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Abstract—One of the main concerns of smart cities is to
improve public health which is mainly threatened by air pollution
due to the massively increasing urbanization. The reduction of
air pollution starts first with an efficient monitoring of air quality
where the main aim is to generate accurate pollution maps in real
time. Spatiotemporally fine-grained air pollution maps can be ob-
tained using physical models which simulate the phenomenon of
pollution dispersion. However, these simulations are less accurate
than measurements that can be obtained using pollution sensors.
Combining simulations and measurements, also known as data
assimilation, provides better pollution estimations through the
correction of the fine-grained simulations of physical models.
The quality of data assimilation mainly depends on the number
of measurements and their locations. A careful deployment of
nodes is therefore necessary in order to get better pollution maps.
In this paper, we tackle the deployment problem of pollution
sensors and propose a new mixed integer programming model
allowing to minimize the overall deployment cost of the network
while achieving a required assimilation quality and ensuring the
connectivity of the network. We then design a heuristic algorithm
to solve efficiently the problem in polynomial time. We perform
extensive simulations on a dataset of the Lyon city, France and
show that our approach provides better air quality monitoring
when compared to existing deployment methods that are designed
without taking into account the outputs of physical models. We
also show that in terms of connectivity, the communication range
of sensor nodes might have a noteworthy impact on the quality
of pollution estimation.

Keywords— Wireless sensor networks, deployment, air pol-

lution simulation, data assimilation.

I. INTRODUCTION

Wireless sensor networks (WSN) are widely used in envi-

ronmental applications where the aim is to sense a physical

phenomenon such as temperature, humidity, air pollution, etc.

In this context of application, the use of WSN allows us

to understand the variations of the phenomenon over the

monitoring region and therefore be able to take adequate

decisions regarding the impact of the phenomenon [1]. Air

pollution is one of the main physical phenomena that still need

to be studied and characterized because it highly depends on

other phenomena such as temperature and wind variations. In

addition, air pollution is becoming a major threat to human

health in urban environments. According to the World Health

Organization (WHO), exposure to air pollution is accountable

to seven million casualties in 2012. In 2013, the International

Agency for Research on Cancer (IARC) classified particulate

matter, the main component of outdoor pollution, as carcino-

genic for humans. Air pollution is therefore considered as

a major issue of modern megalopolis, where the majority

of world population lives. As a consequence, the effective

monitoring of pollutant emissions is at the heart of many

sustainable development efforts, in particular those of smart

cities.

Current air pollution monitoring stations are equipped with

multiple lab pollution sensors. These systems are however

massive, inflexible and expensive. An alternative – or comple-

mentary – solution would be to use wireless sensor networks.

The progress of electrochemical sensors, that are smaller and

cheaper, makes the use of WSN for air pollution monitoring

viable thanks to their reasonable measurement quality (see Fig.

1 for our lab-designed sensors).

The aim of using WSN for air pollution monitoring, also

known as air pollution mapping, is usually to generate accurate

pollution maps in real time [2]. Unlike the work we presented

in [3] where we consider only sensor measurements in the

generation of pollution maps, we propose in this work to

perform air pollution mapping based on physical models which

simulate the phenomenon of pollution dispersion. Our aim is

to consider the application case of data assimilation techniques

which are used to correct the simulations of physical models

based on sensor measurements. In this context, we tackle in

this paper the optimal deployment of sensor nodes for an

effective data assimilation of air pollution measurements.

The deployment optimization is a major challenge in WSN

design. The problem consists in determining the optimal

positions of sensors and sinks so as to cover the environment

and ensure the network connectivity while optimizing an

objective function such as the deployment cost or the network

lifetime [4]. The network is said connected if each sensor can

communicate information to at least one sink node. As for

the coverage issue, it has been often modeled as a k-coverage

problem where at least k sensors should monitor each point

of interest.

