
HAL Id: hal-01775040
https://inria.hal.science/hal-01775040

Submitted on 24 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

LiveCloudInspector: Towards Integrated IaaS Forensics
in the Cloud

Julian Zach, Hans P. Reiser

To cite this version:
Julian Zach, Hans P. Reiser. LiveCloudInspector: Towards Integrated IaaS Forensics in the Cloud.
15th IFIP International Conference on Distributed Applications and Interoperable Systems (DAIS),
Jun 2015, Grenoble, France. pp.207-220, �10.1007/978-3-319-19129-4_17�. �hal-01775040�

https://inria.hal.science/hal-01775040
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


LiveCloudInspector: Towards
Integrated IaaS Forensics in the Cloud

Julian Zach and Hans P. Reiser

University of Passau, Innstr. 43, 94032 Passau, Germany
Email: julian.zach@t-online.de, hr@sec.uni-passau.de

Abstract. Cloud-based systems are becoming an increasingly attractive
target for malicious attacks. In IaaS environments, malicious attacks on
a cloud customer’s virtual machine may affect the customer, who can-
not use all diagnostic means that are available in dedicated in-house
infrastructures, as well as the cloud provider, due to possible subsequent
attacks against the cloud infrastructure and other co-hosted customers.
This paper presents an integrated approach towards forensics and in-
cident analysis in IaaS cloud environments. The proposed architecture
enables the cloud provider to securely offer forensics services to its cus-
tomers on a self-service platform. The architecture combines three impor-
tant analysis techniques and provides significantly better investigation
capabilities than existing systems: First, it supports host-based forensics
based on virtual machine introspection. Second, it offers live remote cap-
ture of network traffic. Third, and most importantly, it provides hybrid
combinations of the first two techniques, which enables enhanced analysis
capabilities such as support for monitoring encrypted communication.

1 Introduction

1.1 Motivation

The increasing shift of resources towards the cloud makes it necessary to deal
with new IT security challenges. As more and more resources are out-sourced into
the cloud, these will be a more likely target of malicious activities. Traditional
mechanisms for investigating such incidents are, to large extent, insufficient.

A basic problem is the separation between cloud provider and cloud user.
In an Infrastructure-as-a-Service (IaaS) cloud, the cloud customer is responsi-
ble for all software layers within a virtual machine, but in case of a security
incident, the customer cannot apply traditional investigation approaches and
tools that require direct access to the physical hardware. On the other hand,
the cloud provider has no knowledge about internals of the customer’s virtual
machines and thus is also in a weak position for an in-depth investigation. A
second important challenge is multi-tenancy. Significant efficiency benefits of
cloud computing stem from the shared use of resources by multiple customers.
A fundamental requirement of cloud infrastructures is the strict separation be-
tween multiple tenants using shared physical hardware. An investigation of one
customer must not affect the availability, integrity or confidentiality of resources
used by other customers.



1.2 Problem statement

It is straight-forward to use existing post-incident investigation tools that anal-
yse static main memory snapshots or analyse log files created during system
execution in an IaaS cloud environment. Main memory snapshots can efficiently
be created from within active virtual machines, and log files can be obtained from
the system within the virtual machine as well as from the cloud management
system. A fundamental limitations of these approaches, however, is that they en-
able only static a-posteriori analysis. What is currently missing are appropriate
methods for direct live investigations on a running system.

In this paper we propose a novel, integrated architecture for live IaaS foren-
sics. The architecture enables the cloud provider to offer forensics services to
customers via a secure interface. The architecture, which we implemented in the
LiveCloudInspector prototype, makes three important contributions:

– It enables remote host forensics based on virtual machine introspection
(VMI) with a self-service interface for customers;

– It enables efficient, transparent remote network forensics in IaaS cloud in-
frastructures;

– It offers novel analysis capabilities that yield additional insight by combining
host and network forensics.

The combined analysis makes important contributions to enhancing the in-
vestigation process. Specifically, it enables correlating recorded network traffic
with running processes, indicating exactly to which process data has been sent
to or received from; it supports dedicated network monitoring of selected pro-
cesses; and it supports transparent monitoring of encrypted network traffic using
VMI-based session key extraction.

This paper is structured as follows: In the next section, we discuss related
work. In Section 3, we summarize the network monitoring and virtual-machine
introspection mechanisms our work builds upon. Section 4 presents our architec-
ture. Section 5 describes and evaluates our prototype implementation. Finally,
we present our conclusions in Section 6.

