
HAL Id: hal-01776311
https://inria.hal.science/hal-01776311

Submitted on 24 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Understanding When to Adopt a Library: A Case Study
on ASF Projects

Akinori Ihara, Daiki Fujibayashi, Hirohiko Suwa, Raula Gaikovina Kula,
Kenichi Matsumoto

To cite this version:
Akinori Ihara, Daiki Fujibayashi, Hirohiko Suwa, Raula Gaikovina Kula, Kenichi Matsumoto. Under-
standing When to Adopt a Library: A Case Study on ASF Projects. 13th IFIP International Confer-
ence on Open Source Systems (OSS), May 2017, Buenos Aires, Argentina. pp.128-138, �10.1007/978-
3-319-57735-7_13�. �hal-01776311�

https://inria.hal.science/hal-01776311
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Understanding When to Adopt a Library:
A Case Study on ASF Projects

Akinori Ihara, Daiki Fujibayashi, Hirohiko Suwa, Raula Gaikovina Kula, and
Kenichi Matsumoto

Nara Institute of Science and Technology
{akinori-i, fujibayashi.daiki.eq3, h-suwa, matumoto}@is.naist.jp

Osaka University
raula-k@ist.osaka-u.ac.jp

Abstract. Software libraries are widely used by both industrial and
open source client projects. Ideally, a client user of a library should adopt
the latest version that the library project releases. However, sometimes
the latest version is not better than a previous version. This is because
the latest version may include additional developer effort to test and
integrate all changed features. In this study, our main goal is to better
understand the relationship between adoption of library versions and its
release cycle. Specifically, we conducted an empirical study of release
cycles for 23 libraries and how they were adopted by 415 Apache Soft-
ware Foundation (ASF) client projects. Our findings show that software
projects are quicker to update earlier rapid-release libraries compared
to library projects with a longer release cycle. Moreover, results suggest
that software projects are more likely to adopt the latest version of a
rapid-release library compared to libraries with a longer release cycles.

1 Introduction

A software library is a collection of reusable programs, used by both industrial
and open software client projects to help achieve shorter development cycles and
higher quality software [8]. Many of these libraries are open source software and
are readily available through online repositories such as the GitHub1 repository.
To incorporate bug fixes and new features, open source library projects often
release newer and improved versions of their libraries. Based on user feedback,
libraries evolve faster to reach the market, making it difficult for client projects
to keep up with the latest version.

Ideally, a client user of a library should adopt the latest version of that
library. Therefore, it is recommended that a client project should upgrade their
library version as soon as possible. However, the latest version is not always
better than previous versions [5, 9], as adoption of the latest version may include
additional developer efforts to test and integrate changed features [7, 10, 13].
Developers of client projects may be especially wary of library projects that

1 https://github.com

2 Akinori Ihara et al.

follow a rapid-release style of development, since such library projects are known
to delay bug fixes [12]. Recent studies investigated the dependency relationships
between evolving software systems and their libraries [5, 6, 15]. These tools makes
it possible for developers to clarify and visualize these dependencies and aim to
guide developers who are selecting possible candidate libraries for an upgrade.

In this study, our main goal is to better understand the relationship between
the adoption of library versions and the library release cycle. Specifically, we
conducted an empirical study of the release cycle of 23 libraries and how they
were adopted by 415 Apache Software Foundation (ASF) client projects. These
23 libraries were used by over 50 software projects of our target ASF client
projects. To guide our research, we address the following two research questions:
RQ1: Does the release cycle of a library project influence when it is
adopted by a client project?
Recent studies [7, 10, 13] have found that open source software often has many
issues soon after its release. Often these libraries are reactive in fixing issues
based on user feedback. In other words, these software may be harmful in the
early period after the release. Therefore, for RQ1, we would like to understand
the effect of client project adoption on shorter release cycles.
RQ2: Does the release cycle of a library project influence whether the
latest version is adopted by a client project?
Recent studies have shown that the newest version of a library is not always
adopted by many client projects. For example, client projects may decide not to
adopt the latest version to avoid untested bugs, especially if the library project
has a shorter release cycle. Therefore, for RQ2, we would like to understand the
effect of adopting the latest client project on shorter release cycles.

