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Abstract. In fully distributed machine learning, privacy and security are impor-
tant issues. These issues are often dealt with using secure multiparty computa-
tion (MPC). However, in our application domain, known MPC algorithms are not
scalable or not robust enough. We propose a light-weight protocol to quickly and
securely compute the sum of the inputs of a subset of participants assuming a
semi-honest adversary. During the computation the participants learn no individ-
ual values. We apply this protocol to efficiently calculate the sum of gradients
as part of a fully distributed mini-batch stochastic gradient descent algorithm.
The protocol achieves scalability and robustness by exploiting the fact that in this
application domain a “quick and dirty” sum computation is acceptable. In other
words, speed and robustness takes precedence over precision. We analyze the
protocol theoretically as well as experimentally based on churn statistics from a
real smartphone trace. We derive a sufficient condition for preventing the leakage
of an individual value, and we demonstrate the feasibility of the overhead of the
protocol.

Keywords: fully distributed learning, mini-batch stochastic gradient descent, P2P
smartphone networks, secure sum

1 Introduction

Our long-term research objective is to design fully distributed machine learning algo-
rithms for various distributed systems including networks of smartphones, smart meters,
or embedded devices. The main motivation for a distributed solution in our cloud-based
era is to preserve privacy by avoiding the central collection of any personal data. An-
other advantage of distributed processing is that this way we can make full use of all
the local personal data, which is impossible in cloud-based or private centralized data
silos that store only specific subsets of the data.

In our previous work we proposed several distributed machine learning algorithms
in a framework called gossip learning. In this framework models perform random walks
over the network and are trained using stochastic gradient descent [18] (see Section 4).
This involves an update step in which nodes use their local data to improve each model
they receive, and then forward the updated model along the next step of the random
walk. Assuming the random walk is secure—which in itself is a research problem on
its own, see e.g. [13]—it is hard for an adversary to obtain the two versions of the
model right before and right after the local update step at any given node. This provides
reasonable protection against uncovering private data.
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However, this method is susceptible to collusion. If the nodes before and after an
update in the random walk collude they can recover private data. In this paper we ad-
dress this problem, and improve gossip learning so that it can tolerate a much higher
proportion of honest but curious (or semi-honest) adversaries. The key idea behind the
approach is that in each step of the random walk we form groups of peers that se-
curely compute the sum of their gradients, and the model update step is performed
using this aggregated gradient. In machine learning this is called mini-batch learning,
which—apart from increasing the resistance to collusion—is known to often speed up
the learning algorithm as well (see, for example, [8]).

It might seem attractive to run a secure multiparty computation (MPC) algorithm
within the mini-batch to compute the sum of the gradients. The goal of MPC is to
compute a function of the private inputs of the parties in such a way that at the end
of the computation, no party knows anything except what can be determined from the
result and its own input [24]. Secure sum computation is an important application of
secure MPC [7].

However, we do not only require our algorithm to be secure but also fast, light-
weight, and robust, since the participating nodes may go offline at any time [2] and they
might have limited resources. One key observation is that for the mini-batch algorithm
we do not need a precise sum; in fact, the sum over any group that is large enough to
protect privacy will do. At the same time, it is unlikely that all the nodes will stay online
until the end of the computation. We propose a protocol that—using a tree topology
and homomorphic encryption—can produce a “quick and dirty” partial sum even in the
event of failures, has adjustable capability of resisting collusion, and can be completed
in logarithmic time.

2 Related Work

There are many approaches that have goals similar to ours, that is, to perform compu-
tations over a large and highly distributed database or network in a secure and privacy
preserving way. Our work touches upon several fields of research including machine
learning, distributed systems and algorithms, secure multiparty computation and pri-
vacy. Our contribution lies in the intersection of these areas. Here we focus only on
related work that is directly relevant to our present contributions.

Algorithms exist for completely generic secure computations, Saia and Zamani give
a comprehensive overview with a focus on scalability [22]. However, due to their focus
on generic computations, these approaches are relatively complex and in the context
of our application they still do not scale well enough, and do not tolerate dynamic
membership either.

