. Geocluster, Server-side clustering for mapping in Drupal based on Geohashat/files/geocluster-thesis-dabernig.pdf 3. Geographic midpoint

S. Ahern, M. Naaman, R. Nair, and J. H. Yang, World explorer, Proceedings of the 2007 conference on Digital libraries , JCDL '07, 2007.
DOI : 10.1145/1255175.1255177

A. Amirkhanyan, F. Cheng, and C. Meinel, Real-time clustering of massive geodata for online maps to improve visual analysis, 2015 11th International Conference on Innovations in Information Technology (IIT), pp.308-313, 2015.
DOI : 10.1109/INNOVATIONS.2015.7381559

A. Amirkhanyan and C. Meinel, Visualization and analysis of public social geodata to provide situational awareness, 2016 Eighth International Conference on Advanced Computational Intelligence (ICACI), pp.68-73, 2016.
DOI : 10.1109/ICACI.2016.7449805

A. Amirkhanyan and C. Meinel, Analysis of data from the Twitter account of the Berlin Police for public safety awareness, 2017 IEEE 21st International Conference on Computer Supported Cooperative Work in Design (CSCWD), 2017.
DOI : 10.1109/CSCWD.2017.8066696

A. Amirkhanyan and C. Meinel, Analysis of the Value of Public Geotagged Data from Twitter from the Perspective of Providing Situational Awareness, pp.545-556
DOI : 10.1007/978-3-642-36973-5_30

URL : https://hal.archives-ouvertes.fr/hal-01702145

M. Ankerst, M. M. Breunig, H. Peter-kriegel, and J. Sander, Optics: Ordering points to identify the clustering structure, pp.49-60, 1999.

D. Birant and A. Kut, ST-DBSCAN: An algorithm for clustering spatial???temporal data, Data & Knowledge Engineering, vol.60, issue.1, pp.208-221, 2007.
DOI : 10.1016/j.datak.2006.01.013

B. De-longueville, R. S. Smith, and G. Luraschi, "OMG, from here, I can see the flames!", Proceedings of the 2009 International Workshop on Location Based Social Networks, LBSN '09, pp.73-80, 2009.
DOI : 10.1145/1629890.1629907

L. Duan, D. Xiong, J. Lee, and F. Guo, A local density based spatial clustering algorithm with noise, Systems, Man and Cybernetics, 2006. SMC '06. IEEE International Conference on, pp.4061-4066, 2006.

M. Ester, H. Peter-kriegel, S. , J. Xu, and X. , A density-based algorithm for discovering clusters in large spatial databases with noise, pp.226-231, 1996.

S. Kisilevich, F. Mansmann, M. Nanni, and S. Rinzivillo, Spatio-temporal clustering, pp.855-874, 2010.
DOI : 10.1007/978-0-387-09823-4_44

M. Parimala, D. Lopez, and N. Senthilkumar, A survey on density based clustering algorithms for mining large spatial databases, 2011.

A. Ram, S. Jalal, A. S. Jalal, and M. Kumar, A Density Based Algorithm for Discovering Density Varied Clusters in Large Spatial Databases, International Journal of Computer Applications, vol.3, issue.6
DOI : 10.5120/739-1038

A. Sakai, K. Tamura, and H. Kitakami, A new density-based spatial clustering algorithm for extracting attractive local regions in georeferenced documents, Proceedings of the International MultiConference of Engineers and Computer Scientists, pp.360-365, 2014.

T. Sakai, K. Tamura, and H. Kitakami, Density-based adaptive spatial clustering algorithm for identifying local high-density areas in georeferenced documents, 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp.513-518, 2014.
DOI : 10.1109/SMC.2014.6973959

T. Sakaki, M. Okazaki, and Y. Matsuo, Earthquake shakes Twitter users, Proceedings of the 19th international conference on World wide web, WWW '10, 2010.
DOI : 10.1145/1772690.1772777

S. Singh, Spatial temporal analysis of social media data

K. Tamura and T. Ichimura, Density-Based Spatiotemporal Clustering Algorithm for Extracting Bursty Areas from Georeferenced Documents, 2013 IEEE International Conference on Systems, Man, and Cybernetics, pp.2079-2084, 2013.
DOI : 10.1109/SMC.2013.356

M. Walther and M. Kaisser, Geo-spatial Event Detection in the Twitter Stream, Proceedings of the 35th European Conference on Advances in Information Retrieval, pp.356-367978, 2013.
DOI : 10.1007/978-3-642-36973-5_30