2 Related Work

The problem of incident investigation in cloud computing environments has
gained some attention only in the recent years. Birk et al. [2] state that the ability
to perform forensic investigations in the cloud is of high relevance, but seldomly
discussed. The authors argue that guidelines and best practices for investiga-
tions in the cloud are rare, often outdated, or non-existent. Similarly, Taylor et
al. [12] conclude that “currently there do not appear to be any published guide-
lines that specifically address the conduct of computer forensic investigations of
cloud computing systems.”

Dykstra and Sherman [3] tried to deploy existing forensics tools such as
Guidance EnCase in an IaaS cloud to acquire forensic data remotely over the



Internet. The paper provides an excellent discussion of the limitations of such
an approach. In particular, it argues why data acquired that way might not be
trustworthy.

Martini and Choo [7] describe a conceptual framework for collecting forensic
data from a cloud environment. The paper includes an extensive discussion of
related work on digital forensics and cloud forensics on a broader scope than we
include here as well as a high-level description of a conceptual framework. To
our knowledge, no practical implementation of that framework exists so far.

In practice, the mechanism with most widespread support by existing cloud
providers is the export of virtual machine snapshots1. Such virtual machine snap-
shots contain data of the virtual disk, but not live data such as the main memory.
They can only be used for off-line forensic investigations. Some providers imple-
ment additional features such as Amazon Cloud Watch2, which provides basic
run-time monitoring features that collect various metrics about run-time be-
haviour, and Amazon Cloud Trail3, which records AWS API calls and delivers
log-files to the customer.

FROST (Forensic OpenStack Tool) [4] has recently been presented as a foren-
sic toolkit within the OpenStack platform. FROST collects data at the cloud
provider and host operating system level und makes it available to the customer
by additional API methods. These methods allow downloading API logs, firewall
logs and retrieving disk images. Similar to our approach, it advocates the idea
of integrating forensics tools and interfaces into a cloud platform management
infrastructure. What differentiates our work from FROST are enhanced mecha-
nisms for data acquisition and analysis, specifically supporting live analysis.

Gebhardt et al. [6] implemented a network forensics tool for the cloud that
extends the OpenNebula management platform. This tools allows recording net-
work traffic on demand and delivering network traffic dumps to the customer for
further investigation. The LiveCloudInspector includes a very similar approach
for network monitoring, but as a main contributions adds additional data acqui-
sition and analysis methods.

Our framework enhances these existing approaches by implementing both
network and host forensics based on dynamic run-time introspection in a single
integrated platform. The combination of network monitoring with host intro-
spection yields better insights and enables useful additional mechanisms such as
automated correlation of network traffic with running processes and automated
decryption of encrypted TLS channels based on secret-key extraction.

3 Background

3.1 Virtual machine introspection

Virtual machine introspection (VMI) is an established technology in which the
virtual machine monitor (VMM) transparently inspects internal data of a run-

1 http://aws.amazon.com/ec2/vm-import/ [validated on 2014-09-20]
2 http://aws.amazon.com/cloudwatch [validated on 2014-09-20]
3 http://aws.amazon.com/cloudtrail [validated on 2014-09-20]



ning virtual machine. The VMM has full control of all resources of the VM (such
as main memory, hard disks, and network devices), and thus is in a position for
accessing all of them.

Our prototype implementation builds upon the state-of-the-art introspection
library LibVMI4, which supports both Xen and KVM hypervisors. LibVMI re-
quires some knowledge about the OS running within the VM to interpret VM
memory correctly. In this paper, we assume that such information exists a priori
and can be provided statically to LibVMI. This should, for example, be the case,
if the user wants to investigate its own virtual machines. In situations in which
such information is not available, our system could be combined with approaches
that automatically bridge this semantic gap, such as Insight-VMI [10].

The first goal of our proposed architecture is to enable remote acquisition of
memory snapshots using VMI in an IaaS cloud-computing environment.

3.2 High-level memory analysis

While LibVMI offers some low-level API for transparently obtaining data from
a running VM, it frequently is desirable to derive more high-level information.
Several existing tools such as F-Response5 and VAD tools6 support such analysis
on the basis of a static main memory snapshot. In our prototype, we use the
Volatility framework7, which can also be combined with live VMI. Volatility has
a modular architecture and, for example, includes modules that based on a target
system’s main memory content enumerate all processes (pslist), existing network
connections (connscan), open files (filescan) and registry entries (hivelist), or
extract sections of main memory of individual processes (memdump).

