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Using Parameterized Black-Box Priors
to Scale Up Model-Based Policy Search for Robotics

Konstantinos Chatzilygeroudis and Jean-Baptiste Mouret*

Abstract— The most data-efficient algorithms for reinforce-
ment learning in robotics are model-based policy search algo-
rithms, which alternate between learning a dynamical model
of the robot and optimizing a policy to maximize the ex-
pected return given the model and its uncertainties. Among
the few proposed approaches, the recently introduced Black-
DROPS algorithm exploits a black-box optimization algorithm
to achieve both high data-efficiency and good computation
times when several cores are used; nevertheless, like all model-
based policy search approaches, Black-DROPS does not scale
to high dimensional state/action spaces. In this paper, we
introduce a new model learning procedure in Black-DROPS
that leverages parameterized black-box priors to (1) scale
up to high-dimensional systems, and (2) be robust to large
inaccuracies of the prior information. We demonstrate the
effectiveness of our approach with the “pendubot” swing-up
task in simulation and with a physical hexapod robot (48D
state space, 18D action space) that has to walk forward as
fast as possible. The results show that our new algorithm is
more data-efficient than previous model-based policy search
algorithms (with and without priors) and that it can allow a
physical 6-legged robot to learn new gaits in only 16 to 30
seconds of interaction time.

I. INTRODUCTION

Robots have to face the real world, in which trying
something might take seconds, hours, or even days [1].
Unfortunately, the current state-of-the-art learning algorithms
(e.g., deep learning [2]) either rely on the availability of
very large data sets (e.g., 1.2 millions labeled images in
the ImageNet database [3]) or only make sense in simulated
environments (e.g., 38 days of learning for Atari games [4]).
This scarcity of data calls for algorithms that are highly data-
efficient, that is, that minimize the interaction time between
the robot and the world, even if it means a considerable
computation cost.

In reinforcement learning for robotics, the most data-
efficient algorithms are model-based policy search algo-
rithms [5], [6]: after each episode, the algorithm updates a
model of the dynamics of the robot, then it searches for
the best policy according to the model. To improve the
data-efficiency, the current algorithms take the uncertainty
of the model into account in order to avoid overfitting the
model [7], [8]. The PILCO algorithm [7] implements these

*Corresponding author: jean-baptiste.mouret@inria.fr

All authors have the following affiliations:

- Inria, Villers-lés-Nancy, F-54600, France

- CNRS, Loria, UMR 7503, Vandceuvre-les-Nancy, F-54500, France

- Université de Lorraine, Loria, UMR 7503, Vandceuvre-les-Nancy, F-54500, France

This work received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (GA no. 637972,
project “ResiBots™) and the European Commission through the project H2020 AnDy
(GA no. 731540).

A - Real robot

|B - Prior

J

Fig. 1. A. The physical hexapod robot used in the experiments (48D state
space and 18D action space). B. The simulated hexapod that is used as a
prior model for our approach in the experiments.

ideas, but (1) it imposes several constraints on the reward
functions and policies (because it needs to compute gradients
analytically), and (2) it is a slow algorithm that cannot
benefit from multi-core computers (typically about an hour
to complete 15 episodes on the cart-pole benchmark) [8].

The recently introduced Black-DROPS algorithm [8] is
one of the first model-based policy search algorithms for
robotics that is purely black-box and can extensively take
advantage of parallel computations. Black-DROPS achieves
similar data-efficiency to state-of-the-art approaches like
PILCO (e.g., less than 20 s of interaction time to solve the
cart-pole swing-up task), while being faster on multi-core
computers, easier to set up, and much less limiting (i.e., it
can use any policy and/or reward parameterization; it can
even learn the reward model).

However, while Black-DROPS scales well with the num-
ber of processors, the main challenge of model-based policy
search is scaling up to complex problems: as the algo-
rithm models the transition function between full state/action
spaces (joint positions, environment, joint velocities, efc.),
the complexity of the model increases substantially with
each new degree of freedom; unfortunately, the quantity of
data required to learn a good model scales most of the time
exponentially with the dimension of the state space [9]. As a
consequence, the data-efficiency of model-based approaches
greatly suffers from the increase of the dimensionality of the
model. In practice, model-based policy search algorithms can
currently be employed only with simple systems up to 10-
15D state and action space combined (e.g., double cart-pole
or a simple manipulator).

