
HAL Id: hal-01774944
https://inria.hal.science/hal-01774944

Submitted on 24 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Comingle: Distributed Logic Programming
for Decentralized Mobile Ensembles
Edmund Lam, Iliano Cervesato, Nabeeha Fatima

To cite this version:
Edmund Lam, Iliano Cervesato, Nabeeha Fatima. Comingle: Distributed Logic Programming
for Decentralized Mobile Ensembles. 17th International Conference on Coordination Languages and
Models (COORDINATION), Jun 2015, Grenoble, France. pp.51-66, �10.1007/978-3-319-19282-6_4�.
�hal-01774944�

https://inria.hal.science/hal-01774944
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Comingle: Distributed Logic Programming for
Decentralized Mobile Ensembles?

Edmund S. L. Lam, Iliano Cervesato and Nabeeha Fatima

Carnegie Mellon University
sllam@andrew.cmu.edu, iliano@cmu.edu and nhaque@andrew.cmu.edu

Abstract. Comingle is a logic programming framework aimed at simplifying the
development of applications distributed over multiple mobile devices. Applica-
tions are written as a single declarative program (in a system-centric way) rather
than in the traditional node-centric manner, where separate communicating code
is written for each participating node. Comingle is based on committed-choice
multiset rewriting and is founded on linear logic. We describe a prototype target-
ing the Android operating system and illustrate how Comingle is used to program
distributed mobile applications. As a proof of concept, we discuss several such
applications orchestrated using Comingle.

1 Introduction

Distributed computing, the coordination of independent computations to achieve a de-
sired objective, has become one of the defining technologies of modern society. We rely
on it every time we use a search engine like Google, every time we make a purchase on
Amazon, in fact every time we use the Internet. In recent years, mobile distributed com-
puting has taken off thanks to advances in mobile technologies, from inexpensive sen-
sors and low-energy wireless links to the very smartphones we carry around: apps talk
to each other both within a phone and across phones, connected devices work together
to make our homes safer and more comfortable, and personal health monitors combine
sensor data into a picture of our well-being. Each such system constitutes a decentral-
ized mobile application which orchestrates the computations of its various constituent
nodes. As such applications gain in sophistication, it becomes harder to ensure that they
correctly and reliably deliver the desired behavior using traditional programming mod-
els. Specifically, writing separate communicating programs for each participating node
becomes more costly and error-prone as the need for node-to-node coordination grows.

In this paper, we introduce Comingle, a framework aimed at simplifying the de-
velopment of distributed applications over a decentralized ensemble of mobile devices.
Comingle supports a system-centric style of programming, where the distributed be-
havior of an application is expressed as a single program, rather than the traditional

? This work was made possible by grant JSREP 4-003-2-001, Effective Parallel and Distributed
Programming via Join Pattern with Guards, Propagation and More, from the Qatar National
Research Fund (a member of the Qatar Foundation). The statements made herein are solely
the responsibility of the authors.

node-centric style mentioned above. This system-centric view underlies popular frame-
works such as Google Web Toolkit [7] (for client-server web development) and Map
Reduce [4] (for parallel distributed algorithms on large-scale computing clusters). In
earlier work [9,10], we generalized this approach to a much broader class of distributed
computations by relying on a form of logic programming to orchestrate interactive dis-
tributed computations [9,10]. Comingle specializes this work to distributed applications
running on mobile devices. Comingle is based on committed-choice multiset rewriting
extended with explicit locality [9] and multiset comprehension patterns [10]. This pro-
vides declarative and concise means of implementing distributed computations, thus
allowing the programmer to focus on what computations to synchronize rather than
how to synchronize them. The present work extends [9] by introducing triggers and
actuators to integrate the Comingle multiset rewriting runtime with traditional code
from mainstream mobile development frameworks (specifically Java and the Android
SDK). This allows a developer to marry the best of both programming paradigms, us-
ing Comingle to orchestrate distributed computations among devices and traditional
native code for computations within a device (e.g., user interface functionalities, local
computations). The main contributions of this paper are as follows:

– We detail the semantics of Comingle, in particular the use of triggers and actuators
as an abstract interface between Comingle and a device’s application runtime.

– We describe a prototype implementation of Comingle, a runtime system imple-
mented in Java and integrated with the Android SDK.

– As a proof of concept, we show three case-studies of distributed applications or-
chestrated by Comingle on the Android SDK.

The rest of the paper is organized as follows: we illustrate Comingle by means of an
example in Section 2. In Section 3, we introduce its abstract syntax and its semantics,
while Section 4 outlines our compiler and runtime system for the Android SDK. In
Section 5, we examine three case-study applications implemented in Comingle. We
discuss related works in Section 6 and make some concluding remarks in Section 7.
Further details can be found in a companion technical report [12].

2 A Motivating Example

Figure 1 shows a simple Comingle program that lets two generic devices swap data
that they each possess on the basis of a pivot value P and displays on each of them
the number of items swapped, all in one atomic step. This program gives a bird eye’s
view of the exchanges that need to take place — it is system-centric. Our prototype will
then compile it into the node-centric code that needs to run at each device to realize this
behavior. The high-level Comingle program in Figure 1 relies on a few functionalities
expressed using the devices’ native programming support (Java and the Android SDK
in our case). Specifically, these functionalities are the two local functions, size and
format, imported in lines 1-4, and the code associated with triggers and actuators
(see below). This low-level code (not shown) implements purely local computations.