The second goal of our proposed architecture is to enable secure remote use
of this tool in a public cloud environment.

3.3 Network monitoring background

According to Garfinkel [5], tools for network forensics operate either host-based
(such as Wireshark8) or network-wide (such as NIKSUN NetDetector). They
either capture all network packets and store them for later analysis (“catch-it-as-
you-can”) or analyse packets directly after reception and store only information
produced by that analysis for later further processing (“stop-look-and-listen”).

Our third goal is to enable remote packet sniffing in a cloud environment,
which means that we aim at designing a service that captures all network pack-
ets of a virtual machine and stores them for later analysis by the client. For
such a host-based catch-it-as-you-can service, we additionally consider continu-
ous monitoring of virtual machines that are migrated and VMI-assisted filtering
of recorded traffic.
4 https://code.google.com/p/vmitools/ [validated 2014-09-20]
5 https://www.f-response.com/ [validated 2014-10-20]
6 http://vadtools.sourceforge.net [validated 2014-10-20]
7 http://www.volatilityfoundation.org [validated 2014-09-20]
8 https://www.wireshark.org [validated 2014-09-20]



3.4 TLS decryption background

Analysis tools such as Wireshark contain protocol dissectors for hundreds of
different protocols. Dissectors are able to automatically interpret and display
protocol details. Wireshark is able to dissect TLS traffic, and if provided with
the RSA private key, it can decrypt messages used for exchanging the RSA-
encrypted session key (RSA key exchange). After obtaining the session key, all
subsequent TLS traffic can easily be decrypted.

Shamir et al. [11] have shown that RSA private keys can be located in main
memory dumps based on algebraic properties. Such approach could be used
for our system, but only with significant limitations: It works only for incoming
connections (otherwise, the session key is sent to the remote host, encrypted with
the remote host’s public key, and the corresponding private key of the remote
host cannot be retrieved locally), and it does not work with other key exchange
mechanisms that offer forward secrecy, such as Diffie Hellman and ECDH.

Our goal is to reuse as much as possible of the Wireshark TLS dissector,
but enhance it with VMI mechanisms that retrieve the session key from main
memory. We want to be able to monitor all TLS traffic, both incoming and
outgoing, and independent of the key exchange mechanisms used.

4 Design and Architecture

Our main goal is to design a secure system that enables cloud users and au-
thorized third parties to perform investigations on some target VMs as a self
service (i.e., without manual support by the cloud provider). In this section, we
first present the role model of our approach and the high-level design, followed
by a detailed description of workflows for simple and complex analysis tasks.

4.1 Role model

Various roles can be differentiated in an IaaS cloud. Figure 1 illustrates the roles
that we consider. Our design makes the assumption that the cloud provider
itself (including its staff) is trustworthy. We do not consider malicious insiders
(such as a malicious administrator of the cloud provider). Such cases might be
tackled with trusted cloud computing techniques, for example such as presented
by Rocha et al. [9], but this is beyond the scope of the present paper. We consider
the following attacks against our architecture:

– Unauthorized malicious third parties that try to attack the forensics system
from outside;

– Users and external investigators that are authorized to investigate virtual
machines of a specific user, but exploit the forensics system to gain access
to or harm other users, violating the separation of tenants;

– Attackers that deploy (as a user) their own virtual machines within the
cloud infrastructure and use those as a starting point for attacks against the
forensics system.



Fig. 1. Trusted and untrusted roles in the LiveCloudInspector architecture: The cloud
service provider (CSP) including its staff is trusted, while all other parties (external
investigators, users, VMs hosted by the CSP) are untrusted.

4.2 Design

Figure 2 shows an overview of the architecture of LiveCloudInspector. It distin-
guishes between two parts of the forensics system. First, a dedicated forensics
platform implements all supported workflows as well as the public service inter-
face. Workflows are included for low-level direct main memory dumps of virtual
machines, for selected memory forensic operations, and for network forensics.
The workflow implementations interact with corresponding counterparts that
are deployed as a forensic remote service on all cloud hosts.

Our design does not integrate the forensics mechanisms deeply into a cloud
management platform such as OpenStack9 or OpenNebula10. Instead we aim
at proposing a portable architecture that can, with little effort, be reused on
multiple cloud platforms or different versions of the same platform.