We propose in this paper a deployment approach allowing

to minimize the deployment cost of nodes while ensuring a

required assimilation quality and the connectivity of the sensor

network. Unlike most of the existing deployment approaches,

which are either generic or assume that sensors have a given

detection range, we base on data assimilation to define an



(a) (b)

Fig. 1: Our nitrogen dioxide (NO2) lab-designed sensors. (a) Internal view of a sensor node. (b) Field deployment of 2 nodes

next to a monitoring station in Lyon, France.

appropriate mathematical formulation of coverage quality in

the context of air pollution mapping. We formulate the quality

of air pollution mapping of a given sensor network depending

on the assimilation error of pollution concentration at locations

where no sensor is deployed. The assimilation error is defined

as the difference between the ground truth (or real) value

of pollution concentration and the concentration obtained by

applying an adequate data assimilation method on the mea-

surements of sensor nodes and the outputs of physical models.

We use our formulation of air quality mapping to define a

deployment model using mixed integer linear programming

(MILP). Then, we analyze the computational complexity of

our optimization model and derive a heuristic algorithm that

runs in polynomial time based on linear relaxation.

We perform extensive simulations on a dataset of the Lyon

city, France and show that our approach provides better air

quality monitoring when compared to existing deployment

methods that are designed without taking into account the

outputs of physical models. Finally, we show that in terms

of connectivity, the communication range of sensor nodes

might have a noteworthy impact on the quality of pollution

estimation.

The main contributions of this work can be summarized as

follows:

1) An adequate mathematical formulation of coverage qual-

ity that is based on the combination of pollution simu-

lations and sensor measurements.

2) An MILP deployment model designed using lineariza-

tion techniques.

3) A heuristic algorithm based on the linear relaxation

concept.

4) A comparison to interpolation-based deployment ap-

proaches which do not take into account the outputs of

physical models.

The remaining of this paper is organized as follows. We first

review the related works on the deployment issue of WSN

in section II. Then, we present in details our mathematical

formulation of coverage quality in section III. Next, we present

our optimization model in section IV and discuss the resolution

of the model in section V. After that, we present the simulation

data set and analyze the obtained results in section VI. Finally,

we conclude the paper and provide some perspectives in

section VII.

II. RELATED WORKS: WSN DEPLOYMENT

The deployment issue of wireless sensor networks has

been addressed extensively in the literature where several

mathematical models, optimal algorithms and near-optimal

heuristics have been proposed [5]. The problem has been

defined in multiple ways depending on the context of the

deployment. The main issues targeted in the literature are

coverage, connectivity, network lifetime and the network de-

ployment cost. In this section, we identify what lacks in

the literature and motivates the need of an application-aware

deployment approach toward an effective assimilation of air

pollution measurements. We present the related works based

on their coverage definition while identifying their formulation

of connectivity and network lifetime.

Existing deployment approaches are either event-aware [6]

[7] [8] [9] [10] [11] or correlation-aware [12] [13] [14] [15]

[16]. In the first case, a sensor is assumed to have a detection

range, usually circular, within which the sensor is capable of

detecting any event that may happen. The second class of

deployment approaches is based on the correlation that sensor

measurements may present in order to select the minimum

number of sensing nodes.

A. Event-aware deployment methods

Chakrabarty et al. [6] represent the deployment region as

a grid of points and propose a nonlinear formulation for

minimizing the deployment cost of sensors while ensuring

complete coverage of the deployment region. Then, they apply

some transformations to linearize the first model and obtain an

ILP formulation. The authors formulate coverage based on the

distance between the different points of the deployment field.

Each sensor has a circular detection area, which defines the

points that the sensor can cover. Unfortunately, this measure of

coverage is inadequate to the air pollution monitoring since a

sensor positioned at a point A cannot cover a neighboring point



B if there is a difference between pollution concentrations at

the two points.

Altinel et al. [7] proposed another formulation based on

the Set Cover Problem, which is equivalent to the aforesaid

model but less complex. They also extend their formulation

to take into account the probabilistic sensing of sensor nodes

while assuming that a node is able to cover a given point

with a certain predefined probability. Despite that, this new

formulation is still generic since the dependency between the

errors of the deployed sensors is not considered. However,

this has to be taken into account when doing air pollution

estimation.