In Comingle, devices are identified by means of a location and a piece of infor-
mation held at location ` is represented as a located fact of the form [`]p(~t) where

2

1 module comingle.lib.ExtLib import {
2 size :: A -> int,
3 format :: (string,A) -> string
4 }
5

6 predicate swap :: (loc,int) -> trigger.
7 predicate item :: int -> fact.
8 predicate display :: string -> actuator.
9

10 rule pSwap :: [X]swap(Y,P),
11 { [X]item(I) | I -> Is. I <= P },
12 { [Y]item(J) | J -> Js. J >= P }
13 --o [X]display(format("Received %s items from %s", (size(Js),Y))),
14 [Y]display(format("Received %s items from %s", (size(Is),X))),
15 { [X]item(J) | J <- Js }, { [Y]item(I) | I <- Is }.

Fig. 1. Pivot Swap, orchestrated by Comingle

p is a predicate name and ~t are terms. The program in Figure 1 mentions two generic
locations, X and Y, and uses the three predicates declared on lines 6-8. A located fact
of the form [`]swap(`′, P) represents `’s intent to swap data with device `′ based on
the pivot value P , fact [`]item(I) indicates that value I is held at location `, while
[`]display(S) represents a message S to be shown on `’s screen. From a system-
centric perspective, the set of all located facts defines the rewriting state of the system.
The rewriting state evolves through the application of Comingle rules and indirectly by
the effect of the local computation of each device.

Lines 10-15 in Figure 1 define a Comingle rule called pSwap. We call the comma-
separated expressions before “--o” the rule heads, while the expressions after it are
collectively called its body. Informally, applying a Comingle rule to the current state
rewrites an instance of its head into the corresponding instance of its body. Rule heads
and body can contain parametric facts such as [X]swap(Y,P), where X, Y and P
are variables, and comprehension patterns which stand for a multiset of facts in the
rewriting state. In our example, the comprehension pattern {[X]item(I) | I ->
Is. I <= P} identifies all of X’s items I such that I <= P. Similarly, all of Y’s
items J such that J >= P are identified by {[Y]item(J) | J -> Js. J >=
P}. The instances of I and J matched by each comprehension pattern are accumulated
in the variables Is and Js, respectively. Finally, these collected bindings are used in
the rule body to complete the rewriting by redistributing all of X’s selected data to Y and
vice versa, as well as invoking the appropriate display messages on X’s and Y’s screen.

Facts such as item(I) are meaningful only at the rewriting level. Facts are also used
as an interface to a device’s local computations. Specifically, facts like [`]swap(`′, P)
are entered into the rewriting state by a local program running at ` and used to trigger
rule applications. These trigger facts, which we underline as [`]swap(`′, P) for em-
phasis, are only allowed in the heads of a rule. Dually, facts like [`]display(S) are
generated by the rewriting process for the purpose of starting a local computation at `,

3

Locations: ` Terms: t Guards: g Standard / trigger / actuator predicates: ps, pt, pa

Standard facts Fs ::= [`]ps(~t) Triggers Ft ::= [`]pt(~t) Actuators Fa ::= [`]pa(~t)

Facts f, F ::= Fs | Ft | Fa

Head atoms h ::= Fs | Ft

Head expressions H ::= h | *h | g+~x∈t

Comingle rule R ::= H \H|g (B

Body atoms b ::= Fs | Fa

Body expressions B ::= b | *b | g+~x∈t

Comingle program P ::= R

Local state: [`]ψ

Rewriting state St ::= F Application state Ψ ::= [`]ψ Comingle state Θ ::= 〈St ;Ψ〉

Fig. 2. Abstract Syntax and Runtime Artifacts of Comingle

here displaying a message on `’s screen. This is an actuator fact, which we underline
with a dashed line, as in [`]display (S), for clarity. Each actuator predicate is as-
sociated with a local function which is invoked when the rewriting engine deposits an
instance in the state (actuators can appear only in a rule body). For example, actuators
of the form [`]display (S) are concretely implemented using a Java callback oper-
ation (not shown here) that calls the Android SDK’s toast pop-up notification library
to display the message S on `’s screen. This callback is invoked at ` every time the
Comingle runtime produces an instance [`]display (S).

By being system-centric, the code in Figure 1 lets the developer think in terms of
overall behavior rather than reason from the point of view of each device, delegating to
the compiler to deal with communication and synchronization, two particularly error-
prone aspects of distributed computing. This also enable global type-checking and other
forms of static validation, which are harder to achieve when writing separate programs.
This code is also declarative, which simplifies reasoning about its correctness and secu-
rity. Finally, this code is concise: just 15 lines. A native implementation of this example,
while not difficult, is much longer.

3 Abstract Syntax and Semantics

In this section, we describe the abstract semantics of Comingle. We begin by first intro-
ducing the notations used throughout this section. We write o for a multiset of syntactic
objects o. We denote the extension of a multiset o with an object o as “o, o”, with ∅
indicating the empty multiset. We also write “o1, o2” for the union of multisets o1 and
o2. We write ~o for a tuple of o’s and [~t/~x]o for the simultaneous replacement within
object o of all occurrences of variable xi in ~x with the corresponding term ti in ~t. When
traversing a binding construct (e.g., a comprehension pattern), substitution implicitly
α-renames variables as needed to avoid capture. It will be convenient to assume that
terms get normalized during substitution.

4

3.1 Abstract Syntax

The top part of Figure 2 defines the abstract syntax of Comingle. The concrete syntax
used in the various examples in this paper maps to this abstract syntax. Locations ` are
names that uniquely identify computing nodes, and the set of all nodes participating in a
Comingle computation is called an ensemble. At the Comingle level, computation hap-
pens by rewriting located facts F of the form [`]p(~t). We categorize predicate names
p into standard, trigger and actuator, indicating them with ps, pr and pa, respectively.
This induces a classification of facts into standard, trigger and actuator facts, denoted
Fs, Ft and Fa, respectively. Facts also carry a tuple ~t of terms. The abstract semantics
of Comingle is largely agnostic to the specific language of terms.