Our findings show that software projects are quicker to update earlier rapid-
release libraries compared to library projects with a longer release cycle. More-
over, results suggest that software projects are more likely to adopt the latest
version of a rapid-release library compared to libraries with a longer release
cycles.

2 Background and Definitions

2.1 Motivation

Related work such as Almering et. al [1], Goel et. al [3] and Yamada et. al [14] all
investigate when a software is ready to be used. These works use the Software
Reliability Growth Model (SRGM) of the software evolution process to grasp
the process of the convergence of defects discovered in software as the ‘growth
curve of the S-Shape (Sigmond curve)’. Similarly, Mileva et. al [9] evaluated a
library by its library usage by clients.

Building on this work, we conducted an exploratory investigation of when
developers adopted versions of a library. Fig. 1 shows the release date (broken
lines) for the library log4j and the number of ASF projects (solid lines) which
have adopted the new library version in a time series. The figure shows users of

Understanding When to Adopt a Library 3

!

"

#!

#"

$!

$"

%!

%"

&!

&"

$
!
!
#
!
#
!
#

$
!
!
#
!
&
$
#

$
!
!
#
!
'
!
(

$
!
!
#
#
#
$
)

$
!
!
$
!
%
#
)

$
!
!
$
!
)
!
"

$
!
!
$
#
!
$
%

$
!
!
%
!
$
#
!

$
!
!
%
!
"
%
#

$
!
!
%
!
(
#
'

$
!
!
&
!
#
!
*

$
!
!
&
!
&
$
"

$
!
!
&
!
'
#
%

$
!
!
&
#
$
!
#

$
!
!
"
!
%
$
#

$
!
!
"
!
)
!
(

$
!
!
"
#
!
$
)

$
!
!
*
!
$
#
&

$
!
!
*
!
*
!
&

$
!
!
*
!
(
$
$

$
!
!
)
!
#
#
!

$
!
!
)
!
&
%
!

$
!
!
)
!
'
#
'

$
!
!
)
#
$
!
*

$
!
!
'
!
%
$
"

$
!
!
'
!
)
#
%

$
!
!
'
#
!
%
#

$
!
!
(
!
$
#
'

$
!
!
(
!
*
!
'

$
!
!
(
!
(
$
*

$
!
#
!
!
#
#
&

$
!
#
!
!
"
!
&

$
!
#
!
!
'
$
$

$
!
#
!
#
$
#
!

$
!
#
#
!
%
%
!

$
!
#
#
!
)
#
'

$
!
#
#
#
#
!
"

$
!
#
$
!
$
$
%

$
!
#
$
!
*
#
$

$
!
#
$
!
(
%
!

$
!
#
%
!
#
#
'

$
!
#
%
!
"
!
'

$
!
#
%
!
'
$
*

$
!
#
%
#
$
#
&

$
!
#
&
!
&
!
%

$
!
#
&
!
)
$
$

$
!
#
&
#
#
!
(

$
!
#
"
!
$
$
)

$
!
#
"
!
*
#
)

$
!
#
"
#
!
!
"

$
!
#
*
!
#
$
%

$
!
#
*
!
"
#
$!
"
#
$
%
&'
'(
)'
"
*
%
&

#+$+' #+$+(
#+$+#$ #+$+#%
#+$+#& #+$+#"
#+$+#",-./0-123 #+$+#*
#+$+#*,-./0-123 #+$+#)
$+!,45674$ $+!,89:4#
$+!,89:4$ $+!,89:4%
$+!,89:4& $+!,89:4"
$+!,89:4* $+!,89:4*,-./0-123
$+!,89:4) $+!,89:4'
$+!,89:4($+!,89:4(,-./0-123
$+!,;<# $+!=>#,-./0-123
$+!,;<$ $+!
$+!+# $+!+$
$+# $+$
$+% $+&
$+&+# $+"
$+* $+*+#
$+*+$

