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A stochastic data-based traf c model applied to
vehicles energy consumption estimation

Arthur Le Rhun, Fedéric Bonnans, Giovanni De Nunzio, Thomas Leroy, Pierre Martinon

Abstract—A new approach to estimate trafc energy con- depict the reality either from a macroscopic point of view,
sumption via trafc data aggregation in (speed,acceleration) hased on the road vehicular densjty [5], or from a microscopic
probability distributions is proposed. The aggregation is done perspective, based on the description of the instantaneous

on each segment composing the road network. In order to - . _
reduce data occupancy, clustering techniques are used to obtain behavior of each vehicle [6]. Both approaches have limita-

meaningful classes of traf ¢ conditions. Different times of the day tions in providing an accurate energy consumption estimation.
with similar speed patterns and traf ¢ behavior are thus grouped Macroscopic models typically provide average traf ¢ speeds to

together in a single cluster. Different energy consumption models compute energy consumption| [7], thus neglecting the impact

based on the aggregated data are proposed to estimate the energyyt sneeq yctuations due to congestion. Higher precision of
consumption of the vehicles in the road network. For validation

purposes, a microscopic traf c simulator is used to generate the energy consumption est_lmatlc_)n C_OU|d only be obtained at
the data and compare the estimated energy consumption to the the expense of a denser discretization of the road network,
measured one. A thorough sensitivity analysis with respect to the therefore compromising scalability. Microscopic models could
parameters of the proposed method (i.e. number of clusters, size achieve precise energy consumption estimation, but they re-
of the distributions support, etc.) is also conducted in simulation. q,,ire 5 signi cant calibration and validation effort. Also, the
Finally, a real-life scenario using oating car data is analyzed to .

4 computational burden and the amount of collected data grows

evaluate the applicability and the robustness of the propose . . .
method. rapidly with the size of the network, therefore these models

Index Terms—Traf ¢ modeling, Clustering, Energy Consump- are more suitable for off-line use.
tion On the other hand, data-based models rely on collected traf c
information to estimate traf ¢ behavior and energy consump-
tion. Instantaneous models are able to precisely estimate

. ] energy consumption by using large amounts of data, generally
I N 2015, according to data from the European Environmege measured driving pro le of each vehicle. To tackle this

Agency, road transportation contributed to 21% of total ELBrawback, aggregated models use the average value of the
28 greenhouse gas emissions. In order to meet the long-tgfBasured speed proles to compute energy consumption,
emissions reduction target, emissions from transportation nggd they suffer from the same accuracy problems previously
to fall by more than two thirds by 2050][1]. These emissiongiscussed for the macroscopic traf ¢ models. Furthermore, the
are essentially a function of the vehicle propulsion technologyta sparsity and availability is an issiié [8]. Other approaches
and the driving style{ [2]. try to solve the problem of the data sparsity by simply

Estimating energy consumption of the vehicles is a greg ssifying road segments by category (e.g. urban, arterial,
challenge in the objective of improving global transportatiOﬂeeway, etc.), in order to associate each category with a typical
ef ciency, since this information is used in energy managgmergy use. This type of models may lead to inaccuracy in
ment, eco-routing, eco-driving, traf ¢ management, ... Traf Gpergy consumption estimation, as road segments belonging
congestion has a major impact on the driving behavior, agd the same category may show very different traf ¢ patterns
thus plays a key role in the level of fuel consumptidh [3]. .

Therefore, accurate predictions of vehicles energy consumpy, this work, a new way to represent trafc behavior on

tion must take traf ¢ conditions into account. To perform thig, e road networks is proposed. The objective of this model
objective, faithful modeling of traf ¢ behavior is of primary 5 o accurately depict the effect of trafc conditions on

importance. Energy-oriented modeling approaches can be s vehicles energy consumption in each road segment. The
vided in two main categories. _ key idea is to use a statistical approach based on vehicle
On the one hand, several mathematical trafc models aieed and acceleration data, measured from real vehicles. In
available nowadays, see for instarice [4]. Such models typicalfrticular, the entire observation time during which speed and

A. Le Rhun, IFP Energies nouvelles, 1 avenue de Boim@r92852 Rueil- acceleration data are collected is subdivided into time-frames.
Malmaison, Francegrthur.le-rhun@inria.fr During each time-frame a (speed,acceleration) distribution is