Chang et al. [8] proposed to use data fusion in the definition

of coverage in order to take into account the collaborative

detection of targets. They based in their work on a probabilistic

sensing model to define the probability of target detection

and the false alarm rate. Then, they formulated a non convex

optimization problem minimizing the number of nodes under

coverage constraints. They presented resolution algorithms and

showed that the obtained solutions are near-optimal and hence

very close to the optimal ones. Still, this work considers the

existence of a detection range.

Recent works have targeted the connectivity and multi-

objective deployment issues. The authors of [9] formulate

connectivity based on the flow problem while assuming that

sensors generate flow units in the network and verify if sinks

are able to recover them. Another connectivity formulation

has been introduced in [10] where authors base on an assign-

ment approach. They introduce in their ILP formulation new

variables to define the communication paths between sensors

and sinks. However, this model involves more variables than

the one based on the flow problem and is therefore more

complex. In another work [11], authors study the trade-off

between coverage, connectivity and energy consumption. They

formulate the problem as an ILP model and then propose a

multi-objective approach to optimize coverage, the network

lifetime and the deployment cost while maintaining the net-

work connectivity.

B. Correlation-aware deployment methods

In [13], Roy et al. tackled the problem of finding the most

informative locations of sensors for monitoring environmental

applications. They assume the existence of a set of data

snapshots characterizing the phenomenon to monitor. Then,

they formulate the problem to find the best locations of sensors

in order to reconstruct the data of the whole phenomenon with

a required precision. Two optimization models are proposed to

handle both stationary and non stationary-fields. An iterative

resolution algorithm is proposed to solve the two deployment

problems. Unfortunately, this work is based on a strong

assumption; that is input data is perfect, which is not the case

of air pollution where simulated data may present some errors.

In [15], Krause et al. tackle the same problem based on

the assumption that the variations of the phenomenon are

Gaussian. They also assume a pre-deployment phase allowing

to gather data that can be used to characterize the phenomenon.

In order to select the best positions of sensors, they use the

concept of mutual information in order to define the quality

of a given topology. After the formulation of the problem,

they use the sub-modularity of mutual information to define a

polynomial algorithm. This work considers only coverage and

is extended in [16] to take into account the cost of connectivity

where the links qualities are assumed to be Gaussian. Since

air pollution is not necessarily Gaussian, this work does not

fit our application case.

The mathematical characteristics of the correlation-aware

deployment problem has been studied by Ranieri et al. in

[12] while considering a generic form. A greedy heuristic

is proposed to solve the problem. They perform extensive

simulations to show that their algorithm is capable of solving

the problem in a short time compared to the existing heuristics

while providing a near optimal solution.

In [14], authors consider an already deployed sensor net-

work and propose an algorithm to define a sensing topology

to select active sensors and turn off the others. They estimate

the variations of the phenomenon in an online way to decide

whether a sensor is to keep active or not. In contrary to this

work, in our case, the sensing locations have to be chosen in an

offline way since the selection of sensing points is performed

before the network deployment.

C. Discussion

Even if the recent works take into account network con-

straints like connectivity and energy consumption, all cov-

erage formulations either assume that sensors have a given

detection range, which is the case of event-aware methods,

or the assumption is instead made on the distribution of

sensor measurements, which is the case of correlation-aware

methods. Novel application-aware deployment methods have

been recently proposed to consider the characteristics of the

application case in the design of the deployment approach; ex-

amples include the work of [17] on wind monitoring, the works

presented in [18][19] for pollution threshold detection and

the work presented in [3] for interpolation-based deployment.

Following the same direction, we propose in the next section to

consider the application case of pollution data assimilation in

order to define an appropriate formulation of coverage quality

and then we derive from this formulation an optimization

model in the following section. We also propose to compare

in the simulation section our proposal to the most relevant

related work presented in [3] where only the measurements of

sensors are taken into account in the design of the deployment

approach.

III. MATHEMATICAL FORMULATION OF POLLUTION

COVERAGE QUALITY

In this section, we formulate the coverage quality of a given

sensor network depending on the assimilation error of pollu-

tion concentration at locations where no sensor is deployed.