Nevertheless, there are two dependencies on the cloud management system.
First, we do not want to have a separate user management system. Instead, Live-
CloudInspector will use a platform-specific adaptor to interact with the cloud
management system for user authentication and authorization. Second, we de-
pend on the cloud management system for locating the physical host of target
virtual machines and for tracking them on migration operations.

9 http://www.openstack.org [validated 2014-09-20]
10 http://opennebula.org [validated 2014-09-20]



Fig. 2. The LiveCloudInspector architecture adds two components to a cloud environ-
ment: A dedicated Forensics Platform and decentralized Forensics Remote Services
deployed on all cloud hosts.

The service interface of the forensics platform is the public, remotely accessi-
ble interface for users and external investigators. After checking the authorization
of a client to access the forensics platform via the cloud management system,
it accepts commands for VMI, memory forensics or network forensics, retrieves
the location of a virtual machine from the platform’s management layer, and
finally remotely interacts with the corresponding forensic remote service.

In the following, we first discuss the details of all simple workflows, which are
workflows for either recording network traffic or for VMI-based host forensics,
followed by a discussion of complex workflows, which use a combination of host
introspection and network monitoring in order to derive more in-depth insights.

4.3 Simple workflows

Remote main memory dump is the first workflow and enables remote snap-
shots of the main memory of a virtual machine. Note that this is fundamentally
different from the usual disk snapshot generation supported by several cloud
providers. Often, relevant artefacts of problems or malicious activities manifest
themselves only in main memory, and not on persistent disk storage.

In this workflow, a cloud user or an authorized investigator requests a memory
dump at the LiveCloudInspector platform. The platform checks user authenti-
cation and authorization and, if access to the specified VM is granted, retrieves
the physical location of the VM from the cloud management platform and re-
quests a memory dump from the forensics remote service at the physical host.
Finally, the memory dump is made available for download for the cloud user or
investigator.



The advantage of this workflow is that the investigator can use any tool of
his/her choice to analyse the memory dump. Under the assumption of a trust-
worthy cloud infrastructure and forensics service, a digital signature attached to
the memory dump by the forensics remote service can guarantee the validity of
the snapshot. The disadvantage of this workflow is the cost for transferring the
memory dump (potentially several gigabytes for large VM instances). A further
limitation of the approach is that information in CPU registers or main memory
cache is not recorded in the main memory dump.

It should be noted that in fact main memory forensics in a virtual machine
is much easier than main memory forensics on a traditional physical host. The
main memory of a virtual machine can easily be extracted using introspection
tools such as libVMI, whereas the acquisition of main memory content of physical
machines requires dedicated hardware or, alternatively, software running on the
host that potentially is subject to (unnoticed) alterations.

Remote memory forensics enables remote execution of more complex
forensics analysis of VM memory. The data source is the same as in the first
workflow (i.e., the main memory of a target virtual machine), but instead of
transferring the whole memory dump to the investigator, the analysis is per-
formed directly at the target host. For this purpose, such analysis capabilities
are enabled directly as a service. In our prototype implementation, we offer
remote execution of Volatility commands. Volatility supports many high-level
diagnostic operations, as briefly discussed in Section 3, and is able to directly
interact with VM memory using libVMI.

The advantage of this workflow is that the memory snapshots do not need
to be transferred to the investigator. The main disadvantage is that only those
remote forensics tools and operations are supported that have been implemented
in the forensics platform. We do not support the execution of arbitrary code
selected by the user, because this might raise a lot of security questions.

Network forensics yields additional information for the analysis of anoma-
lous occurrences and intrusions by observing communication patterns. For exam-
ple, some malware might be periodically communicating with a command-and-
control server. Observing network traffic using physical access to the network is
an established approach in forensics. In a public IaaS cloud, the investigator has,
in most if not all cases, no direct access to physical hosts. Instead, a mechanism
for remote acquisition of network traffic is required.

Multi-tenancy potentially raises additional challenges for such remote acqui-
sition, depending on how multi-tenancy is handled by the network infrastructure
used by the cloud provider. If each customer (or each VM) has its own, separate
virtual network, the traffic of this virtual network can be used for investigation.
If multiple tenants share the same local network, additional filtering needs to be
applied to the recorded traffic in order to assure strict separation of tenants.