Approaches targeted at specific problems are more promising. Clifton et al. propose,
among other things, an algorithm to compute a sum [7]. This algorithm requires linear
time in the network size and it does not tolerate node failure either. Bickson et al. focus
on a class of computations over graphs, where the computation is performed in an iter-
ative manner through a series of local updates [3]. They introduce a secure algorithm
to compute local sums over neighboring nodes based on secret sharing. Unfortunately,
this model of computation does not cover our problem as we want to compute mini-
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batches of a size independent of the size of the direct neighborhood, and the proposed
approach does not scale well in that sense. Besides, the robustness of the method is
not satisfactory either [17]. Han et al. address stochastic gradient search explicitly [12].
However, they assume that the parties involved have large portions of the database, so
their solution is not applicable in our scenario.

The algorithm of Ahmad and Khokhar is similar to ours [1]. They also use a tree
to aggregate values using homomorphic encryption. In their solution all the nodes have
the same public key and the private key is distributed over a subset of elite nodes using
secret sharing. The problem with this approach in our application is that for each mini-
batch a new key set has to be generated for the group, which requires frequent access to
a trusted server, otherwise the method is highly vulnerable in the key generation phase.

We need to mention the area of differential privacy [9], which is concerned with the
the problem that the (perhaps securely computed) output itself might contain informa-
tion about individual records. The approach is that a carefully designed noise term is
added to the output. Gradient search has been addressed in this framework (for exam-
ple, [20]). In our distributed setup, this noise term can be computed in a distributed and
secure way [10].

3 Model

Communication. We model our system as a very large set of nodes that communicate
via message passing. At every point in time each node has a set of neighbors form-
ing a connected network. The neighbor set can change over time, but nodes can send
messages only to their current neighbors. Nodes can leave the network or fail at any
time. We model leaving the network as a node failure. Messages can be delayed up to a
maximum delay. Messages cannot be dropped, so communication fails only if the target
node fails before receiving the message.

The set of neighbors is either hard-wired, or given by other physical constraints
(for example, proximity), or set by an overlay service. Such overlay services are widely
available in the literature and are out of the scope of our present discussion. It is not
strictly required that the set of neighbors are random, however, we will assume this
for the sake of simplicity. If the set is not random, then implementing a random walk
with a uniform stationary distribution requires additional well-proven techniques such
as Metropolis-Hastings sampling or structured routing [23].

Data distribution. We assume a horizontal distribution, which means that each node
has full data records. We are most interested in the extreme case when each node has
only a single record. The database that we wish to perform data mining over is given by
the union of the records stored by the nodes.

Adversarial model. We assume that the adversaries are honest but curious (or semi-
honest). That is, nodes corrupted by an adversary will follow the protocol but the adver-
sary can see the internal state of the node as well as the plaintext of the messages that
the node receives or sends. The goal of the adversary is to learn about the private data
of other nodes (note that the adversary can obviously see the private data on the node it
observes directly).
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We assume a static adversarial model, which means that the corrupted nodes are
picked a priori, independently of the state of the protocol or the network. As of the
number of corrupted nodes, we will consider the threshold model, in which at most a
given number of nodes are corrupted, as well as a probabilistic model, in which any
node can be corrupted with a given constant probability [16].

Wiretapping is assumed to be impossible. In other words, communication channels
are assumed to be secure. This can easily be implemented if there is a public key infras-
tructure in place.

We also assume that adversaries are not able to manipulate the set of neighbors.
In each application domain this assumption translates to different requirements. For
example, if an overlay service is used to maintain the neighbors then this service has to
be secure itself.

4 Background on Gossip Learning

Although not strictly required for understanding our key contribution, it is important to
briefly overview the basic concepts of stochastic gradient descent search, and our gossip
learning framework (GOLF) [18].

The basic problem of supervised binary classification can be defined as follows. Let
us assume that we are given a labeled database in the form of pairs of feature vectors
and their correct classification, i.e. z1 = (x1, y1), . . . , zn = (xn, yn), where xi ∈ Rd,
and yi ∈ {−1, 1}. The constant d is the dimension of the problem (the number of
features). We are looking for a model fw : Rd → {−1, 1} parameterized by a vector w
that correctly classifies the available feature vectors, and that can also generalize well;
that is, which can classify unseen examples too.

