) = ∃p · G(x, p) ∧W (x, p) ∧ BA(x, p, x′) where p are the event
parameters. This generates an EVT -sentence of the form 〈e, φ(x, x′)〉. The Init

event, which is an Event-B sentence over only the after variables denoted by x′,
is a special case. In this case, we form the EVT -sentence 〈Init, φ(x′)〉.

There is no formal semantics for Event-B defined in the literature as such.
Therefore, we have based our construction of EVT -models on the notion of a
mathematical model as described by Abrial [1, Ch. 14]. In these models the
state is represented as a sequence of variable-values and models are defined over
before and after states. We interpret these states as sets of variable-to-value
mappings in our definition of EVT -models.

Definition 8 (Σ-StateA). For any given EVT -signature Σ we define a Σ-state
of an algebra A as a set of (sort appropriate) variable-to-value mappings whose
domain is the set of sort-indexed variable names Σ.V . We define the set StateA
as the set of all such Σ-states. By “sort appropriate” we mean that for any
variable x of sort s in V , the corresponding value for x should be drawn from
|A|s, the carrier set of s given by the FOPEQ-model A.

Definition 9 (ΣEVT -Model). Given Σ = 〈S,Ω,Π,E, V 〉, Mod(Σ) provides a
category of models, where a model over Σ is a tuple 〈A,L,R〉. A is a ΣFOPEQ-
model, and the non-empty initialising set L ⊆ StateA provides the states after
the Init event. Then for every event name e ∈ dom(E), other than Init, we
define R.e ⊆ StateA × StateA where for each pair of states 〈s, s′〉 in R.e, s
provides values for the variables x in V , and s′ provides values for their primed
versions x′. Then R = {R.e | e ∈ dom(E) and e 6= Init}.
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Intuitively, a model over Σ maps every event name e ∈ dom(Σ.E) to a set of
variable-to-value mappings over the carriers corresponding to the sorts of each
of the variables x ∈ Σ.V and their primed versions x′. In cases where there are
no variables in Σ.V , L is the singleton {{}}.

For example, given the event e on the right, with
natural number variable x and boolean variable y
we construct the variable to value mappings:

Event e =̂
when grd1: x<2
then act1: x := x + 1

act2: y := false

Re =

{
{x 7→ 0, y 7→ false, x′ 7→ 1, y′ 7→ false}, {x 7→ 0, y 7→ true, x′ 7→ 1, y′ 7→ false},
{x 7→ 1, y 7→ false, x′ 7→ 2, y′ 7→ false}, {x 7→ 1, y 7→ true, x′ 7→ 2, y′ 7→ false}

}
The notation used above is interpreted as variable name 7→ value where the value
is drawn from the carrier set corresponding to the sort of the variable name given
in Σ.V . We note that trivial models be excluded as the initialising set L is never
empty. In cases where there are no variables in Σ.V , L is the singleton L = {{}}.

The reduct of an EVT -model M = 〈A,L,R〉 along an EVT -signature mor-
phism σ : Σ → Σ′ is given by M |σ = 〈A|σ, L|σ, R|σ〉. Here A|σ is the reduct of
the FOPEQ-component of the EVT -model along the FOPEQ-components of
σ. L|σ and R|σ are based on the reduction of the states of A along σ, i.e. for
every Σ′-state s of A, that is for every sorted map s : Σ′.V → |A|, s|σ is the map
Σ′.V → |A| given by the composition σV ; s. This extends in the usual manner
from states to sets of states and to relations on states.

Satisfaction: In order to define the satisfaction relation for EVT , we describe an
embedding from EVT -signatures and models to FOPEQ-signatures and models.

Given an EVT -signatureΣ = 〈S,Ω,Π,E, V 〉 we form the following two FOPEQ-
signatures:

– Σ
(V,V ′)
FOPEQ = 〈S,Ω ∪ V ∪ V ′, Π〉 where V and V ′ are the variables and their

primed versions, respectively, that are drawn from the EVT -signature, and
represented as 0-ary operators with unchanged sort. The intuition here is
that the set of variable-to-value mappings for the free variables in an EVT -
signature Σ are represented by adding a distinguished 0-ary operation sym-
bol to the corresponding FOPEQ-signature for each of the variables x ∈ V
and their primed versions.

– Similarly, for the initial state and its variables, we construct the signature

Σ
(V ′)
FOPEQ = 〈S,Ω ∪ V ′, Π〉.