One way of tackling the problem raised by the “curse of



dimensionality” is to use prior information about the system
that is modeled; for instance, dynamic simulators of the robot
can be effective priors and are often available. The ideal
model-based policy search algorithm with priors for robotics
should, therefore:

o scale to high dimensional and complex robots (e.g.,
walking or soft robots);

o take advantage of multi-core architectures to speed-up
computation times;

« perform the search in the full policy space (i.e., the more
real trials, the better expected reward);

« make as few assumptions as possible about the type of
robot and the prior information (i.e., require no specific
structure or differentiable models);

o be able to select among several prior models or to tune
the prior model.

A few algorithms leverage prior information to speed-
up learning on the real system [10], [11], [12], [13], [14],
[15], but none of them fulfills all of the above properties.
In this paper, we propose a novel, purely black-box, flexible
and data-efficient model-based policy search algorithm that
combines ideas from the Black-DROPS algorithm, from
simulation-based priors, and from recent model learning
algorithms [16], [17]. We show that our approach is capable
of learning policies in about 30 seconds to control a damaged
physical hexapod robot (48D state space, 18D action space)
and outperforms state-of-the-art model-based policy search
algorithms without (PILCO [7], Black-DROPS [8]) and with
priors (PILCO with priors [10]), as well as prior-based
Bayesian optimization (IT&E [14]).

II. BACKGROUND
A. Policy Search for Robotics

Model-free policy search (PS) methods have been suc-
cessful in robotics as they can easily be applied in high-
dimensional continuous state-action RL problems [5], [18],
[19]. The PoWER algorithm [20] uses probability-weighted
averaging, which has the property of following the natural
gradient without computing it. The PI? [21] algorithm has
very similar performance with POWER, but puts no con-
straint on the reward function. Natural Evolution Strategies
(NES) [22] and Covariance Matrix Adaptation ES (CMA-
ES) [23] families of algorithms are population-based black-
box optimizers that iteratively update a search distribution
by calculating an estimated gradient on the distribution
parameters (mean and covariance). At each generation, they
sample a set of policy parameters and rank them based on
their expected return. NES performs gradient ascent along the
natural gradient, whereas CMA-ES updates the distribution
by exploiting the technique of evolution paths.

Although, model-free policy search methods are promis-
ing, they require a few hundreds or thousands of episodes
to converge to good solutions [5], [6]. The data-efficiency
of such methods can be increased by learning the model
(i.e., transition and reward function) of the system from
data and inferring the optimal policy from the model [5],

[6]. For example, state-of-the-art model-free policy gradient
methods (e.g., TRPO [19] or DDPG [18]) require more than
500 s of interaction time to solve the cart-pole swing-up
task [18] whereas state-of-the-art model-based policy search
algorithms (e.g., PILCO or Black-DROPS) require less than
20 s [8], [7]. Probabilistic models have been more successful
than deterministic ones, as they provide an estimate about the
uncertainty of their approximation which can be incorporated
into long-term planning [7], [8], [6], [S].

Black-DROPS [8] and PILCO [7] are two of the most data-
efficient model-based policy search algorithms for robot con-
trol. They essentially differ in how they use the uncertainty
of the model and in how they optimize the policy given the
model: PILCO uses moment matching and analytical gradi-
ents [7], whereas Black-DROPS uses Monte-Carlo rollouts
and a black-box optimizer.

Black-DROPS adds two main benefits to PILCO: (1) any
reward function or policy parameterization can be used (in-
cluding non-differentiable policies like finite automata), and
(2) it is a highly-parallel algorithm that takes advantages of
multi-core computers. Black-DROPS achieves similar data-
efficiency to PILCO and escapes local optima faster in stan-
dard control benchmarks (inverted pendulum and cart-pole
swing-up) [8]. It was also able to learn from scratch a high
dimensional policy (neural network with 134 parameters) in
only 5-6 trials on a physical low-cost manipulator [8].

B. Accelerating Policy Search using Priors

Model-based policy search algorithms reduce the required
interaction time, but for more complex or higher dimen-
sional systems, they still require dozens or even hundreds
of episodes to find a working policy; in some systems,
they might also fail to find any good policy because of the
inevitable model errors and biases [24].

One way to reduce the interaction time without learning
models is to begin with a meaningful initial policy (coming
from demonstration or simulation) and then search locally
to improve it. Usually this is done by human demonstration
and movement primitives [25]: a human either tele-operates
or moves the robot by hand trying to achieve the task and
then a model-free RL method is applied to improve the initial
policy [20], [26]. However, these approaches still suffer from
the data inefficiency of model-free approaches and require
dozens or hundreds of episodes to find good policies.