G. De Nunzio, IFP Energies nouvelles, Rond-point Cﬁ:mangeur de generated’ and such a distribution is then used as an |nput
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T. Leroy, IFP Energies nouvelles, 1 avenue de BoisaBr 92852 Rueil- for an energy cpnsumptlon model to estimate the Frafc
Malmaison, Francethomas.leroy@ifpen.fr energy consumption on the analyzed road segment during the
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I. INTRODUCTION



The proposed model also includes the possibility of resegments and time-frames, we obtain a totdllgNt discrete
ducing the dimension of the traf c data and increasing scatlistributions of support siz&lyNa. Fig[] shows an example
ability, by applying clustering techniques to the probabilitpf such a distribution.
distributions of each road segment. For instance, the different
distributions representing trafc in one road segment ove %
different hours of the day may be aggregated in cluste oos |
modeling only signi cant traf c conditions (e.g. peak, off-
peak, etc.). 3

The paper is organized as follows. The clustering techniqé”-03 7
and the proposed energy consumption model are presentef ooz -|
Sectior{1l. The traf c data collection and the model validatiot
procedure are discussed in Secfiof Ill. Using traf ¢ data frot
the simulator SUMO, Sectidn ]V illustrates the method rs 02; T =
on a single road segment, then for a larger set of segmei 1816 14 12 086,
Finally, section ¥ presents an application of the method SPEED (M) ACCELERATION (m.s2)
actual traf c data, as well as a comparison to a more basic
approach, using only mean speeds.

0.04 —
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0.01 —

45 -35-25-15-0505 15 25 35 45

Fig. 1. Example of (speed,acceleration) distribution.

[l. PROPOSEDMETHOD
A. Road segments C. K-means clustering with strong patterns

In the following, the road network is assumed to be For each segmens and time-framet;s we have a
subdivided into a collection obegmentsA segment is a Probability distribution 5. When considering large road
portion of road with homogeneous topographic characteristig¥tworks with several thousands of segments, the data size
Segments are typically delimited by network elements su@fows rapidly to several gigabytes. A natural idea is to
as traf ¢ lights, crossroads, or roundabouts. With a traf ¢educe the information through clustering techniques applied
simulator such as SUMO we can retrieve the segments fréththese distributions. Then, for each clusterwe can take
the simulator model, sée TVJA. When working on actual traf dts barycenter ; as representative of the trafc conditions
data, segments can be obtained from Geographic Informatieh all the segment/time-frame pai(s;tis) that belong to
Systems (GIS) data (e.g. OpenStreetMap, HERE Maps, et#ljs cluster. This way, we only have to store the distributions
Segments length typically range between a few meters angagresponding to the barycenters of the clusters.
few hundreds meters. In the following we den&ehe set of
road segments, of sizds. Since the elements to be clustered are probability distribu-
tions, we use the 1-Wasserstein distance ( [10]] [11]). This
distance based on optimal transport theory tends to preserve
the geometrical aspects (shapes) of the distributions. We recall

The consumption of an engine depends on its operatifigt de nition of the Wasserstein distance:
point, which can be determined by the speed and acceleration Wi(: )= min d
of the vehicle. The key point in our method is to assume that an e 20 ) 1)
;]C:l:rr:]}i E:V:r:hb;ezztreiiéof;r:srﬁé consum_ptmn_) dgscrlptlon %/%ere ( ; ) is the set of transportation plans fromto

probability distributions o . . T 2
. I.e. the set of nonnegative matricesof size (jNvj j Naj)
measured speedsand accelerationa for each road segment.

. . oA -
Note that these distributions do not retain the temporality E'*'th mar_gmals 1 and 1 ; As speed and
acceleration have comparable magnitude orders when
the speed pro les. : : . .
. expressed in Sl units, we simply de ne the displacement cost
We setNt the number of time-frames for each segrfient . . L
) : d by the Euclidean norm between the origin and destination
We denote the family of time-frameftis)a..n,) @:Ns)s

and their length( Tis)@::n,) @:ns)- FOr each segmers, points.

we record the (speed,acceleration) of all the vehicles passingl_he notion of barycenter for distributions has been extended

through the se_gment during 6?” th_e tlme-frgmgss. : . to the Wasserstein distance in [12], where the barycenter
In the following, we work with discrete distributions in the. S L
(v:a) space. We denoty and A the sets of feasible cedS de ned as the distribution that minimizes the sum of
' pace. heedy, squared Wasserstein distances to all distributions of the

and acceleration. To simplify, these sets are taken |dent|%%sr. For the practical aspects we follow [13] in which the

for all segments and time-frames, thus all (speed,accelerati%g ycenter minimizes the sum &% distances, withV an

discrete probability distributions have the same support Ehtropic regularization of the Wasserstein distance, computed
V  A. We denoteNy and N, the discretization size of P 9 ' P

and A. Recalling thatNs and Nt are the number of road by a Sinkhorn-type algorithm.

