T. Aaltonen, . Adelman, . Akimoto, . González, . Amerio et al., Observation of Electroweak Single Top-Quark Production, Physical Review Letters, vol.10, issue.9, 2009.
DOI : 10.1016/j.physletb.2008.07.018

URL : https://hal.archives-ouvertes.fr/in2p3-00366602

E. Brochu, N. Vm-cora, and . Freitas, A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv preprint arXiv:1012, p.2599, 2010.

R. Calandra, . Seyfarth, M. Peters, and . Deisenroth, Bayesian optimization for learning gaits under uncertainty, Annals of Mathematics and Artificial Intelligence, vol.7, issue.1-2, pp.1-2, 2016.
DOI : 10.1088/1748-3182/7/3/036005

URL : http://spiral.imperial.ac.uk/bitstream/10044/1/24167/2/AMAI.pdf

K. Chatzilygeroudis, . Rama, . Kaushik, . Goepp, J. Vassiliades et al., Black-box data-efficient policy search for robotics, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017.
DOI : 10.1109/IROS.2017.8202137

URL : https://hal.archives-ouvertes.fr/hal-01576683

J. Clune and H. Lipson, Evolving three-dimensional objects with a generative encoding inspired by developmental biology, ECAL, pp.141-148, 2011.

E. Conti, F. Madhavan, . Such, K. Lehman, J. Stanley et al., Improving Exploration in Evolution Strategies for Deep Reinforcement Learning via a Population of Novelty-Seeking Agents, 2017.

A. Cully, . Clune, J. Tarapore, and . Mouret, Robots that can adapt like animals, Nature, vol.26, issue.7553, 2015.
DOI : 10.1038/nrn2332

URL : https://hal.archives-ouvertes.fr/hal-01158243

S. Doncieux, J. Bredeche, A. Mouret, and . Eiben, Evolutionary Robotics: What, Why, and Where to, Frontiers in Robotics and AI, 2015.
DOI : 10.1177/1059712302010003003

URL : https://hal.archives-ouvertes.fr/hal-01131267

A. Forrester and A. Keane, Recent advances in surrogate-based optimization, Progress in Aerospace Sciences, 2009.
DOI : 10.1016/j.paerosci.2008.11.001

URL : https://eprints.soton.ac.uk/65935/1/Forr_09.pdf

A. Gaier, J. Asteroth, and . Mouret, Data-efficient exploration, optimization, and modeling of diverse designs through surrogate-assisted illumination, Proceedings of the Genetic and Evolutionary Computation Conference on , GECCO '17, 2017.
DOI : 10.1109/CVPR.2015.7298640

URL : https://hal.archives-ouvertes.fr/hal-01518698

Y. Jin, A comprehensive survey of fitness approximation in evolutionary computation, Soft Computing, vol.9, issue.1, 2005.
DOI : 10.1007/s00500-003-0328-5

J. Lehman and K. Stanley, Exploiting open-endedness to solve problems through the search for novelty, Proc. of ALIFE, pp.329-336, 2008.

J. Lehman and K. Stanley, Abandoning Objectives: Evolution Through the Search for Novelty Alone, Evolutionary Computation, vol.7, issue.3, pp.189-223, 2011.
DOI : 10.1016/0165-6074(93)90215-7

M. Neuhaus, H. Riesen, and . Bunke, Fast Suboptimal Algorithms for the Computation of Graph Edit Distance, Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR), 2006.
DOI : 10.1007/11815921_17

A. Nguyen, J. Yosinski, and . Clune, Deep neural networks are easily fooled: High confidence predictions for unrecognizable images, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.427-436, 2015.
DOI : 10.1109/CVPR.2015.7298640

URL : http://yosinski.com/media/papers/Nguyen__2014__arXiv__Deep_Neural_Networks_are_Easily_Fooled.pdf

R. Pautrat, J. Chatzilygeroudis, and . Mouret, Bayesian Optimization with Automatic Prior Selection for Data-Efficient Direct Policy Search, Proc. of ICRA, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01768279

R. Pfeifer and J. Bongard, How the body shapes the way we think: a new view of intelligence, 2006.

T. Raiko and M. Tornio, Variational Bayesian learning of nonlinear hidden state-space models for model predictive control, Neurocomputing, vol.72, issue.16-18, 2009.
DOI : 10.1016/j.neucom.2009.06.009

C. Rasmussen and C. Williams, Gaussian Process for Machine Learning, Gaussian Process for Machine Learning, 2006.

K. Riesen and H. Bunke, Approximate graph edit distance computation by means of bipartite graph matching, Image and Vision Computing, vol.27, issue.7, 2009.
DOI : 10.1016/j.imavis.2008.04.004

T. Salimans, . Ho, I. Chen, and . Sutskever, Evolution strategies as a scalable alternative to reinforcement learning, 2017.

A. Sanfeliu and K. Fu, A distance measure between attributed relational graphs for pattern recognition, IEEE Transactions on Systems, Man, and Cybernetics, vol.13, issue.3, pp.353-362, 1983.
DOI : 10.1109/TSMC.1983.6313167

J. Secretan, D. Beato, . B-d-'ambrosio, . Rodriguez, K. Campbell et al., Picbreeder, Proceeding of the twenty-sixth annual CHI conference on Human factors in computing systems , CHI '08, pp.1759-1768, 2008.
DOI : 10.1145/1357054.1357328

B. Shahriari, . Swersky, . Wang, N. Adams, and . Freitas, Taking the Human Out of the Loop: A Review of Bayesian Optimization, Proc. IEEE, 2016.
DOI : 10.1109/JPROC.2015.2494218

N. Srinivas, . Krause, M. Kakade, and . Seeger, Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design, Proceedings of the 27th International Conference on Machine Learning (ICML), 2010.

K. Stanley, Compositional pattern producing networks: A novel abstraction of development. Genetic programming and evolvable machines, 2007.

K. Stanley, R. Bryant, and . Miikkulainen, Evolving neural network agents in the NERO video game, Proc. IEEE, pp.182-189, 2005.

K. Stanley, J. Db-d-'ambrosio, and . Gauci, A Hypercube-Based Encoding for Evolving Large-Scale Neural Networks, Artificial Life, vol.21, issue.2, 2009.
DOI : 10.1109/5.784219

F. Such, . Madhavan, . Conti, K. Lehman, J. Stanley et al., Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative for Training Deep Neural Networks for Reinforcement Learning, 2017.

P. Wawrzynski, Learning to control a 6-degree-of-freedom walking robot Computer as a Tool, EUROCON: The International Conference on, 2007.

S. Whiteson and P. Stone, Evolutionary function approximation for reinforcement learning, Journal of Machine Learning Research, vol.7, pp.877-917, 2006.

X. Zhang, K. Clune, and . Stanley, On the Relationship Between the OpenAI Evolution Strategy and Stochastic Gradient Descent, 2017.