Given the EVT Σ-model 〈A,L,R〉, we construct the FOPEQ-models:

– For every pair of states 〈s, s′〉, we form the Σ
(V,V ′)
FOPEQ-model expansion A(s,s′),

which is the FOPEQ-component A of the EVT -model, with s and s′ added
as interpretations for the new operators that correspond to the variables
from V and V ′ respectively.

– For each initial state s′ ∈ L we construct the Σ
(V ′)
FOPEQ-model expansion

A(s′) analogously.
For any EVT -sentence over Σ of the form 〈e, φ(x, x′)〉 we create a correspond-

ing FOPEQ-formula by replacing the free variables with their corresponding
operator symbols. We write this (closed) formula as φ(x, x′).
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Definition 10 (Satisfaction Relation). For any EVT -model 〈A,L,R〉 and
EVT -sentence 〈e, φ(x, x′)〉, where e is an event name other than Init, we define:
〈A,L,R〉 |=Σ 〈e, φ(x, x′)〉 ⇐⇒ ∀〈s, s′〉 ∈ R.e · A(s,s′) |=

Σ
(V,V ′)
FOPEQ

φ(x, x′)

Similarly, we evaluate the satisfaction condition of EVT -sentences of the form
〈Init, φ(x′)〉 as follows:
〈A,L,R〉 |=Σ 〈Init, φ(x′)〉 ⇐⇒ ∀s′ ∈ L ·A(s′) |=

Σ
(V ′)
FOPEQ

φ(x′)

Theorem 1 (Satisfaction Condition). Given EVT signatures Σ1 and Σ2, a
signature morphism σ : Σ1 → Σ2, a Σ2-model M2 and a Σ1-sentence ψ1, the
following satisfaction condition holds:

Mod(σ)(M2) |=EVT Σ1
ψ1 ⇐⇒ M2 |=EVT Σ2

Sen(σ)(ψ1)

Proof. Let M2 be the model 〈A2, L2, R2〉, and ψ1 the sentence 〈e, φ(x, x′)〉. Then
the satisfaction condition is equivalent to

∀〈s, s′〉 ∈ R2|σ.e · (A2|σ)(s,s
′)|σ |=FOPEQ

Σ
(V1,V

′
1)

FOPEQ

φ(x, x′)

⇐⇒ ∀〈s, s′〉 ∈ R2.σE(e) ·A(s,s′)
2 |=FOPEQ

Σ
(V2,V

′
2)

FOPEQ

Sen(σ)(φ(x, x′))

Here, validity follows from the validity of satisfaction in FOPEQ. We prove a
similar result for initial events in the same way.

Pragmatics of Specification Building in EVT : We represent an Event-B
specification, such as that for mac1 in Figure 1, as a presentation over EVT .
For any signature Σ, a Σ-presentation is a set of Σ-sentences. A model of a Σ-
presentation is a Σ-model that satisfies all of the sentences in the presentation
[5]. Thus, for a presentation in EVT , model components corresponding to an
event must satisfy all of the sentences specifying that event. This incorporates
the standard semantics of the extends operator for events in Event-B where
the extending event implicitly has all the parameters, guards and actions of the
extended event but can have additional parameters, guards and actions [3].

An interesting aspect is that if a variable is not assigned to within an action,
then a model for the event may associate a new value with this variable. Some
languages deal with this using a frame condition, asserting implicitly that values
for unmodified variables do not change. In Event-B such a condition would cause
complications when combining presentations, since variables unreferenced in one
event will be constrained not to change, and this may contradict an action for
them in the other event. As far as we can tell, the informal semantics for the
Event-B language do not require a frame condition, and we have not included
one in our definition.

3 Relating FOPEQ and EVT

Initially, we defined the relationship between FOPEQ and EVT to be a du-
plex institution formed from a restricted version of EVT (EVT res) and FOPEQ
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where EVT res is the institution EVT but does not contain any FOPEQ compo-
nents. Duplex institutions are constructed by enriching one institution, in this
case EVT res, by the sentences of another, in this case FOPEQ, using an institu-
tion semi-morphism [5, 11]. This approach would allow us to constrain EVT res
by FOPEQ and thus facilitate the use of FOPEQ-sentences in an elegant way.
However, duplex institutions are not supported in Hets [9], and therefore we
opt for a comorphism which embeds the simpler institution FOPEQ into the
more complex institution EVT [11].