B. Probability distribution for (speed,acceleration)

1For the sake of simplicity, we assume the same number of time-frames\Ne use the K-means algorithm [:14] to compute the clusters,
for all the segments and notek the (xed) number of clusters. To reduce the



sensitivity of the K-means algorithm to the initial guess, windeed, using here the average time would give identical
use the strong patterns methpd|[15]. Strong patterns are subsetssumption for every vehicle. Therefore, we need some
whose elements always end up in the same cluster regardi@sse statistically signi cant time information in order to
of the K-means starting point. In practice, we run a rst batchapture the deviation of the consumption distribution. A
of K-means with random initializations to identify the strongesulting drawback of this method is that a faster vehicle has
patterns, and then perform a nal K-means which is initialized shorter travel time and thus a lower energy consumption,
by taking one element in each of tkdargest strong patterns. which may seem unrealistic.

The principle of the K-means is recalled in Algorithir 1.

2) Memoryless Sampling methodin the second method
the energy consumption is still obtained by integrating the
instantaneous power, but we do not use the average power.
Instead, we implement the idea that the vehicle must follow
the traf ¢ at every time, in a statistical sense. More precisely,

Algorithm 1: K-means algorithm
Input : Distributions to be clustered; |
Output: Clusters barycenters; K

Initialization its speed and acceleration should follow the probability distri-
for j 2f1;:::kg do _ bution of the barycenter of the cluster for the current pair
| i chooserandomlyiny (s;t). Another difference is that the integration is performed

Iterate until convergence
Initialize barycenter backup§ 0

Backup all barycenters 8 2f1;:::5kg
for each distribution ; do

Find the closest barycenter.
L Label ; as part of clustec

Update all cluster barycenters; 8fj 2 1:::kg

over the segment lengths instead of travel time.

So the Memoryless Sampling method generates a sequence
of (vh;ay), independent samples according to the probability
distribution . Setting a time stept, we use this sequence
to integrate both the traveled distance and the instantaneous
power. We assumd = 1s, in order to have the same order
of magnitude as the reaction time of a driver. We stop the
generation of(v,;a,) when the vehicle reaches the end of

the segmerff} Since the distance will be covered in a nite

the consumption writes as
D. Computing energy consumption X
puting energy P P(Vn;an) t (4)

C =
The energy consumption computed is the energy at MM n=1
the wheel, neglecting the losses due to the powertrain.
The instantaneous power at the wheel is denoted as a )
general functionP(v;a), which can be for instance of” POWer and Reference energy consumption
the form presented in[]5). The ultimate objective of the Inorder to assess the accuracy of our two methods (Average
proposed method is to estimate energy consumption by usiigl Memoryless Sampling), both based on the statistical
only the information extracted from thév;a) probability representation of trafc, we introduce a “reference” energy
distributions . More accurately, we seek to obtain the energgonsumption for the sake of comparison. First we choose a
consumption from the barycenter of the cluster containing Simple equation for the instantaneous pow€; a), neglect-
. In the following we introduce two methods to compute th#g all road slope effects:
consumption of a generic vehicle passing through a segment. P(v;a) = (ma+ a2+ a;v + ag)v (5)

These will be referred to as “Average Consumption Method” , i i
and “Memoryless Sampling Method”". wherem is the vehicle mass anah; a;;a, de ne a vehicle-

dependent polynomial approximation of the road-load force.
We use the numerical values = 1400kg, ag = 185:4, a; =
0, a; = 0:3, corresponding to a passenger vehicle| [16]. We
would like to point out that energy consumption models are a
P( ()= ((v;a)P(v;a) (2) wide topic, and we refer interested readers for instance 1o [17].
vV A In our case we essentially want to compare the consumptions
gom raw traf c data and statistically processed data, so the key
oint is to use the same power expression for all consumption
rmulas. In all the following, these energy consumpti@s
computed by integratir@he instantaneous powBralong
(speed,acceleration) pro les, without taking into account