Supervised learning can be thought of as an optimization problem, where we want
to minimize the empirical risk

En(w) =
1

n

n∑
i=1

Q(zi, w) =
1

n

n∑
i=1

`(fw(xi), yi) (1)

where function Q(zi, w) = `(fw(xi), yi) is a loss function capturing the prediction
error on example zi.

Training algorithms that iterate over available training data, or process a continuous
stream of data records, and evolve a model by updating it for each individual data record
according to some update rule are called online learning algorithms. Gossip learning
relies on this type of learning algorithms. Ma et al. provide a nice summary of online
learning for large scale data [15].

Stochastic gradient search [5, 6] is a generic algorithmic family for implementing
online learning methods. The basic idea is that we iterate over the training examples in
a random order repeatedly, and for each training example zt we calculate the gradient
of the error function (which describes classification error), and modify the model along
this gradient to reduce the error on this particular example according to the rule

wt+1 = wt − γt∇wQ(zt, wt) (2)
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where γt is the learning rate at step t that often decreases as t increases.
A popular way to accelerate the convergence is the use of mini-batches, that is, to

update the model with the gradient of the sum of the loss functions of a few training
examples (instead of only one) in each iteration. This allows for fast distributed imple-
mentations as well [11].

In gossip learning, models perform random walks on the network and are trained on
the local data using stochastic gradient descent. Besides, several models can perform
random walks at the same time, and these models can be combined time-to-time to
accelerate convergence. Our approach here will be based on this scheme, replacing the
local update step with a mini-batch approach.

5 Our Solution

Based on the assumptions in Section 3 and building on the GOLF framework outlined
in Section 4 we now present our algorithm for computing a mini-batch gradient in a
single step of the mini-batch gradient descent algorithm. First of all, recall that mod-
els perform random walks over the nodes in the network. At each step, when a node
receives a model to update, it will first create a mini-batch group by building a rooted
tree. According to our assumptions adversaries cannot manipulate the neighborhood
and they do not corrupt the protocol execution, so this can be achieved via simple local
flooding algorithms.

Let us now describe what kind of tree is needed exactly. The basic version of our
algorithm will require a trunked tree.

Definition 1 (trunked tree). Any rooted tree is 1-trunked. For k > 1, a rooted tree
is k-trunked if the root has exactly one child node, and the corresponding subtree is a
(k − 1)-trunked tree.

Let N denote the intended size of the mini-batch group. We assume that N is signif-
icantly less than the network size. Let S be a parameter that determines the desired
security level (N ≥ S ≥ 2). We can now state that we require an S-trunked tree rooted
at the node that is being visited by gossip learning.

This tree can be constructed on an overlay network by taking S − 1 random steps,
and then performing a flooding algorithm with appropriately set time-to-live and branch-
ing parameters. The exact algorithm for this is not very interesting, mostly because it
can be very simple. The reason is that when building the tree, no attention needs to be
paid to reliability. We generate the tree quickly and use it only once quickly. Normally,
some subtrees will be lost in the process but our algorithm is designed to tolerate this.

The effect of certain parameters, such as the branching factor and node failures,
will be discussed later in the evaluation. In rare cases, when the neighborhood size is
too small or when there are many cycles in the network, it could be hard to achieve
the desired branching factor, which can result in a deeper tree than desired resulting
in an increased time-complexity. Apart from this performance issue, the algorithm will
function correctly even in these cases. From now on, for simplicity, we assume that the
desired branching factor can be achieved.
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The sum we want to calculate is over vectors of real numbers. We discuss the one-
dimensional gradient from now on for simplicity. Homomorphic encryption works over
integers, to be precise, over the set of residue classes Zn for some large n. For this
reason we need to discretize the real interval that includes all possible sums we might
calculate, and we need to map the resulting discrete intervals to residue classes in ZM

where M defines the granularity of the resolution of the discretization. This mapping is
natural, we do not go into details here. Since the gradient of the loss function for most
learning algorithms is bounded, this is not a practical limitation.