Another way to reduce the interaction time in model-
free approaches is to pre-compute archives/libraries of poli-
cies/controllers [27], [28] and then search online for the one
that works best on the real system [14], [29]. The Intel-
ligent Trial-and-Error (IT&E) algorithm [14] first uses an
evolutionary algorithm called MAP-Elites [30], [31] off-line
to create an archive of diverse and locally high-performing
behaviors and then utilizes a modified version of Bayesian
optimization (BO) [32] to quickly find a compensatory
behavior. Although IT&E can allow, for instance, a damaged
6-legged robot to find a new gait in about a dozen trials
(less than 2 minutes) and a robotic arm to overcome several
blocked joints in a few minutes, it is not searching in the



full policy space and as such there is no guarantee that the
optimal policy can be found.

Reducing the interaction time in model-based policy
search can be achieved by using priors on the models [10],
[11], [12], [13], [33]; i.e., starting with an initial guess of
the dynamics and then learning the residual model. PILCO
with priors [10] and PI-REM [12] are closely related as
they both use the policy search procedure of PILCO. PILCO
with priors uses simulated data to create a Gaussian process
prior, whereas PI-REM uses analytic equations for the prior
model. The main limitation of PILCO with priors is that it
implicitly requires the task to be solved in the prior model
with PILCO (in order to get the speed-up shown in the
original paper [10]). GP-ILQG [11] also learns the residual
model like PI-REM and then uses a modified version of
ILQG [34] to find a policy given the uncertainties of the
model. GP-ILQG, however, requires the prior model to be
differentiable.

C. Model Identification and Learning

The traditional way of exploiting analytic equations is
model identification [35]. Most approaches for model iden-
tification rely on two main ingredients: (a) proper excitation
of the system [36], [35], [37] and (b) parametric models.
Recently, Xie et. al. [38] proposed a method that combines
model identification and RL. More specifically, their ap-
proach relies on a Model Predictive Control (MPC) scheme
with optimistic exploration on a parametric model that is
estimated from the collected data using least-squares.

However, these approaches assume that the analytical
equations can fully capture the system, which is often not the
case when dealing with unforeseen effects like, for example,
complex friction effects or when there exists severe model
mismatch (i.e., no parameters can explain the data) like, for
instance, when the robot is damaged.

A few methods have been proposed to combine model
identification and model learning [16], [17]. Nevertheless,
these methods are based on the manipulator equation ex-
ploiting it in different ways and it is not straight-forward how
they can be used with more complicated robots that involve
complex collisions and contacts (e.g., walking or complex
soft robots).

III. PROBLEM FORMULATION

We consider dynamical systems of the form:
Xep1 = X + F(Xe,up) + W (1

with continuous-valued states x € R and controls u €
RY. i.i.d. Gaussian system noise w, and unknown transition
dynamics F'. We assume that we have an initial guess of the
dynamics, the function M (x;, u;), that may not be accurate
either because we do not have a very precise model of our
system (i.e., what is called the “reality-gap” [39]) or because
the robot is damaged in an unforeseen way (e.g., a blocked
joint or faulty motor/encoder) [14], [40].

Contrary to previous works [11], [16], [17], we assume no
structure or specific properties of our initial dynamics model

Algorithm 1 Model-based policy search with priors

1: Optimize 6" on the prior model according to J(6) and
the initial reward function r
2: Apply policy mg~ on the robot and record data
3. repeat
Learn the immediate reward function r from the
gathered data — if necessary
5: Learn a model that approximates the actual underly-
ing system’s dynamics using the gathered data and the
prior model
6: Optimize 6™ on the model according to .J(0) and the
(learned) reward function r
Apply policy g~ on the robot and record data
8: until Task is solved

M (i.e., we treat it as a black-box function), other than it has
some tunable parameters, ¢,,;, which change its behavior.
Examples of these parameters can be some optimization
parameters (e.g., type of optimizer) of a dynamic simulator
involving contacts and collisions or some internal parameters
of the robot (e.g., masses of the bodies). Finally, we add a
non-parametric model, f (with associated hyper-parameters
@), to model whatever is not possible to capture with M:

X1 = Xg + M (X, 0, ) + f(Xes 0, b)) + W (2)

Our objective is to find a deterministic policy m, u =
m(x|0) that maximizes the expected long-term reward when
following policy 7 for T time steps:

T
J(0) = E[Zr(xt)‘(a] 3)
t=1
where 7(x;) is the immediate reward of being in state x.
We assume that 7 is a function parameterized by 6 € R®.