The network monitoring part of the LiveCloudInspector approach is based on
previous work by Gebhardt et al. [6]. Unlike the previous work, which integrated
the forensics service deeply into OpenNebula, our focus was put on minimizing



Fig. 3. This image illustrates the high-level interactions between forensics platform
(bottom host) and forensics remote service (all other hosts) during VM migration.

the dependency on the cloud management system. This makes LiveCloudInspec-
tor portable to other cloud management infrastructures.

The basic network capture service implements the recording of network traf-
fic on request by the user. The traffic capture is remotely initiated by remote
interaction between forensics platform and forensics remote service. In order to
avoid storage overhead on the physical host where the traffic is recorded and also
in order to minimize the delay between recording and analysis, each recorded
packet is directly sent from the forensics remote service to the forensics platform,
where it is made available for download to the investigator.

Virtual machine migration is handled by an extension of the network
forensics workflow. A cloud management platform may perform live VM migra-
tion for purposes such as load balancing or maintenance operations. Many VM
managers support not only cold migration (shutting down a VM and relaunch-
ing it on a different host), but also hot (live) migration (moving the VM to a
different host without shut-down or interruption of client connections).

The LiveCloudInspector supports appropriate coordination mechanisms for
handling continuous network capturing during VM migration, as illustrated by
Figure 3. For this purpose, it is necessary to receive pre-migration and post-
migration events from the cloud management platform, which enable a coordi-
nated activation of traffic acquisition at the migration target and deactivation
at the migration source after finishing the migration. Traffic from both the old
and the new location are collected by the Forensics Platform and presented to
the investigator as a single network capture.



4.4 Complex workflows

One of the most significant advantages of a hybrid network and host forensics
approach is that data of both sources can be combined, which yields several
benefits.

Process-specific network monitoring for a single process running within
a virtual machine is a first example of a complex workflow. A problem of remote
network forensics is that potentially large amounts of recorded data (the whole
traffic of a virtual machine) need to be transferred to the investigator.

The LiveCloudInspector allows the investigator to filter the recorded traffic
according to running processes within the VM. In order to achieve this, infor-
mation (IP address and TCP/UDP port numbers) from the captured network
is correlated with data about network connections and processes acquired by
virtual-machine memory introspection. While this is similar to network foren-
sics workflow, it has the big advantage of requiring less data to be transferred
to the investigator.

Correlating process names with network traffic is a workflow that can
be used for monitoring all network communication and correlating each connec-
tion with information about the communicating process on the local machine.
This might yield only little benefit for incoming connections towards the virtual
machine, as usually the target process will be uniquely identified by the destina-
tion port and target ports other than the intended services will likely be blocked
by a firewall.

Information about corresponding processes can be of valuable benefit for out-
going connections (i.e., originating at the virtual machine under investigation).
In this cases, local port numbers usually do not reveal any information about
the process the connection originates from.

Monitoring encrypted TLS communication is a possibly even more
interesting benefit of the combination of host and network forensics. The basic
idea is that the session key of a TLS session can directly be extracted using
virtual-machine introspection, and then later be used to decrypt all encrypted
TLS communication.

The TLS decrypter of LiveCloudInspector can be activated by the network
monitor. If a TLS connection is detected, we need to wait for the right point in
time for starting the key search. The session key has been calculated by the TLS
implementation after the initial TLS handshake has finished and encryption is
started using a ChangeCipherSpec message. At this point in time, a main memory
snapshot of the communicating process within the VM is created and the search
for the session key is started concurrent to continuously recording the encrypted
traffic.

5 Implementation and Evaluation

5.1 Implementation

We have implemented the proposed architecture in the LiveCloudInspector pro-
totype.



This prototype is designed for working with the OpenNebula cloud manage-
ment infrastructure. We tried to avoid strong dependency on a specific cloud
management product, so we expect that it is easy to port our prototype to other
systems. The user interface of LiveCloudInspector is not integrated internally
into OpenNebula, but instead a separate web-based interface was created. For
this purpose, a front-end running as Java Server Pages on an Apache Tomcat
application server were implemented. The front end enables the user to activate
several backends for low-level VMI access, for high-level memory introspection,
and for network forensics.

The user interface interacts with OpenNebula for authenticating users. The
authorization to access virtual machines via LiveCloudInspector is thus not han-
dled with a separate user management system, instead the internal user man-
agement of OpenNebula is used. For this purposes we implemented a Custom
Realm for Tomcat11 that forwards a user authentication request to OpenNebula
authentication core.