Definition 11 (The institution comorphism ρ). We define ρ : FOPEQ →
EVT to be an institution comorphism composed of:
– The functor ρSign : SignFOPEQ → SignEVT which takes as input a FOPEQ-

signature of the form 〈S,Ω,Π〉 and extends it with the set E = {〈Init
ordinary〉} and an empty set of variable names V . ρSign(σ) works as σ on
S, Ω and Π, it is the identity on the Init event and the empty function on
the empty set of variable names.

– The natural transformation ρSen : SenFOPEQ → ρSign; SenEVT which pairs
any closed FOPEQ-sentence (given by φ) with the Init event name to form
the EVT -sentence 〈Init, φ〉. As there are no variables in the signature, we
do not require φ to be over the variables x and x′.

– The natural transformation ρMod : (ρSign)op; ModEVT → ModFOPEQ is
such that for any FOPEQ-signature Σ,

ρMod
Σ (Mod(ρSign(Σ))) = ρMod

Σ (〈A,L,∅〉) = A

Theorem 2. The institution comorphism ρ is defined such that for any Σ ∈
|SignFOPEQ|, the translations ρSenΣ : SenFOPEQ(Σ)→ SenEVT (ρSign(Σ)) and
ρMod
Σ : ModEVT (ρSign(Σ)) → ModFOPEQ(Σ) preserve the satisfaction rela-

tion. That is, for any ψ ∈ SenFOPEQ(Σ) and M ′ ∈ |ModEVT (ρSign(Σ))|
ρMod
Σ (M ′) |=FOPEQΣ ψ ⇐⇒ M ′ |=EVT

ρSign(Σ)
ρSenΣ (ψ) (∗)

Proof. By definition 11,M ′ = 〈A,L,∅〉, ρMod
Σ (M ′) = A and ρSenΣ (ψ) = 〈Init, ψ〉.

Therefore, we transform (∗) into

A |=FOPEQΣ ψ ⇐⇒ M ′ |=EVT
ρSign(Σ)

〈Init, ψ〉

Then, by the definition of satisfaction in EVT (Definition 10)

A |=FOPEQΣ ψ ⇐⇒ A(s′) |=FOPEQ
(ρSign(Σ))

(V ′)
FOPEQ

ψ

We deduce that Σ = (ρSign(Σ))V
′

FOPEQ, since there are no variable names in
V ′ and thus no new operator symbols are added to the signature. As there are
no variable names in V ′, L = {{}}, so we can conclude that A(s′) = A. Thus the
satisfaction condition holds.

For aΣ-specification written over FOPEQ we can use the specification build-
ing operator with ρ : SpecFOPEQ(Σ)→ SpecEVT (ρSign(Σ)) to interpret this
as a specification over EVT [11]. This results in a specification with just the Init
event and no variables, containing FOPEQ-sentences that hold in the initial
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state. This process is used to represent contexts, specifically their axioms, which
are written over FOPEQ as sentences over EVT .

In cases where a specification is enriched with new events, then the axioms
and invariants should also apply to these new events. One approach to this
would require a new kind of EVT -sentence for invariants, which we denote by
〈inv, φ(x, x′)〉, these are applied to all events in the specification when evaluating
the satisfaction condition. We do not present these details fully here due to space
concerns.

3.1 Pushouts and Amalgamation

We ensure that the institution EVT has good modularity properties by proving
that EVT admits the amalgamation property: all pushouts in SignEVT exist and
every pushout diagram in SignEVT admits weak model amalgamation [11].

Proposition 1. Pushouts exist in SignEVT .

Proof. Given two signature morphisms σ1 : Σ → Σ1 and σ2 : Σ → Σ2 a
pushout is a triple (Σ′, σ′1, σ

′
2) that satisfies the universal property: for all triples

(Σ′′, σ′′1 , σ
′′
2 ) there exists a unique morphism u : Σ′ → Σ′′ such that the diagram

on the left below commutes. Our pushout construction follows FOPEQ for the
elements that FOPEQ has in common with EVT . In SignEVT the additional
elements are E and V .

Σ

Σ1

Σ′

Σ2

Σ′′

σ1

σ′
1 σ′

2

σ2

σ′′
1 σ′′

2

u

– Set of 〈event name, status〉 pairs E: The set of
all event names in the pushout is the pushout in
Set on event names only. Then, the status of an
event in the pushout is the supremum of all sta-
tuses of all events that are mapped to it. Since
signature morphisms map 〈Init,ordinary〉 to
〈Init, ordinary〉 the pushout does likewise.
The universality property for E follows from
that of Set.