Computation in Comingle happens by applying rules of the formHp \Hs|g (B.
We refer to Hp and Hs as the preserved and the consumed head of the rule, to g as its
guard and to B as its body. The heads and the body of a rule consist of atoms f and of
comprehension patterns of the form *f | g+~x∈t. An atom f is a located fact [`]p(~t)
that may contain variables in the terms ~t or even as the location `. Atoms in rule heads
are either standard or trigger facts (Fs or Ft), while atoms in a rule body are standard
or actuator facts (Fs or Ft). Guards in rules and comprehensions are Boolean-valued
expressions constructed from terms and are used to constrain the values that the vari-
ables in a rule can assume. Just like for terms we keep guards abstract, writing |= g to
express that ground guard g is satisfiable. A comprehension pattern *f | g+~x∈t repre-
sents a multiset of facts that match the atom f and satisfy guard g under the bindings of
variables ~x that range over t, a multiset of tuples called the comprehension range. The
scope of ~x is the atom f and the guard g. We implicitly α-rename bound variables to
avoid capture. Abstractly, a Comingle program is a collection of rules.

The concrete syntax of Comingle is significantly more liberal than what we just
described. In particular, components Hp and g can be omitted if empty. We concretely
write a comprehension pattern *f | g+~x∈t as {f | ~x -> t. g} in rule heads and
{f | ~x <- t. g} in a rule body, where the direction of the arrow acts as a reminder
of the flow of information. Terms in the current prototype include standard base types
such as integers and strings, locations, term-level multisets, and lists. Its guards are re-
lations over such terms (e.g., equality and x < y) and can contain effect-free operations
imported from the local application (e.g., size and format in Figure 1).

3.2 Abstract Semantics

We will describe the computation of a Comingle system by means of a small-step tran-
sition semantics. Its basic judgment will have the form P B Θ 7→ Θ′ where P is a
program, Θ is a state and Θ′ is a state that can be reached in one (abstract) step of
computation. A state Θ has the form 〈St ;Ψ〉. The first component St is a collection of
ground located facts [`]p(~t) and is called the rewriting state of the system. Comingle
rules operate exclusively on the rewriting state. The second component, the application
state Ψ , is the collection of the local states [`]ψ of each computing node ` and captures
the notion of state of the underlying computation model (the Java virtual machine in
our Android-based prototype) — it typically has nothing to do with facts. As we will
see, a local computation step transforms the application state Ψ but can also consume

5

Matching: H ,lhs St H ,lhs St

H ,lhs St H ,lhs St ′

H,H ,lhs St ,St ′
(lmset-1)

∅ ,lhs ∅
(lmset-2)

F ,lhs F
(lfact)

[~t/~x]f ,lhs F |= [~t/~x]g *f | g+~x∈ts ,lhs St

*f | g+~x∈~t,ts ,lhs St , F
(lcomp-1)

*f | g+~x∈∅ ,lhs ∅
(lcomp-2)

Residual Non-matching: H ,¬lhs St H ,¬lhs St

H ,¬
lhs St H ,¬

lhs St

H,H ,¬
lhs St

(l¬mset-1)

∅ ,¬
lhs St

(l¬mset-2)

F ,¬
lhs St

(l¬fact)

F 6vlhs *f | g+~x∈ts *f | g+~x∈ts ,¬
lhs St

*f | g+~x∈ts ,¬
lhs St , F

(l¬comp-1)

*f | g+~x∈ts ,¬
lhs ∅

(l¬comp-2)

Subsumption: F vlhs *f | g+~x∈ts iff F = θf and |= θg for some θ = [~t/~x]

Fig. 3. Matching a Rule Head

triggers from the rewriting state and add actuators into it. These run-time artifacts are
formally defined at the bottom of Figure 2.

We will now describe the two types of state transitions P B Θ 7→ Θ′ in Comingle:
the application of a rule and a local step — see Figure 5 for a preview.

Rewriting Steps The application of a Comingle rule Hp \ Hs | g (B involves
two main operations: identifying fragments of the rewriting state St that match the
rule heads Hp and Hs, and replacing Hs in the rewriting state with the corresponding
instance of the body B. We now review how these operations are formalized in the
presence of comprehension patterns and then describe how they are combined during a
rewriting step (taking the guard g into account). Further details can be found in [10].

Matching Rule Heads Let H be a (preserved or consumed) rule head without free
variables — we will deal with the more general case momentarily. Intuitively, matching
H against a store St means splitting St into two parts, St+ and St−, and checking
that H matches St+ completely. The latter is achieved by the judgment H ,lhs St+

defined in the top part of Figure 3. Rules lmset-∗ partition St+ into fragments to be
matched by each atom in H: plain facts F must occur identically (rule lfact) while for
comprehension atoms *f | g+~x∈ts the state fragment must contain a distinct instance
of f for every element of the comprehension range ts that satisfies the comprehension
guard g (rules lcomp-∗).