In model-based policy search with priors, we begin by
optimizing the policy on the prior model (that is, there is no
prior information on the policy parameters) and applying it
on the real system to gather the initial data. Afterwards, a
loop is iterated where we first learn a model using the prior
model and the collected data and then optimize the policy
given this newly learned model (Algo. [I)). Finally, the policy
is applied on the real system, more data is collected and the
loop re-iterates until the task is solved.

IV. APPROACH

A. Gaussian processes with the simulator as the mean func-
tion

We would like to have a model F' that approximates
as accurately as possible the unknown dynamics F' of our
system given some initial guess, M. We rely on Gaussian
processes (GPs) to do so as they have been successfully used
in many model-based reinforcement learning approaches [7],
[8], [41], [42], [5], [40], [6]. A GP is an extension of the
multivariate Gaussian distribution to an infinite-dimension
stochastic process for which any finite combination of di-
mensions will be a Gaussian distribution [43].



As inputs, we use tuples made of the state vector x; and
the action vector uy, that is, X; = (x;,u;) € RETY; as
training targets, we use the difference between the current
state vector and the next one: Ay, = X441 — X¢ € RE.
We use E independent GPs to model each dimension of the
difference vector Ay, . Assuming Dy.; = {F(X1), ..., F(X:)}
is a set of observations and M (X) being the simulator
function (i.e., our initial guess of the dynamics — tunable or
not; we drop the ¢,, parameters here for brevity), we can
query the GP at a new input point X,:

PF(X:)| D1ty %) = N (p(%), 0% (%)) “)

The mean and variance predictions of this GP are computed
using a kernel vector k = k(D1.,X,), and a kernel matrix
K, with entries K% = k(X;,X;):

W) = M%) + kT K~ (Dy.y — M(%1.))
o?(%,) = k(%., %) —kTK 1k (5)

The formulation above allows us to combine observations
from the simulator and the real-world smoothly. In areas
where real-world data is available, the simulator’s prediction
will be corrected to match the real-world ones. On the
contrary, in areas far from real-world data, the predictions
resort to the simulator [14], [11], [40].

This model learning procedure has been used in several ar-
ticles [33], [16], [42] and in particular to learn the cumulative
reward model for a BO procedure highlighted in the IT&E
approach [14]. GP-ILQG [11] and PI-REM [12] formulate a
similar model learning procedure for optimal control (under
model uncertainty) and policy search respectively. GP-ILQG
additionally assumes that the prior model M is differentiable,
which is not always true and might be too slow to perform
via finite differences (e.g., when using black-box simulators
for M). PILCO with priors [10] utilizes a similar scheme
but assumes that the prior model M is a GP learned from
simulation data that is gathered from running PILCO on the
prior system.

We use the exponential kernel with automatic relevance
determination [43] (¢ are the kernel hyper-parameters).
When searching for the best kernel hyper-parameters through
Maximum Likelihood Estimation (MLE) for a GP with a
non-tunable mean function M, we seek to maximize [43]:

P(D1:[X1:, P ) =
D M) TR DM Ga) (g
(2m)" K|

The gradients of this likelihood function can be analytically
computed, which makes it possible to use any gradient based
optimizer (we use Rprop [44]). Since we have E' independent
GPs, we have E independent optimizations. We use the
limbo C++11 library for GP regression [45].

B. Mean functions with tunable parameters

We would like to use a mean function M (X, ¢,,), where
each vector ¢;;, € R"™™ corresponds to a different prior

model of our system (e.g., different lengths of links). Search-
ing for the ¢,, that best matches the observations can be
seen as a model identification procedure, which could be
solved via minimizing the mean squared error; nevertheless,
the GP framework allows us to jointly optimize for the kernel
hyper-parameters and the mean parameters, which allows the
modeling procedure to balance between non-parametric and
parametric modeling. We can easily extend Eq. (6) to include
parameterized mean functions:

p(Dr:tX1:t, P, Par) =
L D MG da) K (DreM(R1yy)
(2m)*| K|
(N
This time, even though we have E independent GPs (one for
each output dimension), all of them need to share the same
mean parameters ¢,, (contrary to the kernel parameters,
which are typically different for each dimension), because the
model of the robot should be consistent in all of the output
dimensions. Thus, we have to jointly optimize for the mean
parameters and the kernel hyper-parameters of all the GPs.
Since most dynamic simulators are not differentiable (or too
slow to differentiate by finite differences), we cannot resort
to gradient-based optimization to optimize Eq. (7)) jointly for
all the GPs. A black-box optimizer like CMA-ES [23] could
be employed instead, but this optimization was too slow to
converge in our preliminary experiments.