– Set of sort-indexed variable names V : The set of sort-indexed variable names
in the pushout is the pushout in FOPEQ for the sort components and the
pushout in Set for the variable names. This is a similar construction to the
pushout for operation names in FOPEQ as these also have to follow the
sort pushout. Thus, the universality property for V follows from that of Set
and the FOPEQ pushout for sorts.

Proposition 2. Every pushout diagram in SignEVT admits weak model amal-
gamation.

We decompose this proposition into two further subpropositions:

Proposition 2(a). For M1 ∈ |Mod(Σ1)| and M2 ∈ |Mod(Σ2)| such that
M1|σ1

= M2|σ2
, there exists a model (the amalgamation of M1 and M2) M ′ ∈

|Mod(Σ′)| such that M ′|σ′
1

= M1 and M ′|σ′
2

= M2.

10



Proof. Consider the commutative diagram with signature morphisms σ1, σ2, σ
′
1

and σ′2 below:
M ′ = 〈A′, L′, R′〉

M1 = 〈A1, L1, R1〉

M = 〈A,L,R〉

M2 = 〈A2, L2, R2〉

Mod(σ′
1)

Mod(σ1) Mod(σ2)

Mod(σ′
2)

We construct M ′ = 〈A′, L′, R′〉 as follows. A′ is the FOPEQ-model (amalga-
mation of A1 and A2) over FOPEQ. We construct the initialising set L′ by
amalgamating L1 and L2 to get the set of all possible combinations of variable
mappings, while respecting the amalgamations induced on variable names via
the pushout V ′. We construct the relation R′, which is the amalgamation of R1

and R2, in a similar manner.

Proposition 2(b). For any two model morphisms f1 : M11 →M12 in Mod(Σ1)
and f2 : M21 → M22 in Mod(Σ2) such that f1|σ1

= f2|σ2
, there exists a model

morphism (the amalgamation of f1 and f2) called f ′ : M ′1 → M ′2 in Mod(Σ′),
such that f ′|σ′

1
= f1 and f ′|σ′

2
= f2.

We have omitted this proof but it can be found on our webpage1.

4 Modularising Event-B Specifications

Our definition of EVT allows the restructuring of Event-B specifications using
the standard specification-building operators for institutions [11]. Thus EVT
provides a means for writing down and splitting up the components of an Event-
B system, facilitating increased modularity for Event-B specifications. Figure 4
contains heterogeneous structured specifications corresponding to the Event-B
machine mac1 defined in Figure 1. Since Hets is our target platform, where each
institution is represented as a “logic”, we use its notation and implementation of
the logic for CASL to represent the FOPEQ components of our specifications.
Lines 1–6: TwoBools can be presented as a pure CASL specification, declaring
two boolean variables constrained to have different values.

Lines 7–17: LightAbstract is a specification in the EVT logic for a single
traffic light that extends (using keyword then) TwoBools which is first trans-
lated via the comorphism ρ into a specification over EVT . It contains the events
set go and set stop, with the constraint that a light can only be set to “go”
if its opposite light is not set to “go”. We use “thenAct” in place of the “then”
Event-B keyword to distinguish from the “then” specification-building operator.

Lines 18–32: The specification mac1 combines (using keyword and) two ver-
sions of LightAbstract, each with a different signature morphism (σ1 and σ2)
mapping the specification variables and event names to those in the Event-B
machine. The where notation used on lines 22–32 is just a convenient presenta-
tion of the signature morphisms, it is not part of the syntax of the specification
language that we use in Hets.

1 http://www.cs.nuim.ie/∼mfarrell/extended.pdf
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1 logic CASL
2 spec TwoBools =
3 Bool
4 then
5 ops i go, u go : Bool
6 . ¬ (i go = true ∧ u go = true)

7 logic EVT
8 spec LightAbstract =
9 TwoBools with ρ

10 then
11 Initialisation ordinary
12 thenAct act1 : i go := false
13 Event set go =̂ ordinary
14 when grd1: u go = false
15 thenAct act1: i go := true
16 Event set stop =̂ ordinary
17 thenAct act1: i go := false

18 logic EVT
19 spec mac1 =
20 (LightAbstract with σ1)
21 and (LightAbstract with σ2)
22 where
23 σ1 = {i go 7→ cars go, u go 7→ peds go,
24 〈set go, ordinary〉
25 7→ 〈set cars go, ordinary〉,
26 〈set stop, ordinary〉
27 7→ 〈set cars stop, ordinary〉}
28 σ2 = {i go 7→ peds go, u go 7→ cars go,
29 〈set go, ordinary〉
30 7→ 〈set peds go, ordinary〉,
31 〈set stop, ordinary〉
32 7→ 〈set peds stop, ordinary〉}

Fig. 4: A modular institution-based
presentation corresponding to the ab-
stract machine mac1 in Fig 1.