In Comingle, comprehension patterns must match maximal fragments of the rewrit-
ing state. Therefore, no comprehension pattern should match any fact in St−. This
check is captured by the judgment H ,¬lhs St− in the bottom part of Figure 3. Rules
l¬mset-∗ tests each individual atom and rule l¬fact ignore facts. Rules l¬comp-∗ deal with

6

Unfolding Rule Body: B ≫rhs St B ≫rhs St

B ≫rhs St B ≫rhs St ′

B,B ≫rhs St ,St ′
(rmset-1)

∅ ≫rhs ∅ (rmset-2)
F ≫rhs F

(rfact)

|= [~t/~x]g [t/~x]b≫rhs F *b | g+~x∈ts ≫rhs St

*b | g+~x∈~t,ts ≫rhs F,St
(rcomp-1)

6|= [~t/~x]g *b | g+~x∈ts ≫rhs St

*b | g+~x∈~t,ts ≫rhs St
(rcomp-2)

*b | g+~x∈∅ ≫rhs ∅
(rcomp-3)

Fig. 4. Processing a Rule Body

comprehensions *f | g+~x∈ts : they check that no fact in St− matches any instance of f
while satisfying g — note that the comprehension range ts is not taken into account.

Processing Rule Bodies Applying a Comingle rule involves extending the rewriting
state with the facts corresponding to its body. This operation is specified in Figure 4
for a closed body B. Rules rmset-∗ go through B. Atomic facts F are added immedi-
ately (rule rfact). Instead, comprehension atoms *f | g+~x∈ts need to be unfolded (rules
rcomp-∗): for every item ~t in ts that satisfies the guard g, the corresponding instance
[~t/~x]f is added to the rewriting state; instances that do not satisfy g are discarded.

Rule Application Rule rw ens in Figure 5 brings these ingredients together and de-
scribes a step of computation that applies a rule Hp \ Hs | g (B. This involves
identifying a closed instance of the rule obtained by means of a substitution θ. The
instantiated guard must be satisfiable (|= θg) and we must be able to partition the
rewriting state into three parts Stp, Sts and St . The instances of the preserved and
consumed heads must match fragments Stp and Sts respectively (θHp ,lhs Stp and
θHs ,lhs Sts), while the remaining fragment St must be free of residual matchings
(θ(Hp, Hs) ,¬lhs St). The rule body instance θB is then unfolded (θB ≫rhs Stb)
into Stb which replaces Sts in the rewriting state.

Rule rw ens embodies a system-centric abstraction of the rewriting semantics of
Comingle as it atomically accesses facts at arbitrary locations. Indeed, it views the facts
of all participating locations in the ensemble as one virtual collection. Our prototype,
discussed in Section 4, is instead based on a concurrent, node-centric model of compu-
tation, where each node manipulates its local facts and exchanges message with other
nodes. We achieve this by compiling Comingle rules into the code that runs at each
participating node [9].

Local Steps Global rewriting steps can be interleaved by local computations at any
node `. From the point of view of Comingle, such local computations are viewed as
an abstract transition 〈A;ψ〉 7→l 〈ψ′; T 〉 that consumes some actuators A located at `,
modifies `’s internal application state ψ into ψ′, and produces some triggers T . Note
that an abstract transition of this kind can (and generally will) correspond to a large
number of steps of the underlying model of computation of node `. Rule rw loc in

7

Local transitions: 〈A;ψ〉 7→l 〈T ;ψ′〉

Comingle transitions: P B 〈St ;Ψ〉 7→ 〈St ;Ψ〉

(Hp \Hs | g (B) ∈ P |= θg

θHp ,lhs Stp θHs ,lhs Sts θ(Hp, Hs) ,¬
lhs St θB ≫rhs Stb

P B 〈Stp,Sts,St ;Ψ〉 7→ 〈Stp,Stb,St ;Ψ〉
(rw ens)

〈A;ψ〉 7→l 〈T ;ψ′〉
P B 〈St , [l]A;Ψ, [l]ψ〉 7→ 〈St , [l]T ;Ψ, [l]ψ′〉

(rw loc)

Fig. 5. Abstract Semantics of Comingle

Figure 5 incorporate local computation into the abstract semantics of Comingle. Here,
we write [`]A for a portion of the actuators located at ` in the current rewriting state —
there may be others. We similarly write [`]T for the action of locating each trigger in T
at `.

Rule rw loc enforces locality by drawing actuators strictly from ` and putting back
triggers at `. In particular, local computations at a node cannot interact with other nodes.
Hence, communication and orchestration can only occur through rewriting steps, de-
fined by rule rw ens. Note also that, since local transitions are kept abstract and are
parametrized by a location, rule rw loc accommodates ensembles that comprise devices
based on different underlying models of computation.

4 Implementation

We now describe our Comingle prototype. In Section 4.1, we highlight the compilation
phase, while Section 4.2 discusses the runtime system. Source code and examples are
available for download at https://github.com/sllam/comingle.

4.1 Compilation

The Comingle front-end compiler consists of a typical lexer and parser, type-checker, an
intermediate language preprocessor and a code generator, all implemented in Python.
The type-checker enforces basic static typing of Comingle programs via a constraint
solving approach adapted from [14] that allows for concise syntax highlight of type er-
ror sites. This is achieved by having the type-checker generate typing constraints with
additional bookkeeping data to pinpoint the syntax fragments responsible for each er-
ror. Satisfiability of these typing constraints are determined by an SMT solver library
built on top of Microsoft’s Z3 [3]. Our SMT solver library includes an extension to
reason about set comprehensions [11] which we use for optimizations involving com-
prehension patterns. An example is the selection of the indexing structures used by
the Comingle runtime to carry out multiset matching with the best possible asymp-
totic time complexity [10]. Once a program has been statically checked, the compiler
first applies a high-level source-to-source transformation [9] that converts a class of

8

https://github.com/sllam/comingle

Fig. 6. Runtime System of a Distributed Comingle Mobile Application

system-centric Comingle programs into node-centric rules. In addition to preserving
soundness, the resulting node-centric program explicitly implements the communica-
tions and synchronizations that are required to correctly orchestrate the distributed ex-
ecution of multi-party Comingle rules among a group of participating devices. Details
of this choreographic transformation are out of the scope of this paper, but can be found
in [9]. Finally, the code generator produces Java code that implements multiset match-
ing as specified by the node-centric encodings. This generated matching code uses a
compilation scheme formalized in [10] that first compiles node-centric code into a se-
quence of procedural operations, each of which implements a part of the matching and
unfolding operations described in Section 3.2.