The basic idea of the algorithm is to divide the local value into S shares, encrypt
these with asymmetric additively homomorphic encryption (such as the Paillier cryp-
tosystem), and send them to the root via the chain of ancestors. Although the shares
travel together, they are encrypted with the public keys of different ancestors. Along the
route, the arrays of shares are aggregated, and periodically re-encrypted. Finally, the
root calculates the sum.

The algorithm consists of three procedures, shown in Algorithm 1. These are run
locally on the individual nodes. Procedure INIT is called once after the node becomes
part of the tree. Procedure ONMESSAGERECEIVED is called whenever a message is re-
ceived by the node. A message contains an array of dimension S that contains shares
encoded for S ancestors. The first element msg[1] is encrypted for the current node, so
it can decrypt it. The rest of the shares are shifted down by one position and added (with
homomorphic encryption) to the local array of shares to be sent. After all the messages
have been processed, the ith element (1 ≤ i ≤ S − 1) of the array SHARES is now en-
crypted with the public key of the ith ancestor of the current node and contains a share
of the sum of the subtree except the local value of the current node. The Sth element is
stored unencrypted in variable KNOWNSHARE.

Procedure ONNOMOREMESSAGESEXPECTED is called when the node has received a
message from all of its children, or when the remaining children are considered to be
dead by a failure detector. The timeout used here has to take into account the depth of
the given subtree and the maximal delay of a message. In the case of leaf nodes, this
procedure is called right after INIT.

The function call ANCESTOR(i) returns the descriptor of the ith ancestor of the cur-
rent node that contains the necessary public keys as well. During tree building this
information can be given to each node. For the purposes of this function, the parent
of the root is defined to be itself. Function ENCRYPT(x, y) encrypts the integer x with
the public key of node y using an asymmetric additively homomorphic cryptosystem.
DECRYPT(x) decrypts x with the private key of the current node. Operation a ⊕ b per-
forms the homomorphic addition of the two encrypted integers a and b to get the en-
crypted form of the sum of these integers. Function RANDOM(x) returns a uniformly
distributed random integer in the range [0, x− 1].

If the current node is the root, then the elements of the received array are decrypted
and summed. The root can decrypt all the elements because it is the parent of itself, so
all the elements are encrypted for the root when the message reaches it. If the current
node is not the root then the local value has to be added, and the Sth element of the
array has to be filled. First, the local value is split into S shares according to the S-out-
of-S secret-sharing scheme discussed in [16]: S − 1 out of the S shares are uniformly
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Algorithm 1
procedure INIT

shares← new array[1..S]
for i← 1 to S do

shares[i]← Encrypt(0, Ancestor(i))
end for
knownShare← 0

end procedure

procedure ONMESSAGERECEIVED(msg)
for i← 1 to S − 1 do

shares[i]← shares[i] ⊕ msg[i+ 1]
end for
knownShare← knownShare + Decrypt(msg[1])

end procedure

procedure ONNOMOREMESSAGESEXPECTED

if IAmTheRoot() then
for i← 1 to S − 1 do

knownShare← knownShare + Decrypt(shares[i])
end for
Publish((knownShare + localValue) modM )

else
randSum← 0
for i← 1 to S − 1 do

rand← Random(M )
randSum← randSum + rand
shares[i]← shares[i] ⊕ Encrypt(rand, Ancestor(i))

end for
knownShare← knownShare + localValue − randSum
shares[S]← Encrypt(knownShare modM , Ancestor(S))
SendToParent(shares)

end if
end procedure

distributed random integers between 0 and M − 1. The last share is the difference
between the local value and the sum of the random numbers (mod M ). This way, the
sum of shares equals the local value (mod M ). Also, the sum of any non-empty proper
subset of these shares is uniformly distributed, therefore nothing can be learned about
the local value without knowing all the shares.

The shares calculated this way can be encrypted and added to the corresponding
shares, and finally the remaining Sth share is re-encrypted with the public key of the
Sth ancestor and put into the end of the array. When this array is sent to the parent, it
contains the S shares of the partial sum corresponding to the full sub-tree.