We get a presentation over the institution EVT for mac1 by flattening out
the structuring. Notice that the specification for each individual light had to be
explicitly written down twice in the Event-B machine in Figure 1 (lines 11–15
and lines 16–20). In our modular institution-based presentation we only need one
light specification and simply supply the required variable and event mappings.
In this way, EVT provides a more flexible degree of modularity than is currently
present in Event-B.

4.1 Refinement in the EVT Institution

Event-B supports three forms of machine refinement: the refinement of event
internals (guards and actions) and invariants; the addition of new events; and
the decomposition of an event into several events [2]. It is therefore essential for
any formalisation of Event-B to be capable of capturing refinement.

In general for institutions, a refinement from an abstract specification A to
some concrete specification C is defined using model-class inclusion as |Mod(C)|
⊆ |Mod(A)| when Sig[A] = Sig[C]. In Event-B, new variable or event names
cannot be added if the signatures stay the same. This provides only one option:
strengthen the formulae in event definitions, which will result in at most the same
number of models. This accounts for the first form of refinement in Event-B. Both
of the other forms of refinement in Event-B cause the signatures to change i.e. the
set of events will get larger when adding or decomposing events. In the case when
the signatures are different, we can define a signature morphism σ : Sig[A] →
Sig[C] from which we can construct the model reduct Mod(σ) : Mod(C) →
Mod(A). We can thus restrict the concrete model to only contain elements of
the abstract signatures by applying the model reduct before evaluating the subset
relation defined above.

4.2 A Modular, Refined Specification

Figure 5 contains a presentation over EVT corresponding to the main elements
of the Event-B specification mac2 presented in Figures 2 and 3. Here, we present
three CASL specifications and three EVT specifications.
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1 logic CASL
2 spec Colours =
3 then
4 sorts
5 free type Colours ::= red|green|

orange

6 spec TwoColours =
7 Colours
8 then
9 ops icol, ucol : Colours

10 . ¬(icol = green ∧ ucol = green)

11 spec BoolButton =
12 Bool
13 then
14 ops button : Bool

15 logic EVT
16 spec LightRefined =
17 TwoColours with ρ
18 then
19 Initialisation ordinary
20 thenAct act1: icol := red
21 Event set green =̂ ordinary
22 when grd1: ucol = red
23 thenAct act1: icol := green
24 Event set red =̂ ordinary
25 thenAct act1: icol := red

26 logic EVT
27 spec ButtonSpec =
28 BoolButton with ρ
29 then
30 Event gobutton =̂ ordinary
31 when grd1: button = true
32 thenAct act1: button := false
33 Event pushbutton =̂ ordinary
34 thenAct act1: button := true

35 spec mac2 =
36 (LightRefined with σ3)
37 and (LightRefined and
38 (ButtonSpec with σ5)with σ4)

39 where
40 σ3 = {i col 7→ cars colour, u col 7→ peds colour,
41 〈set green, ordinary〉
42 7→ 〈set cars green, ordinary〉,
43 〈set red, ordinary〉
44 7→ 〈set cars red, ordinary〉}
45 σ4 = {i col 7→ peds colour, u col 7→ cars colour,
46 〈set green, ordinary〉
47 7→ 〈set peds green, ordinary〉,
48 〈set red, ordinary〉
49 7→ 〈set peds red, ordinary〉}
50 σ5 = {〈gobutton, ordinary〉
51 7→ 〈set green, ordinary〉}

Fig. 5: A modular institution-based presentation corresponding to the refined machine
mac2 specified in Fig 3.

Lines 1–10: We specify the Colours data type with a standard CASL specifi-
cation, as can be seen in Figure 2. The specification TwoColours describes two
variables of type Colours constrained to be not both green at the same time.
This corresponds to the gluing invariants on lines 5 and 7 of Figure 3. The
specification modularisation constructs used in Figure 5, allow these properties
to be handled distinctly and in a manner that facilitates comparison with the
TwoBools specification on lines 1–6 of Figure 4.