1. VALIDATION APPROACH

1) Average Consumption methodhe rst idea is to use
the average powdP (in the probabilistic sense)
X

where  is the barycenter of the cluster containing th
current segment at time The barycenter may indeed chang
if t crosses different time-frames while the vehicle is o ;
the segment. This average power is integrated over the tir&é3
interval [t;; t; ] spent by the vehicle on the segment, thus N ) .
7 any regenerative braking, namely
ts t
CAvg = P( t)dt (3) C=

t; ti
Note that_ know!e_dge of the time interval Is_reqUIr_Ed_ In _thIS 2which happens with probability 1 since vehicles never stop inde nitely.
method, in addition to the (speed,acceleration) distributionssi, practice integration is done by the Euler scheme.

max(0; P (v(t); a(t)))dt (6)



In order to compare the different methods, we compu  °®#| %
the distribution of the energy consumptions for a given (se o
ment,timeframe):

- the Reference energy distributi@kes is obtained by plug-
ging into [§) the recorded speed and accelerafioft); a(t))

of all vehicles passing through the segment during the tim
frame, according to the traf ¢ simulator.

- for the Average and Memoryless Sampling methods, v
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Fig. 2: Jensen-Shannon divergence for a noised Gaussian
B. Indicators distribution with base parameters= =1.

Since our aim is to compare distributions of energy con-
sumptions, we study several indicators.

Mean and Standard deviation errors are classical indic
tors. We compute these relative errors as follows, wil
Cmethod  denoting either the Average consumption or th
Memoryless Sampling consumption:

n (S) - Crethod  (S) Crer (8)

mean

o
©
T

o
o
T

CUMULATIVE PROBABILITY

Cref (S) 041
" (S) — _Cmethod (s) Cref (s)
) ) Crer (S) ) 02}
Kullback-Leibler divergence|[18], also called 'relative
entropy', is a particular case of-divergence. KL di- 0 ‘ ‘ ‘ ‘
. 0 200 400 600 800 1000
vergence can be used to measure distances between LENGTH (m)

probability distributionsP and Q, however it is not a fig. 3: An illustration of cumulative distribution of the length

metric (no triangular inequality or symmetry). Anothegf road segments in city of Luxembourg as implemented in
drawback is that it cannot be computed for instance when;sT for SUMO.

the probability of the moded) is 0 while the probability
of the reference is not.
Pi )

X
KL (PjQ)=  pilog(— (7) with 18322 segments. The length of these road segments is
i 9 shown on Fig[B.
Instead, we use the Jensen-Shannon divergence, whickrom the simulation raw data (5.7GB), we extract the seg-
is a symmetrized version of KL divergence, sometimgsent, speed, and acceleration of each vehicle in the network at
referred to as 'total divergence to the average| [19]. Notll time steps. We aggregate the records for a xed time-frame
that the square root of the JS divergence is a metric callE@hgth ts; (in practice we use a constant frame lengthfor

JS distance[[20]/[21]. Fig2 illustrates the JS divergen@dl segments). This is done both to gather suf cient data on the
on a Gaussian with noised parameters. segments, and to decrease the number of traf ¢ distributions

1 1 for the clustering phase. For instance a time-frame of 1h will

JS(PjQ) = oKL (PjM) + oKL (QIM)  (8) give 24 distributions per segment, while 10 min gives 144

distributions per segment. In the following all codes are written

Ll 1 1 in Python/NumPy and run on a standard desktop computer.
M=:>P+=Q 9
2 2
Here, we have® = Cmetnod andQ = Crer - B. Numerical results on one segment

To begin with, we compare the different consumptions on
a single road segment. The objects compared are therefore
A. Traf ¢ Data from simulation the consumptions distributions of all the vehicles that went

We illustrate our approach with data obtained from théarough the segment during each time-frame. Results are
traf ¢ simulator SUMO [22]. The simulation runs the scenarishown as the cumulative distribution function of the consump-
LUST 23], which models a 24h traf ¢ in the city of Luxem-tions for all time-frames.
bourg. The time step is set to one second, i.e. 1 Hz samplingVe analyze in particular the inuence of the
frequency for the variables of the vehicles. For the rogdpeed,acceleration) discretization, the clustering, and the
segments we take the subdivision from the scenario, consistitwice of time-frame duration. Unless speci ed otherwise, the
of roughly 24000 elements. We aggregate contiguous rodi$tributions are shown for a discretizatioh, = N = 10,
lanes together to obtain more data per segment, and endauiime-frame t = 10min, taking the full set of distributions

IV. RESULTS WITH SIMULATED TRAFFIC DATA



without clustering.