To combine the benefits of both gradient-based and
gradient-free optimization, we use gradient-based optimiza-
tion for the kernel hyper-parameters (since we know the
analytical gradients) and black-box optimization for the mean
parameters. Conceptually, we would like to optimize for
the mean parameters, ¢,,, given the optimal kernel hyper-
parameters for each of them. Since we do not know them
before-hand, we use two nested optimization loops: (a) an
outer loop where a gradient-free local optimizer searches for
the best ¢, parameters (we use a variant of the Subplex
algorithm [46] provided by NLOpt [47] for continuous
spaces and exhaustive search for discrete ones), and (b) an
inner optimization loop where given a mean parameter vector
@), a gradient-based optimizer searches for the best kernel
hyper-parameters (each GP is independently optimized since
¢, is fixed in the inner loop) and returns a score that
corresponds to ¢, for the optimal ¢ (Algo. [2).

One natural way of combining the likelihoods of the inde-
pendent GPs to form the objective function of the outer loop
is to take the product, which would be equivalent to taking
the joint probability of the likelihoods of the independent
GPs (since the likelihood is a probability density function).
However, we observed that taking the sum or the harmonic
mean of the likelihoods instead yielded more robust results.
This comes from the fact that the product can be dominated
by a few terms only and thus if some parameters explain
one output dimension perfectly and all the others not as
well it would still be chosen. In addition, in practice we
observed that taking the sum of the likelihoods proved to be
numerically more stable than the harmonic mean.



Algorithm 2 GP-MI Learning process
1: procedure GP-MI(D;.;)
2: Optimize ¢}, according to EVALUATEMODEL(¢,,,
D;.¢) using a gradient-free local optimizer
3: return ¢y,

4: procedure EVALUATEMODEL(¢,,, D1.;)

5. Initialize E GPs fi,....fg as f;(X) ~
N(Mz (5(, d)]\/[)7 kl (i, i)) > M? queries M and returns the i-th
element of the return vector, k; is the kernel function of the i-th GP

6: for ¢ from 1 to E do D> This can also be done in parallel

7: Optimize the kernel hyper-parameters, ¢, of f;
given Dj., assuming ¢,, fixed
Dyt

> Di:t is the ¢-th column of

®

llkZ = p(Dit|i1t7 ¢2K7 d)M)
9: return 37 | lik;

> Eq. (7)

D> Sum of the independent likelihoods

Our model learning approach, which we call GP-MI
(Gaussian Process Model Identification), that combines non-
parametric model learning and parametric model identifica-
tion is related to the approach in [16], but there are some
key differences between them. Firstly, the model learning
procedure in [16] depends on the manipulator equation and
cannot easily be used with robots that do not directly comply
to the equation (one example would be the hexapod robot in
our experiments or a soft robot with complex dynamics),
whereas GP-MI imposes no structure on the prior model,
other than providing some tunable parameters (continuous
or discrete). Furthermore, the approach in [16] is tied to
inverse dynamics models and cannot be used with forward
models in the general case (necessary for long-term forward
predictions); on the contrary, GP-MI can be used with inverse
or forward dynamics models and in general with any black-
box tunable prior model.

C. Policy Search with the Black-DROPS algorithm

We use the Black-DROPS [8] algorithm for policy search
because it allows us to use the type of priors discussed
in Section [IV-B| and to leverage specific policy parame-
terizations that are suitable for different cases (e.g., we
use a neural network policy for the pendubot task and an
open-loop periodic policy for the hexapod). We assume no
prior information on the policy parameters and we begin
by optimizing the policy on the prior model. Moreover,
we took advantage of multi-core architectures to speed-
up our experiments. Contrary to Black-DROPS, PILCO [7]
cannot take advantage of multiple core{] and the need for
deriving all the gradients for a different policy/reward makes
it difficult (or even impossible) to try new ideas/policies.