We note here that if during the algorithm a child node never responds, then its
subtree will be essentially missing (will have a sum of zero) but other than that the
algorithm will terminate normally. This is acceptable in our application, because for a
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mini-batch we simply need the sum of any number of gradients, this will not threaten
the convergence of the gradient descent algorithm.

6 Discussion

6.1 Security

To steal information, that is, to learn the sum over a subtree, the adversary needs to
catch and decrypt all the S shares of the corresponding message that was sent by the
root of the subtree in question. Recall that if the adversary decrypts less than S shares
from any message, it still has only a uniform random value due to our construction. To
be more precise, to completely decrypt a message sent to node c1, the adversary needs
to corrupt c1 and all its S − 1 closest ancestors, denoted by c2, .., cS , so he can obtain
the necessary private keys.

The only situation when the shares of a message are not encrypted with the pub-
lic keys of S different nodes—and hence when less than S nodes are sufficient to be
corrupted—is when the distance of the sender from the root is less than S. In this case,
the sender node is located in the trunk of the tree. However, decrypting such a message
does not yield any more information than what can be calculated from the (public) re-
sult of the protocol and the local values (gradients) of the nodes needed to be corrupted
for the decryption. This is because in the trunk the sender of the message in question is
surely the only child of the first corrupted node, and the message represents the sum of
the local values of all the nodes, except for the ones needed to be corrupted. To put it in
a different way, corrupting less than S nodes never gives more leverage than learning
the private data of the corrupted nodes only.

Therefore, the only way to steal extra information (other than the local values of
the corrupted nodes) is to form a continuous chain of corrupted nodes c1, .., cS towards
the root, where ci+1 is the parent of ci. This makes it possible to steal the partial sums
of the subtrees rooted at the children of c1. For this reason we now focus only on the
N − S vulnerable subtrees not rooted in the trunk.

As a consequence, a threshold adversary cannot steal information if he corrupts at
most S − 1 nodes. A probabilistic adversary that corrupts each node with probability
p can steal the exact partial sum of a given subtree whose root is not corrupted with
probability pS .

Even if the sum of a given subtree is not stolen, some information can be learned
about it by stealing the sums of other subtrees. However, this information is limited, as
demonstrated by the following theorem.

Theorem 1. The private value of a node that is not corrupted cannot be exactly deter-
mined by the adversary as long as at least one of the S closest ancestors of the node is
not corrupted.

Proof. Let us denote by t the target node, and by u the closest ancestor of t that is not
corrupted. The message sent by t cannot be decrypted by the adversary, because one of
its shares is encrypted to u (because u is one of the S closest ancestors of t). The same
holds for all the nodes between t and u. Therefore the smallest subtree that contains
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t and whose sum can be stolen also contains u. Due to the nested nature of subtrees,
bigger subtrees that contains t also contains u as well. Also, any subtree that contains u
also contains t (since t is the descendant of u). Therefore u and t cannot be separated.
Even if every other node is corrupted in the subtree whose sum is stolen, only the sum
of the private values of u and t can be determined.

Therefore pS is also an upper bound on the probability of stealing the exact private
value of a given node that is not corrupted.

6.2 Complexity

In a tree with a maximal branching factor of B each node sends only one message, and
receives at mostB. The length of a message isO(SC), an array of S encrypted integers,
where C is the length of the encrypted form of an integer. Let us now elaborate on C.
First, as stated before, the sum of the gradients is represented on O(logM) bits, where
M is a design choice defining the precision of the fixed point representation of the real
gradient. Let us assume for now that we use the Paillier cryptosystem [19]. In this case,
we need to set the parameters of our cryptosystem in such a way that the largest number
it can represent is no less than n = min(BSM,NM), which is the upper bound of any
share being computed by the algorithm (assuming B ≥ 2). In the Paillier cryptosystem
the ciphertext for this parameter setting has an upper bound ofO(n2) for a single share.
Since

S log n2 = S logmin(BSM,NM)2 ≤ 2(S2 logB + S logM), (3)

the number of bits required is O(S2 logB + S logM).
The computational complexity isO(BSE) per node, whereE is the cost of encryp-

tion, decryption, or homomorphic addition. All these three operations boil down to one
or two exponentiations in modular arithmetic in the Paillier cryptosystem. Note that this
is independent of N .

