M. Volpi and D. Tuia, Dense semantic labeling of sub-decimeter resolution images with convolutional neural networks, IEEE TGRS, vol.55, issue.2, 2017.

E. Maggiori, Y. Tarabalka, G. Charpiat, and P. Alliez, High-Resolution Aerial Image Labeling With Convolutional Neural Networks, IEEE Transactions on Geoscience and Remote Sensing, vol.55, issue.12, 2017.
DOI : 10.1109/TGRS.2017.2740362

URL : http://arxiv.org/pdf/1611.01962

E. Maggiori, Y. Tarabalka, G. Charpiat, and P. Alliez, Can semantic labeling methods generalize to any city? the inria aerial image labeling benchmark, 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2017.
DOI : 10.1109/IGARSS.2017.8127684

URL : https://hal.archives-ouvertes.fr/hal-01468452

O. Ronneberger, P. Fischer, and T. Brox, U-Net: Convolutional Networks for Biomedical Image Segmentation, MICCAI, pp.234-241, 2015.
DOI : 10.1007/978-3-319-24574-4_28

B. Huang, Sampling training images from a uniform grid improves the performance and learning speed of deep convolutional segmentation networks on large aerial imagery, IGARSS, 2018.

B. Huang, Increase the input image size of convolutional segmentation networks during label inference to improve their performance and speed on large aerial imagery, IGARSS, 2018.

G. Mattyus, W. Luo, and R. Urtasun, DeepRoadMapper: Extracting Road Topology from Aerial Images, 2017 IEEE International Conference on Computer Vision (ICCV), 2017.
DOI : 10.1109/ICCV.2017.372

V. Badrinarayanan, A. Kendall, and R. Cipolla, SegNet: A Deep Convolutional Encoder- Decoder Architecture for Scene Segmentation, IEEE TPAMI, vol.3912, 2017.
DOI : 10.1109/tpami.2016.2644615

URL : https://doi.org/10.1109/tpami.2016.2644615

Q. Z. Ye, The signed Euclidean distance transform and its applications, [1988 Proceedings] 9th International Conference on Pattern Recognition, 1988.
DOI : 10.1109/ICPR.1988.28276

K. He, X. Zhang, S. Ren, and J. Sun, Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification, 2015 IEEE International Conference on Computer Vision (ICCV), pp.1026-1034, 2015.
DOI : 10.1109/ICCV.2015.123

URL : http://arxiv.org/pdf/1502.01852