=9594?9@A#+$+#*

+%& ,-.-,/

=9594?9@A#+$+#)

+%& ,-.-,0

=9594?9@A#+$+#&

+%& ,-.-,1

Fig. 1. Adoption trends based on client usage

the popular log4j library, mined from 797 software projects. From this work, we
highlight two points: (1) library adoption is not organized, with no clear patterns
of migration and (2) in many cases the latest version is not always selected as
the default option. For instance, in Fig. 1 we can see ver.1.2.14 is still being
used by some client projects (red dotted circle), even though the latest version
is ver.1.2.17.

In this paper, we define the ”release cycle” as the time until a new version
is released. As a cycle, usually a project will have a fixed release timing from
as quickly as 1 day to a span of across several years. Due to agile development
trends, we assume that the release cycles may become faster. For instance, the
Google Chrome project and the Mozilla Firefox project are working on rapid
release to develop a new version in 6 weeks [4]. A rapid-release cycle is beneficial
in that it can fix a bug and make a new component quickly. Sometimes, these
projects can be reactive in bug fixing, for example, projects can get feedback
from users soon after their release [8]. However, this rapid release style creates
an influx of releases, which is likely to further confuse users on when to adopt a
new version. Therefore, our motivation is to investigate when and how software
projects adopt a new library relative to their release.

2.2 Library Adoption and Release Timings

Fig. 2 describes the evolution and adoption of a library during different release
cycles. We use this figure to explain how we measure the timing of adoption
relative to each release, including the relative definition of the latest release.
This example shows a project S and two libraries (A, B). Library A has released
versions A1 and A2, with A2 being the latest version. Similarly, Library B has
released versions B1, B2, B3 and B4, with B4 being the latest version.

This example also shows library adoption. Specifically, we see that project
version S3 imports the library A1, which is not the latest version at this point
in time. This is because at this time, A2 was available for selection. S3 also
imports library B3, which is the latest version at this time. However, we see that
in the near future B4 will be released.

4 Akinori Ihara et al.

!"

#"

$%

!%

#& #'

!&

#%

()*)+,)-&

()*)+,)-%

$"

+./01-123)

+./01-123)

()*)+,)-"

4256+67

86/9):1

Fig. 2. Release cycle and adoption period

3 Empirical Study

Adopting the latest versions has the added benefits of new features, but adapt-
ing the latest version may also risk having untested bugs or removed features.
Therefore, the goal of this study study is to understand the impact of the release
cycle on the developers decision whether to wait for the next library release or
quickly adopt the latest version.

3.1 Data Preparation

Table 1 shows the top 23 of 4,815 libraries which the 415 software projects used.
In total, these 23 libraries were used by over 50 software projects. These libraries
were originally extracted from 415 projects of 797 ASF projects which are using
MAVEN dependency tool on July 21, 2016. To analyze the library adoption
and release timings, we extracted histories of library dependency information.
Our dataset comprises of JAVA programs managed by the MAVEN dependency
tool. MAVEN stores explicitly in meta information files (POM.xml). The meta
information contains the libraries’ names and the version number in which the
software is adopted. By tracking the history of the POM.xml in a version control
system, for any software, we can know when and which library version has been
adopted.