The time complexity of the protocol is proportional to the depth of the tree. If the
tree is balanced, this results in S +O(logN) steps altogether.

6.3 Robustness

As mentioned before, if a node failure occurs then the subtree rooted at that node is
left out of the sum. In our application this does not render the output useless, since in
mini-batch methods one can apply mini-batches of varying size.

Let us take a closer look at the possible effect of node failure. From the point of
starting to build the tree until the root computes the end result a certain number of
nodes might fail at random. The worst-case scenario is when all these nodes fail right
after the construction of the tree but before starting to propagate shares upwards.

We have conducted experiments to assess the robustness of the trees under various
parameter settings. In the initialization step, a random graph of 1,000,000 nodes is gen-
erated in the following way: 20% percent of the nodes are marked public and then each
node gets 20 links to random public nodes. These links represent bidirectional commu-
nication channels. It has been argued that such a construction is a viable approach in
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Fig. 1. The expected value of the ratio of nodes that successfully contribute to the computation,
plotted as a function of the probability of node failure. B denotes maximal branching factor and
D denotes depth. (An isolated node has depth 0.)

the presence of NAT devices on the open Internet [21]. Also, recently Berta et al. [2]
estimated that the NAT types of about 20% of smartphones are either open access or
full cone. Thus, the parameter setting and the overlay above is a good representation of
one application domain: smartphone networks.

After this, random trees are generated with a depth of D and a maximal branching
factor of B, in the following way: a root is chosen randomly, which selects B of its
neighbors as children, then each of them, in turn, selectsB of their respective neighbors,
and so on, until depth D is reached. No node selects its parent, but multiple nodes
may try to select the same node, in which case it becomes the child of only one of
them. Therefore nodes can have less than B children, but this happens infrequently, if
the graph is large enough compared to the tree. These trees are used to calculate the
expected value of the ratio of the nodes that are reachable from the root via a chain of
available nodes, assuming a given chance for node failure, in the worst case scenario
we outlined above. If the probability of node failure is f , a node located at level d of
the tree (the root has level 0) will successfully contribute its local value to the sum with
probability (1 − f)(d+1).) The results are shown in Figure 1. Each curve represents a
given setting of B and D. Each point is based on 50 different random trees.

To provide an indication of feasible failure rates in an actual network, we analyzed
the trace collected by Berta et al. [2]. In this trace a node was defined to be available
when it had network connectivity and when it was on a charger at the same time. Fig-
ure 2 shows statistics about smartphone availability. For each hour, we calculated the
probability that a node that has been online for at least a minute remains online for 1, 5
or 10 more minutes. As the figure illustrates, these probabilities are rather high even for
a 10 minute extra time, which is certainly sufficient to complete a mini-batch for any
reasonable batch size, given that the time complexity is logarithmic in size. Comparing
this with Figure 1, under these realistic failure rates the resulting computation will cover
a large subset of the intended mini-batch.
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Fig. 2. Expected availability of smartphones that have been online for at least a minute. Hour-of-
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7 Variations

Although the robustness of the algorithm is useful, we have to be careful when pub-
lishing a sum based on too few participants. The algorithm can be modified to ad-
dress this issue. Let us denote by R the minimal required number of actual participants
(S ≤ R ≤ N ). Each message is padded with an (unencrypted) integer n indicating the
number of nodes its data is based on. When the node exactly S− 1 steps away from the
root (thus in the trunk) is about to send its message, it checks whether n+ S − 1 ≥ R
holds (since the remaining nodes towards the root have no children except the one on
this path). If not, it sends a failure message instead. The nodes fewer than S − 1 steps
away from the root transmit a failure message if they receive one, or if they fail to
receive any messages.

One can ask the question whether the trunk is needed, as the protocol can be exe-
cuted on any tree unmodified. However, having no trunk makes it easier to steal infor-
mation about subtrees close to the root. If the tree is well-balanced and the probability
of failure is small, these subtrees can be large enough for the stolen partial sums to
not pose a practical privacy problem in certain applications. The advantages include a
simpler topology, a faster running time, and increased robustness.