4.2 Runtime System

Figure 6 illustrates the organization of a running Comingle ensemble. Within each mo-
bile device, the Comingle runtime has three components: a rewriting runtime that exe-
cutes compiled rewrite rules, an application runtime that performs all local operations
on the mobile device, and a network middleware that provides the basic communica-
tion primitives between the mobile devices. In the rest of this section, we highlight the
important features of each of these components.

Rewriting Runtime The rewriting runtime implements an operational semantics [10]
which is sound with respect to the abstract semantics highlighted in Section 3. This op-
erational semantics implements rule rw ens on the node-centric rewriting rules resulting
from the compilation process. In particular, it performs matching by incrementally pro-
cessing atoms in a rule head on the basis of newly added facts. This execution model is
highly compatible with our setup, where multiset rewriting is driven by external triggers
generated by the local application runtime. Facts are matched to rule heads in top-down,
left-to-right order, while facts in a rule body are processed left to right. The actions as-
sociated with actuators are executed in order of rule application. Each instance of the

9

rewriting runtime is single-threaded, which entails that actuations invoked on the same
device are guaranteed to be sequentially consistent with respect to the local ordering of
rule application.

The rewriting runtime is implemented as a set of Java libraries. During compila-
tion, the code generator produces Java code sprinkled with calls to functions from these
libraries. Matching, for instance, is realized through various library functions that ma-
nipulate the data structures that implement the rewriting state St , supporting multi-
index storage for efficiently querying facts. Communication is realized by other library
calls that interface with the network middleware to send and receive facts to and from
other participating instances of Comingle. Other library functions allows the rewrit-
ing runtime to call actuators that affects the local application runtime. Furthermore,
the rewriting runtime exposes interface functions to the local application to carry out
administrative commands (e.g., start or stop rewriting) as well as interfaces to add user-
defined triggering facts to the rewriting runtime. These interface functions, called by the
rewriting runtime, are engineered to be abstract and they make no assumptions about
the local application calling them, and hence can be customized for various platforms.

Application Runtime The application runtime is the Android application that imple-
ments rule rw loc, performing all the local operations on the mobile device, from screen
rendering to managing callback routines invoked by user input (e.g., keystrokes, taps
on the display). It is implemented in Java with the Android SDK, but also uses a li-
brary (distributed as part of Comingle) that concretizes the interface functions that the
rewriting runtime invokes. Its purpose is to allow the application developer to inte-
grate locally-defined functions into Comingle rewriting rules (as shown in Figure 1).
Specifically, it includes a set of predefined actuation callback methods for the Android
SDK. The current prototype only supports three built-in primitive actuators (display a
toast message, cause a delay in milliseconds, play a note), but interfaces to the Comin-
gle runtime allow the application developer to implement his/her own domain-specific
actuators. The application runtime also include libraries that implement boilerplate rou-
tines that help the developer integrate the Comingle rewriting runtime to an Activity
of the Android SDK.

Network Middleware As shown in Figure 6, the network middleware provides the
underlying communication support between devices running Comingle. We have im-
plemented a concrete instance that utilizes Android’s WiFi-direct network protocol to
establish connections and send and receive facts between mobile devices. It includes li-
braries that implement an asynchronous first-in-first-out message sending and receiving
service on top of basic network sockets, and libraries that maintains, on each participat-
ing location, an active IP address directory of the local ad-hoc network. This allows a
group of mobile devices to setup an ad-hoc WiFi-direct network, and supports peer-to-
peer communication between any two devices of the group.

5 Case Studies

In this section, we describe three mobile applications we have implemented using the
Comingle framework on the Android SDK. Two are multi-player games and one is a

10

1 rule init :: [I]initRace(Ls)
2 --o {[A]next(B)|(A,B)<-Cs}, [E]last(),
3 {[I]has(P), [P]all(Ps), [P]at(I), [P]renderTrack(Ls) | P<-Ps}
4 where (Cs,E) = makeChain(I,Ls), Ps = list2mset(Ls).
5

6 rule start :: [X]all(Ps) \ [X]startRace() --o {[P]release()|P<-Ps}.
7

8 rule tap :: [X]at(Y) \ [X]sendTap() --o [Y]recvTap(X).
9

10 rule trans :: [X]next(Z) \ [X]exiting(Y),[Y]at(X) --o [Z]has(Y),[Y]at(Z).
11

12 rule win :: [X]last()\[X]all(Ps),[X]exiting(Y) --o {[P]decWinner(Y)|P<-Ps}.

Fig. 7. Drag Racing, a racing game inspired by Chrome Racer

networking service. In all three, the overall distributed behavior is orchestrated by the
Comingle runtime, while the user interfaces are implemented locally using traditional
Android SDK libraries. For brevity, we omit all predicate declarations. These declara-
tions, the code implementing local operations, and the details of the integration with
Java and the Android SDK are discussed at length in [12].

