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Abstract. In this paper, we use a developer-oriented statistical ap-
proach to understand what causes people in complex software devel-
opment networks to decide to fork (break away), and what changes
a community goes through in the run-up to a decision to break-up.
Developing complex software systems is complex. Software developers
interact. They may have the same or different goals, communication
styles, or values. Interactions can be healthy or troubled. Troubled in-
teractions cause troubled communities, that face failure. Some of these
failures manifest themselves as a community split (known as forking).
These failures affects many people; developers and users. Can we save
troubled projects? We statistically model the longitudinal socio-grams
of software developers and present early indicators and warning signs
that can be used to predict an imminent break-up decision.

1 Introduction

Social networks are a ubiquitous part of our social lives, and the creation of on-
line social communities has been a natural extension of this phenomena. Social
media plays an important role in software engineering, as software developers
use them to communicate, learn, collaborate and coordinate with others [32].
Free and Open Source Software (FOSS) development efforts are prime examples
of how community can be leveraged in software development, where groups are
formed around shared interest, and depend on continued interest and involve-
ment to stay alive [25].

Community splits in free and open source software development are referred
to as forks, and are relatively common [28]. Robles et al. [28] define forking
as “when a part of a development community (or a third party not related to
the project) starts a completely independent line of development based on the
source code basis of the project.”

Although the bulk of collaboration and communication in FOSS communi-
ties occurs online and is publicly accessible for researchers, there are still many
open questions about the social dynamics in FOSS communities. Projects may
go through a metamorphosis when faced with an influx of new developers or the
involvement of an outside organization. Conflicts between developers’ divergent
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visions about the future of the project may lead to forking of the project and
dilution of the community. Forking, either as an acrimonious split when there is
a conflict, or as a friendly divide when new features are experimentally added,
affect the community [8].

Previous research on forking ranges from the study by Robles et al. [28] that
identified 220 significant FOSS projects that have forked over the past three
decades, and compiled a comprehensive list of the dates and reasons for forking
to the study by Baishakhi et al. [7] on post-forking porting of new features or
bug fixes from peer projects. It encompasses works of Nyman on developers’
opinions about forking [27], developers motivations for performing forks [24],
the necessity of code forking as tool for sustainability [26], and Syeed’s work on
sociotechnical dependencies in the BSD projects family [33].

Most existing research on forking, however, is post-hoc. It looks at the fork-
ing events in retrospect and tries to find the outcome of the fork; what happened
after the fork happened. The run-up to the forking events are seldom studied.
This leaves several questions unanswered: Was it a long-term trend? Was the
community polarized, before forking happened? Was there a shift of influence?
Did the center of gravity of the community change? What was the tipping
point? Was it predictable? Is it ever predictable? We are missing that context.

Additionally, studies of FOSS communities tend to suffer from an important
limitation. They treat community as a static structure rather than a dynamic
process. Longitudinal studies on open source forking are rare. To better un-
derstand and measure the evolution, social dynamics of forked FOSS projects,
and integral components to understanding their evolution and direction, we
need new and better tools. Before making such new tools, we need to gain a
better understanding of the context. With this knowledge and these tools, we
could help projects reflect on their actions, and help community leaders make
informed decisions about possible changes or interventions. It will also help
potential sponsors make informed decisions when investing in a project, and
throughout their involvement to ensure a sustainable engagement.

We use an actor-oriented longitudinal statistical model [30] to study the
evolution and social dynamics of FOSS communities, and to investigate the
driving forces in formation and dissolution of communities. This paper is a
part of a larger study aiming to identify better measures for influence, shifts of
influence, measures associated with unhealthy group dynamics, for example a
simmering conflict, in addition to early indicators of major events in the lifespan
of a community. One set of dynamics we are especially interested in, are those
that lead FOSS projects to fork.