Lines 15–25: A specification for a single light is provided in LightRefined

which uses TwoColours to describe the colour of the lights. As was the case
with LightAbstract in Figure 4, the specification makes clear how a single light
operates. An added benefit here is that a direct comparison with the abstract
specification can be done on a per-light basis.

Lines 11–14, 26–34: The specifications BoolButton and ButtonSpec account
for the part of the mac2 specification that requires a button. These details
were woven through the code in Figure 3 (lines 2, 8, 16, 18, 29, 30) but the
specification-building operators allow us to modularise the specification and
group these related definitions together, clarifying how the button actually op-
erates.

Lines 35–51: Finally, to bring this all together we combine a copy of LightRe-

fined with a specification corresponding to the sum (and) of LightRefined

and ButtonSpec with appropriate signature morphisms. This second specifi-
cation combines the event gobutton in ButtonSpec with the event set green

in LightRefined thus accounting for set peds green in Figure 3. One small
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1 refinement REF : Bool to Colours =
2 Bool 7→ Colours,
3 true 7→ green,
4 false 7→ red
5 i go 7→ icol,
6 u go 7→ ucol,
7 〈set peds go, ordinary〉
8 7→ 〈set peds green, ordinary〉,

9 〈set peds stop, ordinary〉
10 7→ 〈set peds red, ordinary〉,
11 〈set cars go, ordinary〉
12 7→ 〈set cars green, ordinary〉,
13 〈set cars stop, ordinary〉
14 7→ 〈set cars red, ordinary〉
15 end

Fig. 6: Defining the refinement relationships between the concrete and abstract presen-
tations.

issue involves making sure that the name replacements are done correctly, and
in the correct order, hence the bracketing on lines 37–38 is important.

The combination of these specifications involves merging two events with
different names: gobutton from ButtonSpec with the event set green from
LightRefined. To ensure that these differently-named events are combined into
an event of the same name we use the signature morphism σ5 to give gobutton

the same name as set green before combining them. Ensuring that the events
have the same name allows the and operator to combine both events’ guards
and actions and the morphism σ4 to name the resulting event set peds green.
The resulting specification also contains the event pushbutton. The labels given
to guards/actions are syntactic sugar to make the specification aesthetically
resemble the usual Event-B notation for guards/actions.

Figure 6 uses the refinement syntax available in Hets to specify each of the
refinements in the specification of the concrete machine mac2:
Lines 2–4: define the data refinement of Bool into Colours, with an appropriate
mapping for the values.

Lines 5–6: define the refinement of the two boolean variables into their corre-
sponding variables of type Colour . In combination with lines 2–4, this corre-
sponds to the gluing invariants on lines 5 and 7 of Figure 3.

Lines 7–14: define the refinement relation between the four events: this corre-
sponds to the refines statements on lines 14, 20, 23 and 27 of Figure 3.

5 Conclusion and Future Work

Currently, the core benefit of EVT , our institution for Event-B, is the increased
modularity of Event-B specifications via the use of specification-building oper-
ators. The concept of refinement, central to Event-B, is also well-developed in
the theory of institutions, and we have shown how this can be applied here. De-
vising meaningful institutions and corresponding morphisms to/from Event-B
provides a mechanism not only for ensuring the safety of a particular specifica-
tion but also, via morphisms, a potential for integration with other formalisms.
Interoperability and heterogeneity are significant goals in the field of software
engineering, and we believe that the work presented in this paper provides a
basis for the integration of Event-B with other formalisms defined in this way.

The Heterogeneous Tool-Set Hets provides a framework for heterogeneous
specifications where each formalism is represented as a logic and understood in
the theory of institutions [9]. Our logic for EVT utilises the already existing
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institution CASL [10] to account for the FOPEQ parts of the EVT institution
thus taking advantage of the interoperability/heterogeneity supplied by Hets.
CASL provides sorts and predicates like those written in lines 4–6 from Figure 4.

At present we can parse, statically analyse and combine specifications written
over EVT . Future work includes developing comorphisms to translate between
EVT and other logics in Hets as well as integrating with the provers currently
available in Hets (e.g. Isabelle). Comorphisms between these theorem provers
and EVT will allow us to prove our specifications correct in Hets. We envisage
that development should take place here to fully take advantage of the prospects
for interoperability. A translation from Event-B to EVT in the future will not
only enable us to fully utilise both the Rodin Platform and Hets, but will also
provide a translational semantics for Event-B using the theory of institutions.
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