Drag Racing Drag Racing is a simple multi-player game inspired by a Google Chrome
experiment called Chrome Racer [6]. A number of players compete to reach the finish
line of a linear racing track. The device of each player shows a distinct segment of the
track, and the players advance their car by tapping on their screen. The initial configu-
ration for a three-player instance is shown in Figure 7.1 In Chrome Racer, the devices
interact via a dedicated server. By contrast, the devices in our Drag Racing game com-
municate with each other directly, without the need of a third party to manage coordi-
nation.

An initial configuration such as the one in Figure 7 is generated when rule init is
executed. Its head is the trigger fact [I]initRace(Ls), where node I will hold the
initial segment of the track and Ls lists all locations participating in the game (including
I). Several actions need to take place at initialization time, all implemented by the

1 In Chrome Racer, the track loops around so that each device shows two segments. While
we could easily achieve this effect, our linear “drag” racing variant suffices to demonstrate
Comingle’s ability to orchestrate distributed computations.

11

body of init. First, the participating locations need to be arranged into a linear chain
starting at I. This is achieved by the local function makeChain in the guard (Cs,E)
= makeChain(I,Ls) where Cs is instantiated to a multiset of logically adjacent
pairs of locations and E to the end of the chain. The guard Ps = list2mset(Ls)
converts the list Ls into a multiset Ps. Second, each node other than E needs to be
informed of which location holds the segment of the track after it, while E needs to be
told that it has the finishing segment: this is achieved by the atoms {[A]next(B) |
(A,B) <- Cs} and [E]last(), respectively. Third, each location (P<-Ps) needs
to be informed of who the players are ([P]all(Ps)) and of the fact that its car is
currently at I ([P]at(I)), and it needs to be instructed to render the lane of all players
([P]renderTrack(Ls)). Fourth, location I needs to be instructed to draw the car
of all the players ([I]has(P)). The facts renderTrack and has are actuators
since they cause a local computation in the form of screen display. Because the instances
of the last four predicate forms are determined by the same multiset (Ps), Comingle
allows combining them into a single comprehension pattern.

At this point the game has been initialized, but it has not started yet. The race starts
the first time a player X taps his/her screen. This has the effect of depositing the trigger
[X]startRace() in the rewriting state, which enables rule start. Its body broad-
casts the actuator [P]release() to every node P, which has the effect of informing
P’s local runtime that subsequent taps will cause its car to move forward. This behavior
is achieved by rule tap, which is triggered at any node X by the fact [X]sendTap(),
generated by the application runtime every time X’s player taps his/her screen. The trig-
ger [X]exiting(Y) is generated when the car of player Y reaches the right-hand
side of the track segment on X’s device. If the track continues on player Z’s screen
([X]next(Z)), rule trans hands Y’s car over to Z by ordering Z to draw it on
his/her screen ([Z]has(Y)) and by informing X of the new location of his/her car
([Y]at(Z)). Notice that, because fact [Y]at(X) is in the simplified head of the rule,
it gets consumed. If instead X holds the final segment of the track ([X]last()) when
the trigger [X]exiting(Y) materializes, Y’s victory is broadcast to all participat-
ing locations ({[P]decWinner(Y) | P <- Ps}). Besides displaying a banner, it
disables moving one’s car by tapping the screen.

Multi-way Battleship Multi-way Battleship extends the classic battleship game with
support for more than just two players. Each player begins with an equal assortment of
battleships of varying sizes, randomly placed on a two-dimensional grid of cells. The
players then take turns selecting an opponent’s cell and firing at it. A battleship is sunk
when each cell it resides in is hit at least once. The winner of the game is the last player
with at least one unsunk ship.

Figure 8 shows a Comingle program that orchestrates this game. Rule init ini-
tializes an instance of the game. Its head is the trigger [I]initGame(Ships,Ps),
where node I is the player who will fire the first shot, Ships lists the number of ships
of each kind, and Ps is the multiset of device locations playing the game. Its body
informs I that it is its turn to play by means of the fact [I]turn() and inserts the
actuator [I]notifyTurn() which posts a notification on I’s display and enables
touchscreen input. The body of init also constructs a round robin sequence of facts
[A]next(B), distributes the location of all participants ([P]all(Ps)), and deposits

12

1 rule init :: [I]initGame(Ships,Ps)
2 --o [I]turn(), [I]notifyTurn(), {[A]next(B) | (A,B)<-Cs},
3 {[P]all(Ps), [P]randomFleet(Ships) | P <- Ps}
4 where Cs = makeRRchain(Ps).
5

6 rule shoot :: [A]next(B) \ [A]turn(), [A]fireAt(D,X,Y)
7 --o [D]blastAt(A,X,Y), [B]turn(), [B]notifyTurn().
8 rule miss :: [D]empty(X,Y) \ [D]blastAt(A,X,Y)
9 --o [D]missed(A,D,X,Y), [A]missed(A,D,X,Y).

10 rule goodHit :: [D]blastAt(A,X,Y), [D]hull(S,X,Y)
11 --o [D]damaged(S,X,Y), [D]hit(A,D,X,Y), [A]hit(A,D,X,Y).
12 rule dmgHit :: [D]damaged(S,X,Y) \ [D]blastAt(A,X,Y)
13 --o [D]hit(A,D,X,Y), [A]hit(A,D,X,Y).
14

15 rule sunk :: [D]all(Ps) \
16 [D]damaged(S,X,Y), {[D]damaged(S,X’,Y’)|(X’,Y’)->Ds’}
17 {[D]hull(S,W,V)|(W,V)->Hs} | size(Hs)=0
18 --o {[P]sunk(D,S,Ds)|P<-Ps}, [D]checkFleet()
19 where Ds = insert((X,Y), Ds’).
20

21 rule deadFleet :: [D]all(Ps), [D]checkFleet(), {[D]checkFleet()},
22 {[D]hull(S,W,V)|(S,W,V)->Hs} | size(Hs)=0
23 --o {[P]notifyDead(D), [P]dead(D) | P<-Ps}.
24

25 rule winner :: [D]all(Ps), {[D]dead(O) | O->Os}
26 | Ps=insert(D,Os) --o {[P]notifyWinner(D) | P<-Ps}.