We define the assimilation error as the difference between

the ground truth (or real) value of pollution concentration

and the concentration obtained by applying an adequate data



assimilation method on the measurements of sensor nodes and

the simulations of physical models.

A. Characterization of the deployment region

We consider as input the map of a given urban area that

we call the deployment region. Let P be a set of discrete

points approximating the deployment region at a high-scale

(|P| = N ). The set P can be obtained using a 2D or 3D

discretization (see Fig. 2a for an example of a deployment

region). In general case, the set P is considered as the set of

potential positions of WSN nodes. However, in smart cities

applications, some restrictions on node positions may apply

because of authorization or practical issues. For instance, in

order to alleviate the energy constraints, we may place sensors

on only lampposts and traffic lights as experimented in [20].

When this is the case, we do not consider as potential positions

the points p ∈ P where sensors cannot be deployed. We use

decision variables xp (respectively yp) to specify if a sensor

(respectively a sink) is deployed at point p or not. The main

notations used in this section are presented in TABLE I.

Our objective in this paper is to be able to determine with a

high precision the concentration value at each point p ∈ P . We

ensure that for each point p ∈ P , either a sensor is deployed

or the pollution concentration can be estimated with a high

precision based on the physical model simulations and the

data gathered by the neighboring deployed sensors. Simulated

concentrations provided by the physical models (see Fig. 2b

for an example of yearly simulations) are generated based on

weather conditions and pollution emissions [21].

In addition to ensuring pollution coverage through an ef-

ficient estimation of pollution concentrations, we also ensure

that all the deployed sensors can send their data to at least one

sink node while optimizing the positions of sinks.

B. Data assimilation formulation

In order to correct the simulations of physical models using

data assimilation, the estimated concentration Ẑp at a given

location p ∈ P where no sensor is deployed is formulated as

the sum of Mp, which is the physical model simulation value

at p, and a weighted combination of the difference between the

physical model values Mq and the measured concentrations

at neighboring sensor nodes Zq, q ∈ P where xq = 1 [22].

The weights used for the estimation are called correlation

coefficients and can be evaluated in a deterministic way

based on the distance between the location of the measured

concentration and the location of the estimated concentration.

These coefficients can be also evaluated in a stochastic way,

but, without loss of generality, we focus in this paper on the

case of deterministic data assimilation. In this case, Ẑp is

calculated using formula 1 where Wpq denote the correlation

coefficients [22].

Ẑp = Mp +

∑
q∈P Wpq · xq · (Zq −Mq)∑

q∈P Wpq · xq
(1)

Let Gp denote the ground truth (or real) value of pollution

concentration at point p. We denote by mp (respectively sp)

Sets and parameters

P Set of points approximating the deployment region

N Number of points

Gp Ground truth pollution concentrations (unknown)

Zp Measured pollution concentrations (unknown)

Mp Simulated pollution concentrations
(using physical models)

Ẑp Estimated pollution concentrations
(using data assimilation)

mp Simulation errors

sp Sensing errors

Wpq Correlation coefficients

D The correlation distance function

Γ(p) Communication neighborhoods

R Communication range

I The maximum number of sinks

δp The cost of sensors

ψp The cost of sinks

E Required assimilation variance

Decision variables

xp Define whether a sensor is deployed
at point p or not ; xp ∈ {0, 1}, p ∈ P

yp Define whether a sink is deployed at point p
or not; yp ∈ {0, 1}, p ∈ P

Auxiliary variables

gpq Flow quantity transmitted from node p to node q
gpq ∈ R

+, p ∈ P, q ∈ Γ(p)
vq1q2 Auxiliary variables used for linearization

0 ≤ vq1q2 ≤ 1, q1, q2 ∈ P

TABLE I: Main notations used in our approach.

the physical model error (respectively the sensing error of

nodes) which is defined as the difference between Mp and Gp

(respectively the difference between Zp and Gp). With these

definitions, formula 1 can be transformed into formula 2.