Another option is to replace the top S − 1 nodes with a central server. To be more
precise, we can have a server simulate the top S−1 nodes with the local values of these
nodes set to zero. This server acts as the root of a 2-trunked tree. From a security point
of view, if the server is corrupted by a semi-honest adversary, we have the same situation
when the top S − 1 nodes are corrupted by the same adversary. As we have shown in
Section 6.1, one needs to corrupt at least S nodes in a chain to gain any extra advantage,
so on its own the server is not able to obtain extra information other than the global sum.
Also, the server does not need more computational capacity or bandwidth than the other
nodes. This variation can be combined with the size propagation technique described
above. Here, the child of the server can check whether n ≥ R holds.
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8 Evaluation of Convergence Speed

Here, we illustrate the cost of using mini-batch learning instead of stochastic gradient
descent, and we also illustrate the overhead of our cryptographic techniques on the
mini-batch algorithm.

We simulated our algorithm over the Spambase binary classification data set from
the UCI repository[14], which consists of 4601 records, 39.4% of which are positive.
10% of the records were reserved for testing. Each node had one record resulting in a
network size of 4601. The trees we tested had a trunk length of S with D additional
levels below the trunk with a branching factor of B. Each node stays alive during the
calculation of the batch-sum with probability P resulting in E nodes (E is a random
variable) that end up participating in the computation (see Figure 1).

The learning method we used was logistic regression [4]. We used the L2-regularized
logistic regression online update rule

w ← t

t+ 1
w +

η

t+ 1
(y − p)x

where w is the weight vector of the model, t is the number of samples seen by the
model (not including the new one), x is the feature vector of the training example, y is
the correct label (1 or 0), p is the prediction of the model (probability of the label being
1), and η is the learning parameter. We generalize this rule to mini-batches of size E as
follows:

w ← t

t+ E
w +

(
1

E

E∑
i=1

η

t+ i

)
E∑
i=1

(yi − pi)xi

where (yi − pi)xi is supposed to be calculated by the individual nodes, and summed
using Algorithm 1. After the update, t is increased by E instead of 1. η was set to 1000.

Our baseline is the case when one instance of stochastic gradient descent (SGD)
is started by each node and the nodes immediately forward all received models after
updating it, thereby utilizing all the available bandwidth (in practice users can set upper
bounds on this utilization, we assumed the maximal bandwidth is the same at all the
nodes). We run mini-batch with and without cryptography (secure mini-batch and mini-
batch). The number of instances we start of these mini-batch variants are chosen so
that they use the same bandwidth as SGD. With cryptography we use Algorithm 1 to
compute the gradient sum. Without cryptography we use the same tree but we do not
encode the messages. Instead, we propagate the plain partial sum instead of S different
encoded shares. Note that mini-batch with and without cryptography is in fact identical
except that with cryptography all the messages are at most about 2S times larger and
thus they take this much longer to transmit (see Section 6.2).

Figure 3 shows our results. Clearly, mini-batch gradient does not result in serious
performance loss in itself. Cryptography does add overhead that is linearly proportional
to the parameter S, since the message size includes the factor of S due to sending this
number of shares.
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Fig. 3. Misclassification rate (zero-one error) of secure mini-batch (left) and mini-batch (right)
averaged over the nodes and over 1000 different runs as a function of time (measured in SGD
steps).

9 Conclusion

We proposed a secure sum protocol to prevent the collusion attack in gossip learning.
The main idea is that instead of SGD we implement a mini-batch method and the sum
within the mini-batch is calculated using our novel secure algorithm. We can achieve
very high levels of robustness and very good scalability through exploiting the fact that
the mini-batch gradient algorithm does not require the sum to be precise. The algorithm
runs in logarithmic time and it is designed to calculate a partial sum in case of node
failures. It can tolerate collusion unless there are S consecutive colluding nodes on any
path to the root of the aggregation tree, where S is a free parameter. Under practical
parameter settings the communication complexity of the secure mini-batch algorithm
is only approximately a constant factor of 2S larger than that of the plain mini-batch
algorithm.
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