3.2 Clustering Libraries by Release Cycle

In order to evaluate the impact of the release cycle, the rank and grouping
of libraries based on their release cycles is needed. Hence, for each library, we

Understanding When to Adopt a Library 5

Table 1. Ranking of library users

Rank Library Num Rank Library Num

1 junit 305 16 easymock 67
2 commons-logging 167 17 jackson-mapper-asl 60
3 log4j 153 18 commons-cli 55
4 slf4j-api 145 19 jackson-core-asl 53
5 commons-lang 130 20 mail 53
6 commons-io 122 21 velocity 52
7 slf4j-log4j12 109 22 jcl-over-slf4j 52
8 servlet-api 99 23 mockito-all 52
9 commons-collections 98

10 commons-codec 96
11 commons-httpclient 83
12 guava 81
13 ant 73
14 xercesImpl 69
15 jetty-server 68 4815 axis2-transports 1

compute and assign a [2] variable importance score for each library. We then
use the Scott-Knott test [11] to group libraries into statistically distinct ranks
according to their release periods. The Scott-Knott test is a statistical multi-
comparison procedure based on cluster analysis. The Scott-Knott test sorts the
percentage of release periods for the different libraries. Then, it groups the factors
into two different ranks that are separated based on their mean values (i.e., the
mean value of the percentage of release periods for each library). If the two groups
are statistically distinct, then the Scott-Knott test runs recursively to further find
new groups, otherwise the factors are put in the same group. The final result of
the Scott-Knott test is a grouping of factors into statistically distinct ranks.

Table 2 shows the 6 categories (ie., C1, ..., C6) in which each of the 23 studied
libraries were categorized. Based on these 6 groupings and the dataset, we are
now able to address the research questions in our results.

4 Results

RQ1: Does the release cycle of a library project influence when it is
adopted by a client project?

To answer RQ1, we use the clustered libraries groupings to compare release
and adoption times. As a result, we make the following observations:

Observation1—All top frequent libraries are not released in one
year. The boxplot in Fig. 3 shows the distribution of the periods between re-
leases in each library. The libraries are sorted by the number of adopted software
projects. While some library projects (e.g.,jetty-server, jackson-mapper-asl,
mockito-all) often release new versions in one year, other library projects (e.g.,
commons-cli, servlet.api, commons-logging) often release new versions after
more than one year. In particular, releases for the commons-cli project were

6 Akinori Ihara et al.

!

"!!

#!!!

#"!!

$!!!

%&
'
'
&(
)!
%*
+

),
-.
*,
/!
01
+

%&
'
'
&(
)!
*&
22
+(
2

%&
'
'
&(
)!
%&
**,
%/
+&
()

%&
'
'
&(
)!
%&
3,
%

%&
'
'
&(
)!
+&

'
0+
*

,0
)4
'
&%
5

%&
'
'
&(
)!
*0
(2

67
(+
/

8,
-%
,)
9'
1*

.,
*&
%+
/4 0(

/

*&
2:
6

27
0.
0

%&
'
'
&(
)!
;/
/1
%*
+,
(/

)*
<:
6!
01
+

)*
<:
6!
*&
2:
6#
$

6%
*!
&.
,-
!
)*
<:
6

'
&%
5+
/&
!
0*
*

60
%5
)&
(!
%&
-,
!
0)
*

60
%5
)&
(!
'
01
1,
-!
0)
*

6,
//4
!
),
-.
,-

=

-,
*,
0
)
,
=%
4
%
*,
>3
0
4
)
?

!"
!"#$#%#

!#
&'%#$#"()#

!$
&)(#$#"*"#

!%
)&%#$#&*+#

!&
!!&##

!'
""!&##

()*+,-
.*,/01

Fig. 3. The release cycle of each library by boxplot. The target libraries are sorted by
clustering (broken lines) from C1 to C6. The top figure shows the clustering number
and the median of the release cycle days.

!

"!!!

#!!!

$!!!

%!!!

&!!!