2 Related Work

The free and open source software development communities have been studied
extensively. Researchers have studied the social structure and dynamics of team
communications [9][16][17][18][23], identifying knowledge brokers and associated
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activities [31], project sustainability [23][26], forking [25][3][4][5], requirement
satisfaction [13], their topology [9], their demographic diversity [20], gender
differences in the process of joining them [19], and the role of age and the core
team in their communities [1][2][6][12][35]. Most of these studies have tended
to look at community as a static structure rather than a dynamic process [11].
This makes it hard to determine cause and effect, or the exact impact of social
changes.

Post-forking porting of new features or bug fixes from peer projects happens
among forked projects [7]. A case study of the BSD family (i.e., FreeBSD,
OpenBSD, and NetBSD, which evolved from the same code base) found that
10-15% of lines in BSD release patches consist of ported edits, and on average
26-58% of active developers take part in porting per release. Additionally, They
found that over 50% of ported changes propagate to other projects within three
releases [7]. This shows the amount of redundant work developers need to do
to synchronize and keep up with development in parallel projects.

Visual exploration of the collaboration networks in FOSS communities was
the focus of a study that aimed to observe how key events in the mobile-device
industry affected the WebKit collaboration network over its lifetime. [34] They
found that coopetition (both competition and collaboration) exists in the open
source community; moreover, they observed that the “firms that played a more
central role in the WebKit project such as Google, Apple and Samsung were by
2013 the leaders of the mobile-devices industry. Whereas more peripheral firms
such as RIM and Nokia lost market-share” [34].

The study of communities has grown in popularity in part thanks to ad-
vances in social network analysis. From the earliest works by Zachary [36] to
the more recent works of Leskovec et al. [21][22], there is a growing body of
quantitative research on online communities. The earliest works on commu-
nities was done with a focus on information diffusion in a community [36].
The study by Zachary investigated the fission of a community; the process of
communities splitting into two or more parts. They found that fission could be
predicted by applying the Ford-Fulkerson min-cut algorithm [14] on the group’s
communication graph; “the unequal flow of sentiments across the ties” and dis-
criminatory sharing of information lead to subcommunities with more internal
stability than the community as a whole.[36]

3 Research Goals

Social interactions reflect the changes the community goes through, and so, it
can be used to describe the context surrounding a forking event. Social inter-
actions in FOSS can happen, for example, in the form of mailing list email
correspondence, bug report issue follow-ups, and source code contributions and
co-authoring. We consider some forking decisions [28] to be socially related,
such that, they should have left traces in the developers’ interactions data. Such
traces may be identified using longitudinal modeling of the interactions, without
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digging into the contents of the communications. These three reasons are (1)
Personal differences among developer team, (2) The need for more community-
driven development, and (3) Technical differences for addition of functionality.
In this study, we analyzed, quantified and visualized how a community is struc-
tured, how it evolves, and the degree to which community involvement changes
over time. Our over-arching research objective was to identify these traces/social
patterns associated with different types of undesirable forking

R.G. 1: Do forks leave traces in the collaboration artifacts of open source
projects in the period leading up to the fork? To study the properties of possible
social patterns, we need to verify their existence. More specifically, we need to
check whether the possible social patterns are manifested in the collaboration
artifacts of open source projects, e.g., mailing list data, issue tracking systems
data, source code data. This is accomplished by statistical modeling of developer
interactions as explained in more detail in section 4.

R.G. 2: What are the traces that can explain longitudinal changes in so-
ciograms in run-up to a forking event? What quantitative measure(s) can be
used as an early warning sign of an inflection point (fork)? Are there metrics
that can be used to monitor the odds of change, (e.g. forking-related patterns)
ahead of time? This will be accomplished by statistical modeling of developer
interactions as explained in more detail in section 4.

4 Methodology

Detecting change patterns, requires gathering relevant data, cleaning it, and
analyzing it. In the following subsections, we describe the proposed process in
detail. Figure 1 shows the overview of our methodology.