Fig. 8. Multi-way Battleship

the actuator [P]randomFleet(Ships) at each node P. The application layer of
P will service this actuator by generating a random placement of the fleet in Ships
at node P and by installing triggers [P]empty(X,Y) and [P]hull(S,X,Y) to
indicate that cell (X,Y) is empty or contains a portion of ship S, respectively.

The trigger [A]fireAt(D,X,Y) is added to the rewriting state when player A
fires at cell (X,Y) of player D. It enables rule shoot, but only if it is A’s turn. This
results in the fact [D]blast(A,X,Y) added at D’s. This rule also passes the turn
to the next player ([A]next(B)) by asserting the fact [B]turn() and causing a
notification on B’s display ([B]notifyTurn()).

The next three rules implement the possible outcomes of such a shot. Specifically,
if cell (X,Y) is empty, rule miss renders an appropriate animation on A’s and B’s dis-
play via the actuator missed(A,D,X,Y). If ship S is (partially) in cell (X,Y), rule
goodHit replaces the fact [D]hull(S,X,Y)) with [D]damage(S,X,Y) and in-
forms A and D of this event via the actuator hit(A,D,X,Y). If a damaged hull is hit
again, rule dmgHit generates the hit(A,D,X,Y) actuators once more.

Rule sunk handles the sinking of a ship S. It is enabled if there is at least one fact
[D]damaged(S,X,Y) in the rewriting state. It then checks that S has no intact frag-

13

1 rule owner :: [O]startOwner(C) --o [O]owner(C), [O]joined(O).
2 rule member :: [M]startMember(C) --o [M]member(C).
3 rule connect :: [M]member(C) \ [M]connect(N)
4 --o [O]joinRequest(C,N,M) where O = ownerLoc().
5

6 rule join :: [O]owner(C), {[O]joined(M’)|M’->Ms},
7 \ [O]joinRequest(C,N,M) | notIn(M,Ms)
8 --o {[M’]added(D)|M’<-Ms}, {[M]added(D’)|D’<-Ds},
9 [M]added(D), [O]joined(M), [M]connected()

10 where IP = lookupIP(M), D = (M,IP,N), Ds = retrieveDir().
11

12 rule quitO :: [O]owner(C), [O]quit(), {[O]joined(M)|M->Ms}
13 --o {[M]ownerQuit()|M<-Ms} .
14

15 rule quitM :: {[O]joined(M’)|M’->Ms.not(M’ = M)}
16 \ [M]member(C), [M]quit(), [O]joined(M)
17 --o {[M’]removed(M)|M’<-Ms}, [M]deleteDir().

Fig. 9. WiFi-Direct Directory

ment ({[D]hull(S,W,V)|(W,V)->Hs} | size(Hs)=0), collects the coordi-
nates of the other hit fragments ({[D]damaged(S,X’,Y’)|(X’,Y’)->Ds’}),
notifies each player that S has sunk ({[P]sunk(D,S,Ds)|P<-Ps}), and issues the
fact [D]checkFleet() to check if the game is over for D. The function insert
inserts an element in a multiset.

If at least one [D]checkFleet() fact is present, rule deadFleat similarly
checks that no ship fragment is intact ({[D]hull(S,W,V)|(S,W,V)->Hs} |
size(Hs)=0) and if this is the case it informs all players of D’s annihilation with
{[P]notifyDead(D), [P]dead(D) | P<-Ps}. Finally, rule winner is ex-
ecuted by the winning player D when it can ascertain that all other players are dead
([D]all(Ps) {[D]dead(O) | O->Os} where Ps=insert(D,Os)).

WiFi-Direct Directory WiFi-Direct Directory is an implementation of a networking
service built on top of the Android SDK WiFi-direct library. In the WiFi-direct protocol,
one device is designated as the owner of a newly established group. The owner can
obtain the IP address of each device in the group from its network middleware, but
the other members only know the owner’s IP address and location. This means that,
initially, the group owner can communicate with all members but the members can
only communicate with the owner. WiFi-Direct Directory disseminates and maintains
an IP address table on each node of the group in order to enable peer-to-peer IP socket
communication.

Figure 5 shows the Comingle program that orchestrates this service. Once the group
has been established, the triggers [O]startOwner(C) and [M]startMember(C)
are entered in the rewriting state of the owner and of each other member M, respectively.
The argument C identifies the application this group is for (e.g., one of the two games
seen earlier) — the WiFi-direct protocols allows a node to be part of at most one group

14

at any time. Rule owner initializes the owner by adding the facts [O]owner(C) that
sets O’s role as the owner of the group for application C and [O]joined(O) that
identifies it as having joined the group. Rule member simply sets M’s role as a group
member ([M]member(C)).