1) Inuence of the (speed,acceleration) discretiza
First, Figi4 shows the consumption distribution for bc
Average method and Memoryless Sampling method. '
the discretizationdNy = N = 10;20 and 30 and comg
to the reference consumption. We see that for the Men
Sampling method: i) the general shape of the distribt
similar to the reference and ii) nefv;a) discretizations ¢
distributions closer to the reference. On the other ha
the Average method: i) we observe some linearization ui uie

consumption and ii) the effect of discretization is much ledgg. 5: Cumulated consumption distribution for one segment
signi cant. - effect of the time-frame duration.

parameters while keeping reasonable computational times, we
pick a test set of 500 random segments, for which we perform
the clustering and compute the energy consumption with the
Average and Memoryless methods. For each segment, we use
the indicators de ned iff TT-B to compare the computed energy
consumptions to the Reference consumption. We discuss the
relevance of the models based on the distributions of these in-
dicators on the set of segments. More precisely, we investigate
the in uence of the discretization of speed and acceleration,
Fig. 4: Cumulated consumption distribution for one segmeffd the number of clusters. Unless specied otherwise, the
- effect of (v;a) discretization and clustering. Referencé'mmat'or?s use a speed anq accelergtlon discretizations of 20
consumption (blue line) is recomputed along each vehiciePs, & time-frame of 10 minutes, with 2 clusters.
speed/acceleration pro le. The two graphs show the consump-l) Inuence of speed discretization: The speed
tions estimated by the memoryless sample and the averaigcretization has a direct inuence over the barycenters
consumption methods. We compare several settings for ggmputed by the K-means, since it changes the support of
speed/acceleration discretization, as well as the numbertld¢ distribution obtained. We expect a ner discretization
clusters. to give computed consumptions (Average and Memoryless
Sampling methods) closer to the Reference ones. The obvious
drawbacks are an increased cost of the barycenter computation

fzr)1 IT uen;]:e fththE? timfe -frame:Ner::_(thvx{e thud_y th_e effeclt and size of the distributions. We teNt, = 5, 10; 20 steps for
of the e_ngt of the time-frame t'.W Ich Is the time !nterva the discretization, the speed interval be{g20] in m=s.
over which we aggregate the vehicles data. Longer time-frames

may cause some over-averaging and loss of specic trafc . .
y ging P Relative mean and standard deviation errors

mfgrmaﬂgn. On the other hand, shor.ter time-frames may Iea\s{le begin with the distribution over the 500 test segments of
to insuf cient vehicle data (for statistical relevance), and als

increase the number df/;a) distributions to handle. Fid.| 5 the mean and standard error (both relative). F1g. 6a[afd 6b

shows the energy consumptions obtained for time-frames (gpper grgphs) show the errors between the_ Reference energy
consumption and the Memoryless Sampling method. The

5s, Imin and 10min. On this segment, for both the Average

. . mean and standard error both appear to be reasonably well

and the Memoryless Sampling methods, the in uence of the ) 7

. . céntered around 0. We also observe that ner discretizations

time-frame duration seems rather small. of the speed clearly improve the standard error, possibly due
3) In uence of the clustering:To conclude this rst batch P yimp ' P y

. ; X to a better reconstruction of the travel times. On the other
of results, we examine the information loss due to the clust%r- ) . " .
. ) . . and the mean error is shifted towards positive values, and is
ing stage. The consumptions obtained using only the barycen-

) . .7 “indeed smaller for 10 steps than 20.
ters (green and cyan curves in Fig.4) are almost identical to
the ones obtained without the clustering stage. This indicates

that the data reduction performed by the clustering comes with19- [63 a”d@ (lower graphs) compare the Average
a negligible loss of information. method consumptions to the Reference. Here the mean error

is almost always negative, and the standard error is also
. negative for 80% of the segments. This strong unbalance
C. Numerical results on 500 segments towards the negative indicates that the Average method

Now, we consider the entire road network of the city ofends to underestimate the consumption. Increasing the
Luxembourg, as implemented inulST, with' 18000 road speed discretization reduces the mean error, but does not
segments. In order to study the inuence of the differemeally improve the standard error. A possible explanation is
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g P (c) Cumulated distribution of Jensen-Shannon divergence.
Fig. 7: Acceleration discretization.
the fact that the travel time for each vehicle is taken from
the simulation, thus the speed discretization has no effect on it. Relative mean and standard deviation errors