4.1 Data Collection

The data collected were developer mailing lists, where developers’ interact by
sending and receiving emails, and source-code repository contribution logs,
where developers interact by modifying the code. The sociograms were formed
based on interactions among developers in these settings. For the purpose of
our larger study, not included in this paper, we gathered data for 13 projects,
in three categories of forking, plus a control group. We have included the data
for a project that forked in 2010. The name is left out for anonymity, to prevent
defaming a project, and to prevent individuals from becoming target of blame,
in case our findings may be misused. Mailing list data was cleaned such that
the sender and receiver email ID case-sensitivity differences would be taken into
account, to prevent duplicity. The Source Code repository version control logs
were used to capture the source code activity levels of the developers who had
contributed more than a few commits. The set of the developers who had both
mailing list activity and source code repository activity formed the basis of the
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Data Collection
Mailing Lists

Bug Tracking Repositories
Codebase

Raw Data
[Data Cleaning and Wrangling}

12 equioespaced directed graphs
for each project

12 Directed Graph representation of each project’s collaborations

Morkov Chain Monte Carlo Estimation
Rate of Change
Parameter Estimates with p-value and

S.e.
\ Model parameter estimates

Statistical Model
Test of Goodness of Fit
Relative Importance of Effects

A well-fitting statistical model (i.e.\v&hted sum of effects) for each project

Multi-Parameter T-test and MANOVA
Project Comparison

Multivariate Analysis of Variance be-
tween Multiple Groups, with p-value
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Results

Reresented Collaboration with Longitudinal Change
Modeled change and Rate of change statistically
Expressed underlying properties/values of commu-
nity Behavior as model effects and their significance
and relative importance

Good starting point for gaining an understanding of
longitudinal change of underlying properties of an
open source project community

Fig. 1: The methodology in a glance

socio-grams we used in our analysis. The time period for which data was col-
lected is one year leading to when the decision to break-up (fork) happened.
This should capture the social context of the run-up to the forking event.

Social connections and non-connections can be represented as graphs, in
which the nodes represent actors (developers) and the edges represent the in-
teraction(s) between actors or lack thereof. Such graphs can be a snapshot of
a network — a static sociogram — or a changing network, also called a dynamic
sociogram. In this phase, we process interactions data to form a communication
sociogram of the community. Two types of analysis can be done on sociograms:
Either a cross-sectional study, in which only one snapshot of the network is
looked at and analyzed; or a longitudinal study, in which several consecutive
snapshots of the network are looked at and studied. We are interested in patterns
in the run-up to forks, therefore, unlike most existing research on forking, we did
a longitudinal study. We formed 10 equispaced consecutive time-window snap-
shots of the socio-grams for the community, using the mailing list interaction
data and the source code repository commit activity data. These socio-grams
were used to find a well-fitting statistical model that would explain how they
changed from time-window t; through time-window t1¢.
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4.2 The Statistical Model

Longitudinal evolution of a network data is the result of many small atomic
changes occurring between the consecutively observed networks. In our case,
software developers are the actors in the networks, and they can form a con-
nection with another developer, break off an existing connection, or maintain
their status quo. These are the four possibilities of atomic change within our
evolving networks: (1) forming a new tie; (2) breaking off an existing tie; (3)
maintaining a non-connection; and (4) maintaining a connection. We assume a
continuous-time network evolution, even though our observations are made at
two or more discrete time points.

The state-of-the-art in studying longitudinal social networks, is the idea
of actor-oriented models [30], based on a model of developers changing their
outgoing ties as a consequence of a stochastic optimization of an objective
function. This framework assumes that the observed networks at discrete
times, are outcomes of a continuous-time Markov process. In the case of open
source developers, the actor-oriented model, can be informally described as
OpenSourceDeveloper-oriented model, in which, it is assumed that developers
are in charge of their communication and collaboration choices. They choose
to have interactions with certain other developers and/or they choose to stop
having interactions with another developer. In short, they have autonomy in
choosing their connections.