The runtime of a member M also periodically generates triggers [M]connect(N)
where N is the device’s screen name — this is to protect against message losses while the
group owner bootstraps. Rule connect turn this trigger into the request [O]join-
Request(C,N,M) to be sent to the owner O — the library function ownerLoc
retrieves the owner of the current group, which is initially available to all members.
This request is processed in rule join: the owner O checks that a join request by
the same member has not been serviced already ([O]joinRequest(C,N,M) |
notIn(M,Ms)), it then records M as having joined the group ([O]joined(M)),
sends its location, IP address and screen name (D = (M,IP,N)) to the active mem-
bers ({[M’]added(D)|M’<-Ms}). This same data is sent to M ([M]added(D)) as
well as information about each active member ({[M]added(D’)|D’<-Ds}). The
actuator [X]added(D) updates node X’s internal routing table with entry D and the
actuator [M]connected() stops the issuance of the triggers [M]connect(N).

The last two rules handle a member M leaving the group, which is initiated by trigger
[M]quit(). If this member is the owner, rule quitO dismantles the group and send
the actuator ownerQuit() to each active member. If M is a regular member, rule
quitM consumes M’s [O]joined(M) fact, notifies all other members to remove M’s
entry from their local directory ({[M’]removed(M)|M’<-Ms}) and instructs M’s
runtime to delete its entire local directory ([M]deleteDir()).

6 Related Work

To the best of our knowledge, Comingle is the first framework to introduce the logic
programming paradigm to the development of applications on modern mobile devices.
However, it draws from work on distributed and parallel programming languages for
decentralized micro-systems, which we now review.

Comingle is greatly influenced by Meld [1], a logic programming language initially
designed for programming distributed ensembles of communicating robots. It used the
Blinky Blocks platform [8] as a proof of concept to demonstrate simple ensemble pro-
gramming behaviors. Meld was based on a variant of Datalog extended with sensing
and action facts. Recent refinements [2] extended Meld with comprehension patterns
and linearity, but refocused it on distributed programming of multicore architectures.

Sifteo [13] is an interactive system that runs an array of puzzle games on Lego-like
cubes. Each cube is equipped with a small LCD screen and various means of interaction
with the user (e.g., tilting, shaking) and is capable of sensing alignments with neighbor-
ing cubes. Developers can implement new games in C/C++ via the Sifteo SDK. Sifteo’s
decentralized and interactive setup makes it a suitable target platform for Comingle.

The Comingle language is a descendant of CHR [5], a logic programming language
targeting traditional constraint solving problems. Comingle extends it with multiset
comprehension, explicit locations, triggers and actuators.

15

7 Future Developments and Conclusions

In this paper, we introduced Comingle, a distributed logic programming language for
orchestrating decentralized ensembles. It is designed to simplify the development of
interactive applications and to provide a high-level programming abstraction for coor-
dinating distributed computations. As proof of concept, we described three distributed
applications orchestrated by Comingle and running on Android mobile devices — two
are multi-player games and one is a networking service. By segregating all communi-
cation and coordination events in a few rules, it promotes a system-centric, declarative
style of programming a distributed application, which simplifies detecting errors and
ensuring correctness.

In the immediate future, we intend to expand the language capabilities to capture
recurrent synchronization patterns and enrich the programming primitives available at
the Comingle level. We will also extend the library support for developing applications
that integrate with the Comingle rewriting runtime.

References

1. M.P. Ashley-Rollman, P. Lee, S.C. Goldstein, P. Pillai, and J. D. Campbell. A Language for
Large Ensembles of Independently Executing Nodes. In ICLP ’09, July 2009.

2. F. Cruz, R. Rocha, S.C. Goldstein, and F. Pfenning. A linear logic programming language
for concurrent programming over graph structures. In ICLP’14, Vienna, Austria, 2014.

3. L. De Moura and N. Bjørner. Z3: An Efficient SMT Solver. In TACAS’08/ETAPS’08, pages
337–340, Berlin, Heidelberg, 2008. Springer.

4. J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters. In
OSDI04. USENIX Association, 2004.

5. T Frühwirth and F. Raiser. Constraint Handling Rules: Compilation, Execution and Analysis.
ISBN 9783839115916. BOD, 2011.

6. New York Google. Chrome Racer, A Chrome Experiment. http://www.chrome.com/
racer, 2013.

7. Google Inc. Google Web Toolkit. Available at http://code.google.com/
webtoolkit/.

8. B.T. Kirby, M. Ashley-Rollman, and S.C. Goldstein. Blinky blocks: A physical ensemble
programming platform. In CHI’11, pages 1111–1116, New York, NY, USA, 2011. ACM.

9. E.S.L. Lam and I. Cervesato. Decentralized Execution of Constraint Handling Rules for
Ensembles. In PPDP’13, pages 205–216, Madrid, Spain, 2013.

10. E.S.L. Lam and I. Cervesato. Optimized Compilation of Multiset Rewriting with Compre-
hensions. In APLAS’14, pages 19–38. Springer LNCS 8858, 2014.

11. E.S.L. Lam and I. Cervesato. Reasoning about Set Comprehension. In SMT’14, 2014.
12. E.S.L. Lam and I. Cervesato. Comingle: Distributed Logic Programming for Decentral-

ized Android Applications. Technical Report CMU-CS-15-101, Carnegie Mellon University,
March 2015.

13. D. Merrill and J. Kalanithi. Sifteo, Interactive Game Cubes. https://www.sifteo.
com/cubes, 2009.

14. P.J. Stuckey, M. Sulzmann, and J. Wazny. Interactive Type Debugging in Haskell. In
Haskell’03, pages 72–83, New York, NY, USA, 2003. ACM.

16

http://www.chrome.com/racer
http://www.chrome.com/racer
http://code.google.com/webtoolkit/
http://code.google.com/webtoolkit/
https://www.sifteo.com/cubes
https://www.sifteo.com/cubes

	Comingle: Distributed Logic Programming for Decentralized Mobile Ensembles