To take the uncertainties of the model into account, the
core idea of Black-DROPS is to avoid to compute the
expected reward of policy parameters, which is what most

For reference, each run of PILCO with priors (26 episodes + model
learning) in the pendubot task took around 70 hours on a modern computer
with 16 cores, whereas each run of Black-DROPS with priors and Black-
DROPS with GP-MI took around 15 hours and 24 hours respectively.

approaches do and is usually either computationally expen-
sive [48] or requires some approximation to be made [7].
Instead it treats each Monte-Carlo rollout as a noisy mea-
surement of a function G(0) that is the actual function
J(6) perturbed by a noise N (@) and tries to maximize its
expectation:

E[G(6)] =E[J(6)+ N(6)] =E[J(6)] +E[N ()]
= J(9) + E[N(H)} (since E[]E[x]} —E[z]) (8)

We assume that E[N(0)] = 0 for all § € R® and therefore
maximizing E[G(0)] is equivalent to maximizing J(0) (see
Eq. ). The second main idea of Black-DROPS, is to use a
population-based black-box optimizer that (1) can optimize
noisy functions and (2) can take advantage of multi-core
computers. Here we use BIPOP-CMAES [23], [8].

PI-REM [12] is close to our approach as it leverages
priors to learn the residual model and then performs policy
search on the model. However, PI-REM assumes that the
prior information is fixed and cannot be tuned, whereas our
approach has the additional flexibility of being able to change
the behavior of the prior. In addition, PI-REM utilizes the
policy search procedure of PILCO that can be limiting in
many cases as already discussed. Nevertheless, as Black-
DROPS and PILCO have been shown to perform similarly
when PILCO’s limitations are not present [8], we include
in our experiments a variant of our approach that resembles
PI-REM (Black-DROPS with priors).

V. EXPERIMENTAL RESULTS
A. Pendubot swing-up task

We first evaluate our ap-
proach in simulation with the
pendubot swing-up task. The
pendubot is a two-link under-
actuated robotic arm (with
lenghts [y, ls and masses
m1, mo) and was introduced
by [49] (Fig. ). The inner
joint (attached to the ground)
exerts a torque |u| < 3.5, but
the outer joint cannot (both
of the joints are subject to Fig. 2.
some friction with coefficients by, by). The system has four
continuous state variables: two joint angles and two joint
angular velocities. The angles of the joints, #; and 6o,
are measured anti-clockwise from the upright position. The
pendubot starts hanging down and the goal is to find a policy
such that the pendubot swings up and then balances in the
upright position. Each episode lasts 2.5 s and the control rate
is 20 Hz. We use a distance based reward function as in [8].

We chose this task because it is a fairly difficult problem
and forces slower convergence on model-based techniques
without priors, but not too hard (i.e., it can be solved without
priors in reasonable interaction time); a fact that allowed
us to make a rather extensive evaluation with meaningful

The pendubot system
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Fig. 3. Results for the pendubot task (30 replicates of each scenario). The lines are median values and the shaded regions the 25" and 75" percentiles.
See Table [[| for the description of the priors. Black-DROPS with GP-MI always solves the task and achieves high rewards at least as fast as all the other
approaches in all the cases that we considered. Black-DROPS with MI achieves good rewards whenever the parameters it can tune are the ones that are
wrong (A,B,C) and bad rewards otherwise (D). Black-DROPS with priors performs very well whenever the prior model is not too far away from the real
one (A,B) and not so well whenever the prior is misleading (C). Black-DROPS with priors and MI have very similar performance in A and as such are
not easily distinguishable. IT&E and PILCO with priors are not able to reliably solve the task across different prior models.

Variable Actual Tunable & Tun'able ‘Tunaple &. Panially.
Useful Prior Prior Misleading Prior ~ Tunable Prior
m; 05 | s 05 05 A
m2 03 03 (50(‘;7i§cr,) 03 (302;3:15ecr,)
[ 0.5 0.5 0.5 0.5 0.5
l2 05 (20"2.1:(:1‘.) 0.5 (5020-2dsecr.) 0.5
non—tbulnable 01 01 01 0.1 (100”7(5).decr.)
non—tblfnable 01 01 01 0.1 (100‘7?'decr.)
TABLE 1

ACTUAL SYSTEM AND PRIORS FOR THE PENDUBOT TASK.

comparisons (4 different prior models, 7 different algorithms,
30 replicates of each combination). We assume that we have
4 priors available; we tried to capture easy and difficult cases
and cases where all the wrong parameters can be tuned or not
(see Table[l): Tunable & Useful: a fully tunable prior that is
very close to the actual one; Tunable: a fully tunable prior
that is not very close to the actual; Tunable & Misleading:
a prior that can be fully tuned, but is very far from the actual;
Partially tunable: a prior that cannot be fully tuned, but not
very far from the actual.