Let the data for our statistical developer-oriented model be M repeated
observations on a network with g developers. The M observed networks (at
least two) are represented as directed graphs with adjacency matrices X (t,,,) =
(Xij(tm)) for m =1,..., M, where i and j range from a to g. The variable X;;
shows whether at time ¢ there exists a tie from ¢ to j (value 1) or not (value 0).
Be definition, Vi, X;; = 0 (i.e. the diagonal of the adjacency matrices).

In order to model the network evolution from X (¢1) to X (¢2), and so on, it
is natural to treat the network dynamics as the result of a series of small atomic
changes, and not bound to the observation moment, but rather as a more of less
continuous process. In this way, the current network structure is a determinant
of the likelihood of the changes that might happen next [10].

For each change, the model focuses on the developer whose tie is changing.
We assume that developer ¢ has control over the set of outgoing tie variables
(Xi1s ., Xig) (i-e. the i*" row of the adjacency matrix). The network changes
one tie at a time. We call such an atomic change a ministep. The moment at
which developer 7 changes one of his ties, and the kind of change that he makes,
can depend on attributes represented by observed covariates, and the network
structure. The moment is stochastically determined by the rate function, and
the particular change to make, is determined by the objective function and the
gratification function. We cannot calculate this complex model exactly. Rather
than calculating exactly, we estimate it using a Monte Carlo Markov Chain
method. The estimated model is used to test hypotheses about the forked FOSS
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communities. These above three functions and their definitions taken from [29]
are explained in detail the following subsections.

4.2.1 Rate Function The rate function \;(z) for developer i is the rate at
which developer i’s outgoing connections changes occur. It models how fre-
quently the developers make ministeps. The rate function is formally defined
[29] by

Ai(z) = dltiglo %P(Xij(t +dt) # Xi;(t) for some j€{i,.., g} X(t) =x)).
(1)

The simplest specification of the rate of change is that all developers have the
same rate of change of their ties.

4.2.2 Objective Function The objective function f;(s) for developer i is the
value attached to the network configuration x. The idea is that, given the op-
portunity to make a change in his outgoing tie variables (X1, ..., Xiq), developer
1 selects the change that gives the greatest increase in the objective function.
We assume that if there is difference between developers in their objective func-
tions, these differences can be represented based on the model covariates [29].
For more details, please refer to [29]. The following weighted sum represents the
objective function (2):

L
fi(B,x) = Brsir(z) (2)
k=1

Parameters § = (f1, ..., B1) is to be estimated. Functions s;x(x) can be the
following [29]:

4.2.2.1 Structural Effects For the structural effects, the following were used in
the objective function.

1. The reciprocity effect, which reflects the tendency toward reciprocation of
connections. A high value for its model parameter will indicate a high ten-
dency of developers for reciprocated interactions.

2. The closure effects (e.g. in friendship networks, it means, friends of friends
tend to become friends) In our case, Transitive triplets effect, which models
the tendency toward network closure. It reflects the preference of developers
to be connected to developers with similar outgoing ties.

3. Three-cycles, may be interpreted as the tendency toward local hierarchy. It
is similar to reciprocity defined for three developers, and is the opposite of
hierarchy.

4. Activity, which reflects the tendency of developers with high in-degree/out-
degrees to send out more outgoing connections because of their current high
in-degree/out-degree.
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5. Covariate effects: Developers’ covariates may influence the formation or
termination of ties. For example: (a) Covariate V-related activity, which
reflects the developer i’s out-degree multiplied by his covariate V value. (b)
Covariate V-related dissimilarity, which reflects the sum of differences in co-
variate V values’ between developer i and all developers to whom developer
i is connected. We use the following developer attributes as covariates:

— (Covariate V1) Developer’s level of activity (i.e. mailing list posts per
month)

— (Covariate V1) Developer’s level of contribution (i.e. code commits per
month) as shown in Table 2.