A forensics remote service implemented in Java is executed on each cloud
host. This service offers a remote interface for interaction with the forensics
server. We used SIMON Remote12 for implementing calls from the server to the
remote service, as it is easier to deploy than standard Java RMI. The remote
service uses TLS with additional client authentication to make sure that only
the forensics server can interact with the remote service.

Our current prototype for the TLS decryption assumes that the session key is
directly stored in main memory as a byte array. So far, we successfully validated
our key extractor with OpenSSL, JSSE, GnuTLS and Microsoft Schannel imple-
mentations. We directly use the decryption functionality of the Wireshark TLS
dissector, and thus our implementation works with all TLS ciphers supported
by Wireshark.

5.2 Rootkit case study

As a first use case we considered a virtual machine infected by the Linux rootkit
KBeast. This rootkit is installed as a kernel module and implements features
such as key logging and a remote backdoor. The rootkit takes various measures
for hiding itself from the user. For example, it hides itself from commands listing
the loaded kernel modules (such as lsmod), it hides the backdoor process from
the process list, and hides network connections of the backdoor from tools such
as netstat. It is, thus, difficult to detect the rootkit by tools running within the
virtual machine.

Using our LiveCloudInspector prototype, we were able to remotely execute
volatility functions, e.g., to extract information about kernel modules, network
connections, and process lists via VM introspection. As the rootkit is not able
to manipulate the information extracted using VMI, we were immediately able
to distinguish between an infected and a correct virtual machine.

11 http://tomcat.apache.org/tomcat-7.0-doc/realm-howto.html [validated 2014-10-20]
12 http://dev.root1.de/projects/simon [validated 2014-10-20]



5.3 Security evaluation

Our IaaS forensics architecture aims at enhancing the security of cloud comput-
ing by enhancing the capabilities for incident analysis, but it also represents an
additional component that increases the system’s complexity and attack surface
and possibly causes additional security risks. We therefore discuss protection
mechanisms included in our architecture against the threads described in Sec-
tion 4.1.

Unauthorized malicious third parties that try to attack the forensics system
from outside can interact with the service interface of the forensics platform. Our
prototype implements client authentication by delegation to the OpenNebula
platform. Assuming a correct implementation of the authorization system in the
forensics platform, only users that can access the cloud management platform
can access the forensics platform.

Clients that are valid users and thus successfully authenticate to the foren-
sics platform might try to acquire information about other users, violating the
strict separation of tenants. In our system, for both network and host forensics,
OpenNebula’s VM-ID is used to identify the target virtual machine. For all oper-
ations, OpenNebula is contacted for all access to that VM-ID, and OpenNebula
checks the user’s authorization. Only users that are authorized to access a vir-
tual machine via the OpenNebula API are allowed to access it via the forensics
platform.

User input is also used in the interaction between the forensics platform’s
backends and the forensic remote services. In particular, for remote memory
forensics, the user has a lot of control over arguments passed to the Volatility
tool. Careful input validation is necessary in order to avoid possible injection
attacks at this interface.

The Forensic Remote Service can also be a target of malicious attacks, origi-
nating either from outside or from a virtual machine within the cloud infrastruc-
ture. Besides blocking such interaction at the network level using firewall rules we
additionally implemented two-way authentication between the Forensics Plat-
form and Forensics Remote Services, making this kind of attack infeasible.

5.4 Limitations

A frequently discussed limitation of introspection-based tools for malware anal-
ysis is split-personality malware. Examples such as RedPill and variants [8] show
that it is easy for malware to detect whether it is running in a virtualized en-
vironment and thus could behave differently than in a production environment.
This issue is not a problem for our approach, as we apply VMI directly in the
production environment.

What is a potential problem are attempts to subvert VMI, as shown for ex-
ample by DKSM [1]. Our current prototype implementation is based on LibVMI,
which relies on the assumption that the provided kernel system map corresponds
to the actual kernel in the VM. If the layout of kernel data structures is altered
by malware within the virtual machine, VMI can possibly produce wrong data.



This is not a direct limitation of our architecture itself, but is an implication of
the introspection mechanism in use, and the investigator using our system needs
to be aware of this potential problem. The development of more robust intro-
spection solutions that are not vulnerable to such attacks will help to remedy
this limitation.