'(
)
)
(*
+!
',
-

+.
/0
,.
1!
23
-

'(
)
)
(*
+!
,(
44
-*
4

'(
)
)
(*
+!
'(
,,.
'1
-(
*+

'(
)
)
(*
+!
'(
5.
'

'(
)
)
(*
+!
-(

)
2-
,

.2
+6
)
('
7

'(
)
)
(*
+!
,2
*4

89
*-
1

:.
/'
.+
;)
3,

0.
,(
'-
16 2*

1

,(
4%
8

49
20
2

'(
)
)
(*
+!
<1
13
',
-.
*1

+,
=%
8!
23
-

+,
=%
8!
,(
4%
8"
#

8'
,!
(0
./
!
+,
=%
8

)
('
7-
1(
!
2,
,

82
'7
+(
*!
'(
/.
!
2+
,

82
'7
+(
*!
)
23
3.
/!
2+
,

8.
116
!
+.
/0
./

>

2
5
(
3
1.
5
>1
-)
.
?5
2
6
+
@

!"
!!"#$#%&#

!#
'(&#$#%)*#

!$
)!&#$#%'!#

!%
++%#$#+)'#

!&
,',&##

!'
,%%'##

()*+,-
.*,/01

Fig. 4. The boxplot shows the adoption time of each library. The target libraries are
sorted by clustering (broken lines) from C1 to C6.The top figure shows the clustering
number and the median of the adoption time [days].

delayed for a consideration time.

Observation2—While older and established projects often release
new versions after more than one year, beginner projects often release
new versions in three months. Through our analysis, we found the different
features between quick-release projects and late-release projects. Table 2 shows
the working period with GitHub for each library project. Traditional projects
that have worked for 10 years often release new versions after more than one
year.

Observation3—While software projects have adopted the quick-
release libraries soon after the release, they have not adopted the
late-release libraries as quickly. The boxplot in Fig. 4 shows the distribution
of the adopted periods for our target projects in each library. We found that
software projects have adopted the quick-release libraries (sixth group). In other

Understanding When to Adopt a Library 7

Table 2. Clustering by library release cycle and each library start of the release date

Library Date Library Date

Cluster 6 Cluster 1

commons-cli Nov.6,2002 log4j May.1,2002
Cluster 5 guava Sep.15,2009

servlet-api Sep.25,2001 commons-httpclient Aug.31,2001
Cluster 4 slf4j-api Mar.8,2006

commons-logging Aug.13,2002 slf4j-log4j12 Mar.8,2006
commons-collections Apr.2,2002 jcl-over-slf4j Mar.8,2006

Cluster 3 mockito-all Feb.28,2008
commons-codec Apr.25,2003 jackson-core-asl Jan.14,2009
commons-io Jul.2,2007 jackson-mapper-asl Jan.14,2009

Cluster 2 xercesImpl Mar.29,2009

mail Feb.22,2000
easymock Aug.8,2001
commons-lang Nov.25,2002
junit Dec.3,2000
xercesImpl Jan.30,2002
velocity Jul.7,2002
ant Jul.19,2000

words, they often adopt new versions soon after their release. On the other hand,
software projects have adopted the late-release libraries (1st-2nd). This means
that they do not adopt new versions quickly after the release.

In the group of the quick-release cycle, the adopted time of the mockito-all
library is longer than the other libraries. To understand the reason, we analyzed
software projects which adopted the mockito-all library. As we can see in
Fig. 3, there are some outliers for mockito-all. Those are some versions which
took a long time to release a new version. In particularly, version 1.9.0 was
released approximately 1 year after releasing version 1.8.5. Also, version 1.10.0
was released approximately 2 years after releasing version 1.9.5. While waiting for
the version 1.10.0, many software projects started using the mockito-all library
just before releasing the version. In addition, although the Velocity library was
adopted in a comparatively quick-release project, most software projects adopted
the Velocity library a relatively long time after the release. The results show
that many projects still started adopting the Velocity library after the project
released the newest version on November 29th, 2010. Therefore, to answer RQ1,
we find that:� �

Software projects are more quickly updated than rapid release libraries com-
pared to library projects with a longer release cycle.� �

8 Akinori Ihara et al.

!

"#

#!

$#

%!!