We compare 7 algorithms: 1. Black-DROPS [8]; 2. Black-
DROPS with priors, which is close to PI-REM [12] and GP-
ILQG [11 3. Black-DROPS with GP-MI (our approach);
4. Black-DROPS with MI (Black-DROPS where model
learning is replaced by model identification — via mean
squared error); 5. PILCO [7]; 6. PILCO with priors [10];
7. IT&E [14].

For Black-DROPS with GP-MI and the MI variant, we
additionally assume that the parameters mq, mo, I3 and [y
can be tuned, but the parameters b; and b, are fixed and
cannot be changed. Since the adaptation part of IT&E is
a deterministic algorithm (given the same prior) and our
system has no uncertainty, for each prior we generated

2The algorithm in this specific form is first formulated in this paper (i.e.,
the Black-DROPS policy search procedure with a prior model), but, as
discussed above, it is close in spirit with GP-ILQG [11] and PI-REM [12].
Therefore, we assume that the performance of Black-DROPS with priors
is representative of what could be achieved with PI-REM and GP-ILQG,
although Black-DROPS with priors should be more effective because it
performs a more global search [8].

30 archives with different random seeds and then ran the
adaptation part of IT&E once for each archive. We used 3
equally spread in time end-effector positions as the behavior
descriptor for the archive generation with MAP-Elites. For
all the Black-DROPS variants and for IT&E we used a neural
network policy with one hidden layer (10 hidden neurons)
and the hyperbolic tangent as the activation function.
Similarly to IT&E, since PILCO with priors is a determin-
istic algorithm given the same prior, for each prior we ran
PILCO 30 times with different random seeds on the prior
model (for 40 episodes in order for PILCO to converge to a
good policy and model) and then ran PILCO with priors on
the actual system once for each different model. We used
priors both in the policy and the dynamics model when
learning in the actual system (as advised in [10]). We also
used a GP policy with 200 pseudo-observations [7
Black-DROPS with GP-MI always solves the task and
achieves high rewards at least as fast as all the other
approaches in the cases that we considered (Fig. [3). Black-
DROPS with MI performs very well when the parameters it
can tune are the ones that are wrong (Fig. E]A,B,C), and badly
otherwise (Fig. 3D — i.e., no parameters of the prior model
can explain the data). Black-DROPS with priors performs
very well whenever the prior model is not far away from the
real one (Fig. ,B) and not so well whenever the prior is
misleading (Fig. 3IC). Both Black-DROPS and PILCO cannot
solve the task in less than 65 s of interaction time, but Black-
DROPS shows a faster learning curve (Fig. [3).
Interestingly, PILCO with priors is not able to always
achieve better results than Black-DROPS and is always worse
than Black-DROPS with priors. This can be explained by
the fact that PILCO without priors learns slower than Black-
DROPS and is a more local search algorithm and as such
needs more interaction time to achieve good results. On the
contrary, Black-DROPS uses a modified version of CMA-ES
that can more easily escape local optima [8]. Moreover, the
initial prior model for PILCO with priors is an approximated
model, whereas Black-DROPS with priors uses the actual

3These are the parameters that come with the original code of PILCO.
We used the code from: https://bitbucket.org/markjcutler/gaussian-process.



prior model to begin with. Lastly, the GP policy, that PILCO
is mainly used witlﬂ creates really high dimensional policy
spaces compared to the simple neural network policy that
Black-DROPS is using (i.e., 1400 vs 81 parameters) and as
such causes the policy search to converge slower.

IT&E is not able to reliably solve the task and achieve
high rewards. This is because IT&E assumes that (a) the
system is redundant enough so that the task can be solved
in many different ways and (b) there is a policy/controller in
the pre-computed archive that can solve the task (i.e., IT&E
cannot search outside of this archive) [14]. Obviously, these
assumptions are violated in the pendubot scenario: (a) the
system is underactuated and thus does not have the required
redundancy, and (b) the system is inherently unstable and
as such precise policy parameters are needed (it is highly
unlikely that one of them exists in the pre-computed archive).

B. Physical hexapod locomotion

We also evaluate our approach on the hexapod locomotion
task as introduced in the IT&E paper [14] with a physical
robot (Fig. ). This scenario is where IT&E excels and
achieves remarkable recovery capabilities [14]. We assume
that a simulator of the intact robot is available (Fig. f];
for GP-MI we also assume that we can alter this simulator
by removing 1 leg of the hexapod (i.e., there are 7 discrete
different parameterizations). This simulator is not accurate
as we assume perfect velocity actuators and infinite torque.
Each leg has 3 DOF leading to a total of 18 DOF. The state of
the robot consists of 18 joint angles, 18 joint velocities, a 6D
Center Of Mass (COM) pose (position and orientation) and
6D COM velocities. The policy is an open-loop controller
with 36 parameters that outputs 18D joint angles every 0.1s
and is similar to the one used in [14]. Each episode lasts 4 s
and the robot is tracked with a motion capture system.