— (Covariate V4) Developer’s seniority as a development community mem-
ber (i.e. how many total contributions they have had in the lifetime of
the project)

6. out-out degree assortativity, which reflects which reflects the tendency of
developers with high out-degree to be connected to other developers with
high out-degrees

4.2.3 Markov Chain Transition Rate Matrix The components of the
developers-oriented model, described above, define a continuous-time Markov
chain on the space x of all directed graphs on this set of g developers. This
Markov chain is used to estimate the model parameters stochastically, instead
of calculating them exactly, which is not possible for us. This Markov chain
has a transition rate matrix. The transition rate matrix (also called intensity
matrix), for this model is given by expression (3):

gij(z) = C}}Lno %P(X(t +dt) =X~ HIX{E) = x))

= Ai(@)pi;(z) (3)

Expression (3) shows the rate at which developer ¢ makes ministeps, mul-
tiplied by the probability that he changes the arc variable X;;, if he makes a
ministep. Our Markov chain can be simulated by following the steps explained
in [29].

4.2.4 Markov Chain Monte Carlo (MCMC) Estimation The described
statistical model for longitudinal analysis of open source software development
communities is a complex model and cannot be exactly calculated, but it can
be stochastically estimated. We can simulate the longitudinal evolution, and
estimate the model based on the simulations. Then we can choose an estimated
model that has a good fit to the network data. For details of the simulation
and estimation procedures please refer to [29]. The desirable outcome for the
estimation is the vector parameter B for which the expected and the observed
vectors are the same.
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Table 1: Parameter estimates

Effect par. (s.e.)

Rate 1 1.419 (0.402)
Rate 2 2.633 (0.919)
Rate 3 3.231 (1.222)
Rate 4 11.656 (7.158)
Rate 5 5.238 (1.871)
Rate 6 5.431 (1.901)
Rate 7 1.863 (0.520)
Rate 8 0.791 (0.258)
Rate 9 0.671 (0.206)
outdegree (density)* -5.389 ( 0.300)
reciprocity —6.448 (31.754)
transitive triplets —0.582 ( 0.875)
3-cycles ~2.680 ( 8.084)
out-out degree(1/2) assortativity* | 1.123 ( 0.291)
devScAct alter® —-0.021 ( 0.009)
devScAct ego® 0.011 ( 0.003)
devScAct ego x devScAct alter —0.000 ( 0.000)
devMIAct alter 0.141 ( 0.010)
devMIAct ego —-0.037 ( 0.051)
devMIAct ego x devMIAct alter 0.002 ( 0.003)
int. devMIlAct ego x devScAct ego®| 0.003 ( 0.002)

5 Results

The results of parameter estimation are listed in Table 1. The parameter esti-
mates that are statistically significant are marked with an asterisk (*) in Table
1. Recall that the weighted sum in expression (2) represents our objective func-
tion, and the effects listed in Table 1 are the parameter estimates of 8;’s in
expression (2).

The rate parameters represent the rate of change for the period between t;
to ¢ for developers (i.e. how likely developers were to change ties in that time
period). There’s a clear trend in the rates 1-9, with a peak of 11.65 for the ¢4 to 5
time period. This suggests a significantly higher “preference” by developers for
(a) forming new ties and interacting with previously non-connected developers
and (b) terminating a previously connected tie. This peak value dies down as
to less than 1, for the the tg to tg time period at 0.79 which can be used as an
early warning sign of an imminent change decision.

6 Conclusion

In this study, we used a developer-oriented approach to statistically model the
changes a FOSS community goes through in the run-up to a fork. The model
represented tie formation, breakage, and maintenance between developers. We
use 10 snapshots of the graph as observed data to estimate the influence of
several effects on formation of the observed networks. We used a stochastic es-
timation method to estimate several model parameters of the model and used
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a Wald-type t-test to estimate the significance of these parameters on this lon-
gitudinal change.

The results show that the out-out degree assortativity and the outdegree
(density) effects are statistically significant, which can be interpreted that de-
velopers maintained a “preference” for interacting with developers who had sim-
ilar outdegree levels. For example, core developers with high levels of mailing
list activity responding to messages, were more likely to be connected to other
similarly behaving high-outdegree developers. Also, that top answerer /repliers
on the mailing list were more likely to contact other top developers, and the
community shows a preference for inter-stratum ties.