&'
(
(
')
*!
&+
,

*-
./
+-
0!
12
,

&'
(
(
')
*!
+'
33
,)
3

&'
(
(
')
*!
&'
++-
&0
,'
)*

&'
(
(
')
*!
&'
4-
&

&'
(
(
')
*!
,'

(
1,
+

-1
*5
(
'&
6

&'
(
(
')
*!
+1
)3

78
),
0

9-
.&
-*
:(
2+

/-
+'
&,
05 1)

0

+'
3;
7

38
1/
1

&'
(
(
')
*!
<0
02
&+
,-
)0

*+
=;
7!
12
,

*+
=;
7!
+'
3;
7%
"

7&
+!
'/
-.
!
*+
=;
7

(
'&
6,
0'
!
1+
+

71
&6
*'
)!
&'
.-
!
1*
+

71
&6
*'
)!
(
12
2-
.!
1*
+

7-
005
!
*-
./
-.

>

>

/1.,1?+-

)-@-*0A.10-

2.-/,'8*A.10-

!"!#!$!%!&!'

Fig. 5. Figure showing the adoption status rate of each library. The black bar means
the adoption rate of newest version. The gray bar means the adoption rate of previous
version. As showing by rate, the vertical axis means 100%

RQ2: Does the release cycle of a library project influence whether the
latest version is adopted by a client project?

To answer RQ2, we use the clustered libraries groupings to investigate whether
the latest version of a library was adopted. As a result, we make the following
observations:

Observation4—Software projects do not always adopt new library
versions in their projects.

Fig. 5 shows the percentage of the newest or previous versions which soft-
ware projects adopted from each library. The black and gray bars show the
newest adopted version and the previous version applied to the software projects.
We found 8%-85% of software projects adopted the new library versions. The
commons-cil library often adopted the newest version to the software. On the
other hand, the jetty-server library was often adopted the previous version
to the software.

Observation5—While the quick-release library often adopts the
newest version to the software, the late-release library often adopts
the previous version to the software.

85% of the commons-cli library changes were applied to the newest version.
This library project has released only 4 new versions during our target period
(16 years). This number of releases is fewer than for the other library projects.
Furthermore, one of the versions contained a new feature and maintenance bug
fixes. The other two versions contained dozens of bug fixes. From this analysis,
the project just maintained the initial a stable version.

On the other hand, only 19% of the servlet.api library changes were applied
to the newest version although it is a late-release library. This library project
has released only 7 new versions during our target period. To understand this
strange result, we analyzed the history of applying the library. We found that
version 2.5 is the majority even if the project released newer versions.

Understanding When to Adopt a Library 9

92% of the jetty-server library changes were applied to the previous ver-
sion. This library project has released 267 new versions with most release in-
tervals ranging from 0 to 20 days during our target period. 267 new versions
show a clear contradiction to the commons-cli library and servlet-api library.
Furthermore, we found that version 6.1.26 is the majority, even if the project
released newer versions. In sum, to answer RQ2, we find that:� �

Software projects are more likely to adopt the latest version of a rapid-
release library compared to a library with a longer release cycles.� �

5 Conclusions and Future Work

In this study, we revealed the relationship between the release cycle and the
time it takes to adopt a library. Our results suggests that the shorter the release
cycle, the shorter the time to be adopted, and that the rapid-release library
will be adopted faster even in the same release cycle. Also, for libraries with
majority versions, it is difficult to adopt the latest version. We find that it is
especially difficult to generalize the reason for adopting a previous version. We
think that the reasons are clarified by analysis of the released version. In detail,
we believe that reasons will be clarified by analyzing the number of bug fixes
and the number of added functions to the released version. These factors are
important when selecting a library although there are still many challenges in
finding other factors.

In this study, we considered the adoption situation only by the adoption
time and whether the version is the newest adoption or a previous adoption of
the OSS library. We confirmed that the version was adopted, but we did not
also consider the state after adoption. When downgrading a version, we think
that the reason should be extracted from the commit log. Further research is
needed to confirm this. Also, there are cases where users changed to a version
whose adoption was skipped or a library with the same function. Future work
will include how to analyze these cases and to clarify what influence what this
has on library selection.