Fig[74 shows the mean error distribution for the two methods,
Jensen-Shannon Divergence with different discretizations od. We observe that for both the
Fig.[6¢ shows the distribution over the 500 segments of tidemoryless and Average methods, going from 5 to 10 steps
Jensen-Shannon divergence. Upper graph is for the Mengfves a signi cant improvement, while 20 steps is similar to
ryless Sampling versus Reference, and lower graph is fod. With a suf cient discretization, the mean error is extremely
Average method versus Reference. We observe that thegéod for the Average method. The Memoryless method, on the
divergence is much smaller overall for the Memoryless Sarother hand, tends to slightly overestimate the consumption.
pling than the Average method, with distributions more con- Fig[7h shows the standard error distributions. As observed
centrated towards zero. For both methods, increasing the spegdthe speed discretization, error for the Memoryless is
discretizations from 5 to 10 steps improves the JS divergenegll balanced while Average method has mostly negative
while 20 steps yield very little additional gain. standard errors. Finer discretizations afseem to give no
2) Inuence of acceleration discretizationlNow we study improvement for the standard error. This may be due to the
the discretization of the acceleration. As for the speed, tHact that acceleration has no in uence on the travel time for
parameter in uences the support of tife;a) distributions, either method, unlike speed which is used to reconstruct the
and therefore the K-means clustering. We want to know if neravel times in the Memoryless method.
discretizations ofa give more accurate energy consumptions
for the Average and Memoryless Sampling methods. We test Jensen-Shannon Divergence
Na = 5;10;20 steps for the discretization, the acceleratioRig. [7¢ shows the distribution of the Jensen-Shannon
interval being[ 4:5;4:5]in ms 2. divergence when varying the discretization afLike in the



. N . Nyia t k HIST BARY  CPU
;peed discretization study, we observe that the J.S divergence ) 04149 MB—15 MB—25mn
is much smaller overall for the Memoryless Sampling method. 10 10min 4 | 127 MB 5.6 MB 1.9h
Once again, for both methods increasing from 5 to 10 steps ig éOhmin j 25? ’\'\:g 512 mg 97-5_9h
i i i i H HY . min
improves the indicator, while 20 steps give no additional 10 1h 4| 30MB E6MB  30min
bene t. 10 10min 4 | 127MB 56MB  1.9h
10 1min 4 | 661MB 56MB  7.5h

3) Inuence of the number of cluster€ur traf c model 10 1I0min 2 | 127MB 2.8 MB  55min

; . ) 10 10min 3 | 127MB 42MB  1.4h

uses clustering techniques to reduce the size of the traf ¢ data, 10 10min 4 | 127MB 56MB  1.9h
while retaining the useful information. One would expect some 10 10min 10| 127MB 14 MB  4.8h

kind of trade-off, where using a larger number of clusters

would keep more information at the expense of data size. TABLE I: Inuence of parameters on CPU time and data
For this particular segment, simulations with= 2;3;4 size (HISTograms before clustering and BARYcenters after).

clusters give almost identical consumption distributions. Nofeataset is 10% of the total 18322 segments of the Luxembourg

that these simulations were run for a time-frame = 1h, Scenario, with raw size about 480MB.

due to the increased computational cost for 3 and 4 clusters.

It remains to be seen whether a smaller time-frame would ) )

benet more from a higher number of clusters. Also, thétd error r_egardles_s of the pz_arameters choice. Therefore, in

ideal number of clusters is most likely segment-dependefii® following sections we will focus on the Memoryless

Experiments with real data in Sdc] V give more insight intB'€th0d:

the impact of the number of clusters. ] ) )
For the 1-day simulation on the whole city of Luxembourg,

the raw data corresponding to the 18322 segments take up

4) Summary and performance analysisGenerally P :
5.7GB. Table]]l indicates the data size before ('HIST')

speaking, increasing the speed, acceleration, ti . ' - )
discretization and the number of clusters will improv@nd after (BARY’) clustering, as well as the CPU time for

the accuracy of the whole approach. However, this comes d{§ clustering, for a 10% subset of the 18322 segments. For
cost, and some parameters have more impact than others. fife Whole dataset, with a discretizatiy = Na = 10
detailed in uence of the method parameters is as follows: and @ time-frame t = 10min the histograms for the

- speed/acceleration discretization: greatr improves the (spegd,acceleratlon) distributions are computed in Ie_ss than
Memoryless method indicators except mean error, and thaMin and amount to 1.2GB. Settiig= 4, the clustering

Average method except std error. Greakéx improves all step takes 19h and the distributions for the barycenters
indicators except std error for Average method. occupy 59MB. Taking the histograms already reduces data

- time-frame  t: seems to bring little improvement to bothOCcupancy by 79%, and clustering pushes it to 99% in total.
methods with this data set. More generally, the data reduction done by the histograms

- number of cluster: for this data set, seems to have litldS related to the speed/acceleration discretization, while the
effect overall as well. clustering further reduces data size according to the ratio
k= t. Memory usage during the computations was about

The drawbacks of each of these parameters are: 100MB and posed no dif culties. It should be noted that the

- ner speed/acceleration discretizations come at the cost gf'Stering is an ofine step that only has to be done once.
increased data occupancy (before and after clustering) £Ng9: it is independent for all segments and may benet
higher CPU time for the clustering. heavily from parallelization.