The developers’ source code repository contribution level (devScAct ego)
was also statistically significant, which implies developers with higher levels of
source code contributions increase their outdegree more rapidly. The developers’
source code repository contribution level (devScAct alter) is also statistically
significant, which implies developers with higher levels of source code contribu-
tions increase their indegree more rapidly.

Perhaps, an interesting observation is the existence of significance for high
activity /contribution to the source code repository, however, in contrast, there’s
a lack of significance for high activity on the mailing list. In summary, high levels
of contribution to the source code brings you connections more rapidly, while
high levels of contributions to the mailing list is not suggestive of this. This can
be interpreted as a sign of meritocracy based on code, rather than talk, which
captures a healthy dynamic in this project, that was forked because of addition
of functionality, and was classified as a healthy fork.

7 Threats to Validity

The study findings may not be generalized. First, one reason is that the projects
is this research study were selected from a pool of candidate projects, based on
a filtering criteria that included availability of their data. Given access, a larger
number of projects as the sample size could result in a more robust investigation.

Second, we used data from online communications. The assumption that all
the communication can be captured by mining repositories is intuitively imper-
fect, but inevitable. Third, social interactions data is noisy, and our statistical
approach might be affected because of this.

Third, the statistical model we use to model the longitudinal evolution of
collaboration networks is estimated stochastically, rather than being calculated
exactly. The stochastic process might not always arrive at the same results. To
counter this issue, we run the algorithm several times to double-check for such
irregularities.
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Table 2: The list of developers source code contributions in the 10 months run-
up to the forking event, sorted by total number of commits.

Developer t1 tz t3 t4 t5 t6 t7 tg tg tlo Sum t1..t10

1 Anonymized Developer #1 17 54 48 22 86 298 238 154 136 210 1263
2 Anonymized Developer #2 55 100 42 58 74 156 120 16 44 4 669
3 Anonymized Developer #3 7 3412 7064 70 8 38 146 118 567
4 Anonymized Developer #4 21 1635413864 46 38 36 0 4 564
5 Anonymized Developer #5 38 190 6 26 40 14 10 30 34 36 424
6 Anonymized Developer #6 21 020 58 59 35 48 41 24 80 386
7 Anonymized Developer #7 0 0 0 0 0 36 42 47143 15 283
8 Anonymized Developer #8 23 22 9 8772 1 0 0 O 215
9 Anonymized Developer #9 8 6053 55 3 1 12 0 192
10 Anonymized Developer #10 0 3 8139 12 2 4 153
11 Anonymized Developer #11 00 0 8 60 14 23 112
12 Anonymized Developer #12 4730 1 7 2 0 0 97
13 Anonymized Developer #13 03 00 011 1 1 63 91
14 Anonymized Developer #14 00 O0O0 O 38 40 86
15 Anonymized Developer #15 3533 1 0 O 0 72
16 Anonymized Developer #16 0 00 O 17 46 70
17 Anonymized Developer #17 3 2540 0 0 68
18 Anonymized Developer #18 0 55 9 1 66
19 Anonymized Developer #19 0 0 0 21 17 23 65
20 Anonymized Developer #20 0 9 14 1 0 57
21 Anonymized Developer #21 1 1 3 12 1 0 51
22 Anonymized Developer #22 181 0 4 45
23 Anonymized Developer #23 0 6 24 44
24 Anonymized Developer #24 0 0 13 1 4 36
25 Anonymized Developer #25 201 0 0 35
26 Anonymized Developer #26 1 2 0 35
27 Anonymized Developer #27 0 1 13 34
28 Anonymized Developer #28 1 1 4 31
29 Anonymized Developer #29 26 0 27
30 Anonymized Developer #30 26 26

31 Anonymized Developer #31
32 Anonymized Developer #32
33 Anonymized Developer #33
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