Our monitoring approach for encrypted communication works for traffic that
uses standard implementations of TLS. We assume that session keys are stored
in main memory (which all popular implementations of TLS that we are aware
of do), and that traffic is encrypted according to the specification of TLS. This
is most likely true for all software intentionally running within the virtual ma-
chine (this is under full control of the user of the VM). Often, even malware
uses standard TLS for communication on command-and-control channels, but
this could easily be replaced by some other proprietary encryption mechanisms.
Our prototype will not be able to decrypt such connections that use encryption
methods different to standard TLS.

6 Conclusions

In this paper, we have presented the design and implementation of LiveCloudIn-
spector. LiveCloudInspector enables forensics as a service in public cloud envi-
ronments. The architecture combines, in a single system, three mechanisms that
support the analysis of security incidents:

– It enables transparent live host forensics based on virtual-machine introspec-
tion. This feature includes both the possibility of acquiring low-level memory
snapshots and the possibility of analysing the running system with high-level
Volatility commands.

– It enables remote network forensics by implementing a live network traffic
capture mechanism. This mechanism makes sure that captured data is fil-
tered correctly in a multi-tenant environment, and it also supports virtual
machine migration during the capture process.

– It combines network monitoring with VMI-based host analysis. This yields
interesting new analysis capabilities, such as directly monitoring traffic of
specific processes, correlating information about processes with network traf-
fic, and secret key extracting for monitoring encrypted TLS communication.
The session key extraction works for both incoming and outgoing connec-
tions, it even supports channels established with perfect forward secrecy (i.e.,
Diffie-Helman based session key establishment), and unlike interception-
based approaches it is fully transparent for the communication endpoints.

With these contributions, our architecture enhances the possibilities for in-
vestigating security incidents in infrastructure-as-a-service cloud environments.



Acknowledgments

The research leading to these results was supported by the “Bavarian State
Ministry of Education, Science and the Arts” as part of the FORSEC research
association.

References

1. Bahram, S., Jiang, X., Wang, Z., Grace, M., Li, J., Srinivasan, D., Rhee, J., Xu,
D.: DKSM: Subverting virtual machine introspection for fun and profit. In: 29th
IEEE Symposium on Reliable Distributed Systems (SRDS). (Oct 2010) 82–91

2. Birk, D., Wegener, C.: Technical issues of forensic investigations in cloud computing
environments. In: Proceedings of the 2011 Sixth IEEE International Workshop on
Systematic Approaches to Digital Forensic Engineering. SADFE ’11, Washington,
DC, USA, IEEE Computer Society (2011) 1–10

3. Dykstra, J., Sherman, A.T.: Acquiring forensic evidence from infrastructure-as-
a-service cloud computing: Exploring and evaluating tools, trust, and techniques.
Digital Investigation 9 (2012) 90–98

4. Dykstra, J., Sherman, A.T.: Design and implementation of FROST: Digital forensic
tools for the OpenStack cloud computing platform. Digit. Investig. 10 (August
2013) 87–95

5. Garfinkel, S.: Network forensics: Tapping the internet. Available at
http://www.oreillynet.com/pub/a/network/2002/04/26/nettap.html (2015-04-01)

6. Gebhardt, T., Reiser, H.P.: Network forensics for cloud computing. In: DAIS.
(2013) 29–42

7. Martini, B., Choo, K.R.: An integrated conceptual digital forensic framework for
cloud computing. Digital Investigation 9(2) (2012) 71–80

8. Paleari, R., Martignoni, L., Roglia, G.F., Bruschi, D.: A fistful of red-pills: How
to automatically generate procedures to detect cpu emulators. In: Proceedings of
the 3rd USENIX Conference on Offensive Technologies. WOOT’09, Berkeley, CA,
USA, USENIX Association (2009)

9. Rocha, F., Abreu, S., Correia, M.: The final frontier: Confidentiality and privacy
in the cloud. Computer 44(9) (Sept 2011) 44–50

10. Schneider, C., Pfoh, J., Eckert, C.: A universal semantic bridge for virtual machine
introspection. In: Proceedings of the 7th International Conference on Information
Systems Security. ICISS’11, Berlin, Heidelberg, Springer-Verlag (2011) 370–373

11. Shamir, A., Someren, N.v.: Playing ”hide and seek” with stored keys. In: Pro-
ceedings of the Third International Conference on Financial Cryptography. FC ’99,
London, UK, UK, Springer-Verlag (1999) 118–124

12. Taylor, M., Haggerty, J., Gresty, D., Lamb, D.: Forensic investigation of cloud
computing systems. Netw. Secur. 2011(3) (March 2011) 4–10