- smaller time-frames increase data occupancy before
clustering, clustering CPU time, and the risk of not having, " the end, we observe that the range of parameters that

enough data on the segments for the distributions to Y€ @ reasonable trade-off between accuracy, data size and
meaningful. computation times is rather small, which limits the interest

- a larger number of clusters leads to a higher data occupaffyf¥ing sophisticated techniques to deduce some ‘optimal
after clustering, and clustering CPU time. settings. The number of clustekss discussed again [n]V. As
’ fortheNy ; N discretization, possible improvements could be

Overall. the validation indicates that the Memoryles@r instance the kind of adaptive exploration described in [24],

method has an acceptable mean error and a good std erpg)q)yided the.overall cqst of the e_xploration QOes |_’10t putweight

while the Average method has a very good mean error ghe cost of simply taking a suf cient xed discretization.

a bad std error. The JS divergence is harder to interpret

but is lower for the Memoryless method (with half of the V. RESULTS USING REAL DATA

distribution below 0.025) than the Average method (half of Thanks to oating car data collected by the smartphone

the distribution below 0.125). application Geco ail [25], we were able to test our method on a

real-life scenario. We focused on a portion of the A7 highway

At the core, we are interested in making use of theear Lyon, France, which is known to be regularly used by

statistical information from the traf c distributions. In thiscommuters. For our analysis, the traf ¢ data collected during

respect, the Average method appears too limited, with a b working days of the last two years were aggregated as they



were recorded over one day, reasonably assuming that the datdviean speed method

share similar trafc patterns. The speed measurements Werg-yrthermore, we decide to compare our statistical model
then divided into 10-minutes time-frames. The Memorylesg;sed on (speed,acceleration) distributions, to a simpler ap-
method is applied to the 1632 collected speed pro les. Thgoach using only mean speeds, available from tools such as
discretization of the (speed,acceleration) space is limited 3ERE or Google Maps. Notings; the mean speed for a
a10 10 grid to reduce the computation time. One of thgjen pair (segment,timeframe), we compute a basic estimate

main goal of our method is to represent traf c with a smaljf the energy consumptioBay gs With a constant speed and
number of (speed,acceleration) distributions, thus we choqQg§§| acceleration

to explore the traf c representation with a number of clusters

. . P(vst;0)L
between 1 and 10. As we did with the data from SUMO, we Caves = M (10)
will compare the consumption distribution of the Memoryless Vst
methodCy sy to the reference consumptio@xes . Taking our set of (speed,acceleration) pro les from section

[V} we recompute the mean speed information. We show on
Fig.[9 the probability distributions for the reference consump-
A. Clustering impact tion, memoryless method and mean speed method. We observe
that the memoryless results are closer to the reference, with
The choice of the number of clustekss related to a trade- relative errors '(mean = 4:6%" = 24:4%) better than
off between data size, computational time and accuracy of tfve ... = 22:7% " = 43:6%) for the mean speed method.
consumption estimate. A small number of clusters will reduce
the data occupancy and CPU time, with the risk of a coarser
consumption estimate. A largdt will give consumptions
closer to the unclustered raw data, at the cost of increased
data size and CPU time. Figl 8 shows the mean and standard
deviation errors between the consumption distributiGrg;
and Cysm , for a number of clusterk 2 1; 10, as
well as the unclustered case (dashed line). We see that the
mean error is below 5%, and further decreases below 2%
for k = 2;3;4 clusters, while largek have larger errors.
Concerning the standard deviation, it is below and appears
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globally decreasing witk. The few quirks in the curve may be i /
due to some lingering sensitivity of the barycenter computation °s . ) . . . . 7
to the initialization. In the following, we seét = 4 clusters ENERGY CONSUMPTION () x10°

since this value gives a good trade-off. The discussidn i V4. 9: Probability distributions of energy consumption. Refer-
shows the link between the clusters and the traf c Condmonénce (b|ue) VS Memory|ess Samp"ng method (red) and mean

and sheds some light on why a small number of clusters seeggged method (yellow). The mean and std are indicated for
optimal, since typical traf c conditions likely encompass onlyhe 3 discrete distributions.

a limited number of situations (uid, jammed, etc).