The task is to find a policy to walk forward as fast
as possible. Due to the complexity of the problenﬂ we
only compare 2 algorithms (IT&E and our approach) on 2
different conditions: (a) crossing the reality-gap problem; in
this case our approach cannot mostly rely on the identifi-
cation part and the importance of the GP modeling will be
highlighted, and (b) one rear leg is removed; the back leg
removals are especially difficult as most effective gaits of the
intact robot rely on them.

The results show that Black-DROPS with GP-MI is able
to learn highly effective walking policies on the physical
hexapod robot (Fig. ). In particular, using the dynamics
simulator as prior information Black-DROPS with GP-MI
is able to achieve better (and with less variance) walking
speeds than IT&E [14] on the intact physical hexapod
(Fig. BJA). Moreover, in the rear-leg removal damage case
Black-DROPS with GP-MI allows the damaged robot to walk
effectively after only 16 to 30 seconds of interaction time

4So far, PILCO can only be used with linear or GP policy types [7].

SWe use the DART simulator [50].

SPILCO and Black-DROPS could not find any solution in preliminary
simulation experiments even after several minutes of interaction time and
Black-DROPS with priors was worse than Black-DROPS with GP-MI.

Black-DROPS with GP-MI
A. Reality gap

IT&E
B. Rear-leg removal
0.25
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Fig. 4. Results for the physical hexapod locomotion task (5 replicates of
each scenario). The lines are median values and the shaded regions the 25"
and 75" percentiles. A. Improving a policy for the intact robot (crossing
the reality gap): Black-DROPS with GP-MI finds a highly-effective policy
(about 0.22m/s) in less than 30 seconds of interaction time, whereas IT&E
is not able to substantially improve the initial policy. B. Rear-leg removal
damage case: Black-DROPS with GP-MI allows the damaged robot to walk
effectively after only 16 to 30 seconds of interaction time and finds higher-
performing policies than IT&E (0.21m/s vs 0.15m/s in the 8t episode).

and finds higher-performing policies than IT&E (0.21m/s
vs 0.15m/s in the 8" episode) (Fig. ).

Overall, Black-DROPS with GP-MI was able to success-
fully learn working policies even though the dimensionality
of the state and the action space of the hexapod robot is 48D
and 18D respectively. In addition, in the rear leg damage
case, Black-DROPS always tried safer policies than IT&E
that too often executed policies that would cause the robot
to fall over. A video of our algorithm running on the damaged
hexapod is available at the supplementary video (also at
https://youtu.be/HFkZkhGGzTo).

VI. CONCLUSION AND DISCUSSION

Black-DROPS with GP-MI is one of the first model-based
policy search algorithms that can efficiently learn with high-
dimensional physical robots. It was able to learn walking
policies for a physical hexapod (48D state and 18D action
space) in less than 1 minute of interaction time, without any
prior on the policy parameters (that is, it learns a policy
from scratch). The black-box nature of our approach along
with the extra flexibility of tuning the black-box prior model
opens a new direction of experimentation as changing priors,
robots or tasks requires minimum effort.

The way we compute the long-term predictions (i.e., by
chaining model predictions) requires that predicted states (the
output of the GPs) are fed back to the prior simulator. This
can cause the simulator to crash because there is no guarantee
that the predicted state, that possibly makes sense in the real
world, will make sense in the prior model; especially when
the two models (prior and real) differ a lot and when there are
obstacles and collisions involved. This also holds for most
other prior-based methods [11], [12], [10], but it is not easily
seen in simple systems. On the contrary, we observed this
phenomenon a few times in our hexapod experiments. Using
the prior simulator just as a reference and not mixing prior
and real data is a direction of future work.


https://youtu.be/HFkZkhGGzTo

Finally, Black-DROPS with GP-MI brings closer trial-
and-error and diagnosis-based approaches for robot damage
recovery. It successfully combines (a) diagnosis [51] (i.e.,
identifying the likeliest robot model from data), (b) prior
knowledge of possible damages/different conditions that a
robot may face and (c) trial-and-error learning.

APPENDIX

Code for replicating the experiments: nttps://github.com/

resibots/blackdrops.
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