Acknowledgments

This work was supported by the JSPS Program for Advancing Strategic Inter-
national Networks to Accelerate the Circulation of Talented Researchers: Inter-
disciplinary Global Networks for Accelerating Theory and Practice in Software
Ecosystem and the Grant-in-Aid for Young Scientists (B) (No. 16K16037).

10 Akinori Ihara et al.

References

1. Almering, V., van Genuchten, M., Cloudt, G., Sonnemans, P.: Using software reli-
ability growth models in practice. In: IEEE Software, pp. 82–88 (2007)

2. Breiman, L.: Machine Learning. Kluwer Academic Publishers (2001)
3. Goel, A.L.: Software reliability models: Assumptions, limitations, and applicability.

IEEE Transaction on Softwware Engineering 11(12), 1411–1423 (1985)
4. Khomh, F., Dhaliwal, T., Zou, Y., Adams, B.: Do faster releases improve software

quality?: An empirical case study of mozilla firefox. In: Proceedings of the 9th
IEEE Working Conference on Mining Software Repositories, pp. 179–188 (2012)

5. Kula, R.G., German, D., Ishio, T., Inoue, K.: Trusting a library: A study of the
latency to adopt the latest maven release. In: Proceedings of the 22nd IEEE
International Conference on Software Analysis, Evolution, and Reengineering, pp.
520–524 (2015)

6. Kula, R.G., Roover, C.D., German, D., Ishio, T., Inoue, K.: Visualizing the evolu-
tion of systems and their library dependencies. In: Proceedings of the 2014 Second
IEEE Working Conference on Software Visualization, pp. 127–136 (2014)

7. Mäntylä, M.V., Adams, B., Khomh, F., Engström, E., Petersen, K.: On rapid
releases and software testing: A case study and a semi-systematic literature review.
Empirical Software Engineering 20(5), 1384–1425 (2015)

8. McCarey, F., Ó Cinnéide, M., Kushmerick, N.: Knowledge reuse for software reuse.
Web Intelligence and Agent Systems 6(1), 59–81 (2008)

9. Mileva, Y.M., Dallmeier, V., Burger, M., Zeller, A.: Mining trends of library usage.
In: Proceedings of the Joint International and Annual ERCIM Workshops on Prin-
ciples of Software Evolution and Software Evolution Workshops (IWPSE-Evol), pp.
57–62 (2009)

10. Plate, H., E. Ponta, S.: Impact assessment for vulnerabilities in open-source soft-
ware libraries. In: Proceedings of the International Conference on Software Main-
tenance and Evolution (ICSME), pp. 411–420 (2015)

11. Scott, A.J., Knott, M.: A Cluster Analysis Method for Grouping Means in the
Analysis of Variance, vol. 30. International Biometric Society (1974)

12. Tosin Daniel Oyetoyan, D.S.C., Thurmann-Nielsen, C.: A decision support system
to refactor class cycles. In: 2015 IEEE 31st International Conference on Software
Maintenance and Evolution (ICSME) (2015)

13. Tufano, M., Palomba, F., Bavota, G., Oliveto, R., Di Penta, M., De Lucia, A.,
Poshyvanyk, D.: When and why your code starts to smell bad. In: Proceedings of
the 37th International Conference on Software Engineering (ICSE), pp. 403–414
(2015)

14. Yamada, S., Ohba, M., Osaki, S.: S-shaped reliability growth modeling for software
error detection. In: Trans. Reliability, pp. 475–484 (1983)

15. Yano, Y., Kula, R.G., Ishio, T., Inoue, K.: Verxcombo: An interactive data visual-
ization of popular library version combinations. In: Proceedings of the IEEE 23rd
International Conference on Program Comprehension, pp. 291–294 (2015)