C. Analysis of the 4-cluster case

In the following we focus on the 4-cluster case that seems
: to offer a good trade-off between model size and accuracy.
On Fig.[1I0 we plot the subset of speed pro les belonging to
R e each of the 4 clusters. We observe that these speed pro les
MEMORYLESS (K CLUSTERS) do appear rather similar in each cluster. Clusters 1 to 3
correspond to relatively smooth traf ¢ conditions, with little
speed variations, 2 being the fastest, followed by 1 then 3.
Cluster 4, on the other hand, obviously corresponds to a traf ¢
jam situation, with large variations in speed and frequent drops
T T R TR SO LA T to null speeds.

Fig.[1] represents the same 4 subsets of pro les for each
Fig. 8: Memoryless sampling method. Relative mean erréluster in the (speed,acceleration) space. This representation
and standard deviation for different numbers of clusters con rms that the (speed,acceleration) distributions are quite
Errors for the unclustered data and the mean speed metléfinct for each cluster. The level sets on each graph corre-
are indicated as well. The valle= 4 seems to be a goodspond to the distribution of the barycenter of the cluster, and
choice in terms of errors and Computationa| cost. we observe that the barycenters coincide rather well with the
pro le subsets. Furthermore, we can interpret the clusters in
terms of traf ¢ conditions, as summarized on Tgb. II.

MEAN ERROR
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Fig. 12: Traf c clusters according to the time of day.

0 200 400
Distance (m) Distance (m)
Cluster 3 Cluster 4 D. Summary

The analysis conducted on real data con rms that repre-
senting traf c by means of (speed,acceleration) distributions
is effective not only to estimate the energy consumption
distributions in different portions of the road network but also
to identify different traf c conditions. Also, clustering proves

to be an effective method to reduce data occupancy.
0 200 400 200 400 . .
Distance (m) Distance (m) The cluster stage ts its role, allowing us to keep a reason-

able data size while retaining most of the useful information
Fig. 10: Speed pro les associated with the clusters.  from the original set o{v;a) pro les.

Speed (km/h)
Speed (km/h)

VI. CONCLUSIONS

In this paper, we have presented a new approach to use
traf ¢ data to predict the energy consumption of vehicles.
The key point is to consider the (speed,acceleration) data in
a statistical sense without the temporal aspect, coupled with a
decomposition of the road network into a collection of small
segments, based on topological aspects.

Numerical experiments carried out with traf c data gen-
erated by the traf c simulator SUMO indicate that our ap-
proach is able to reconstruct the distribution of the energy
consumption over a set of vehicles. We introduce two meth-
ods to compute the energy consumption, called Average and
Memoryless Sampling methods. The Memoryless Sampling
method gives a more accurate estimate of the distribution of
energy consumptions, according to indicators such as std error
and Jensen-Shannon divergence.

Fig. 11: Real distributions compared to their cluster. We also investigate the in uence of several parameters such
as the (speed,acceleration) discretization, length of time-frame
TABLE II: Traf ¢ Interpretation for da_ta aggregation, and number of clusters for the data
reduction.
Cluster | Mean Speed| Speed Spread Acceleration | Interpretation The analysis on real data shows that the Memoryless
1 Medium Important Small Normal . .
5 High Low Small Fluid Sampling method performs better than_ a more baS|c_ approach
3 Low Low Small Dense based on mean speed only. Another interesting point is that
4 Very low High Well spread | Trafcjam  the clusters are consistent with the traf ¢ conditions.

Possible future works include a second level of clustering,

. L creating clusters of road segments with close traf ¢ conditions,
In order to see whether the traf ¢ interpretation is coherer&tnd variants of the Memoryless Sampling method that would

with rea_hty, _the clugters a}ssouated with e"?‘Ch time-frame WE/&ain some temporality (e.g. Markov). Another direction could
plottgd n F'g'@’. in which the grey portions corre.spond Be to investigate the possible coupling of the presented model
the time-frames with not enough data for the analysis. We cgp, approaches in ow management such as the SS-CTM in
observe _that the clgster 3, corresponding to a dense traf 56], since both use a spatial decomposition and account for
appears in the morning between 7am and 9:30am. The Cluétffi"chastic aspects of the traf c.

4, traf c jam, is present essentially between 4:30pm and 8pm.

Cluster 1, normal traf ¢ conditions, during the day and cluster

2, uid conditions, during the night. Overall, this traf c pattern REFERENCES
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