Ẑp = Mp −

∑
q∈P Wpq · xq · (mq − sq)∑

q∈P Wpq · xq
(2)

The data assimilation equation in formula 2 is constrained

by formula 3, which ensures that the denominator is never

equal to 0. Bpq parameters define whether there is a correlation

between points p and q or not; that is, Bpq = 1 when Wpq > 0.

∑

q∈P

Bpq · xq ≥ 1 (3)

Given the formula of the assimilation estimated concentra-

tion Ẑp, the assimilation error with respect to the ground truth

value (the difference between Ẑp and Gp) can be derived as

in formula 4. The index t can be added to Ep, mp and mq

symbols in formula 4 in order to consider multiple snapshots

of pollution in the deployment optimization and therefore

ensure coverage quality for different scenarios of weather and

pollution emissions.

Ep = mp −

∑
q∈P Wpq · xq · (mq − sq)∑

q∈P Wpq · xq
(4)



C. Formulation of coverage quality

Note that both physical model simulation errors (mp and

mq) and sensing errors (sq) are unknown values and cannot

be estimated with precision. Therefore, we propose in this

paper to consider these errors as random variables where

only the the variance and the expectation are known. We

assume that the expectation of the errors is equal to 0. This

is not a strong assumption since both the physical model and

sensors can be calibrated to get an error expectation equal

to 0 by adding or subtracting the real expectation. That is,

the variance defines how much the model (or the sensors)

are incorrect at a given point. Based on these assumptions,

we define the coverage quality at a given point p as the

variance of the assimilation error. To get this formulation,

we apply the variance function to formula 4 while assuming

that sensing errors are independent between them and are also

independent with respect to the physical model errors. Hence,

we get formula 5 where V ar (respectively Cov) denotes the

variance (respectively covariance) function.

V ar(Ep) = V ar(mp) +
∑

q∈P W2

pq
·xq ·(V ar(mq)+V ar(sq))

(
∑

q∈P
Wpq ·xq)2

−2 ·
∑

q∈P Wpq ·xq ·Cov(mp,mq)
∑

q∈P
Wpq ·xq

+
∑

q1 6=p

∑
q2 6=p,q1

Wpq1
·Wpq2

·xq1
·xq2

·Cov(mq1
,mq2

)

(
∑

q∈P
Wpq ·xq)2

(5)

Note that the covariance Cov(mp,mq) is mathematically

a function of correlations Wpq and variances V ar(mp) and

V ar(mq) as in formula 6 [23].

COV (mp,mq) = Wpq ·
√
V AR(mp) · V AR(mq) (6)

IV. OPTIMIZATION MODEL

In this section, we use integer programming modeling to

derive an optimization model for the deployment of WSN

nodes based on the formulation of the assimilation error that

we presented in the previous section. The proposed deploy-

ment model allows us to minimize the overall deployment

cost of sensor and sink nodes in order to guarantee a given

target assimilation error while ensuring the connectivity of the

network.

A. Deployment cost

We first denote by δp (respectively ψp) the deployment cost

of a sensor (respectively a sink) at point p. The objective

function to minimize corresponds to the network overall

deployment cost and is defined as follows:

Minimize
∑

p∈P

δp · xp +
∑

p∈P

ψp · yp (7)

B. Air pollution coverage

In this paper, we propose to ensure the required coverage

quality by placing the sensors in such way that the variance

of the assimilation error is less than a required variance that

we denote E. Based on our coverage formulation presented in

formula 5, the coverage constraint of the optimization model

can be written as follows:

V ar(mp) +
∑

q∈P W2

pq
·xq ·(V ar(mq)+V ar(sq))

(
∑

q∈P
Wpq ·xq)2

−2 ·
∑

q∈P Wpq ·xq ·Cov(mp,mq)
∑

q∈P
Wpq ·xq

+
∑

q1 6=p

∑
q2 6=p,q1

Wpq1
·Wpq2

·xq1
·xq2

·Cov(mq1
,mq2

)

(
∑

q∈P
Wpq ·xq)2

≤ E, p ∈ P (8)

In order to get a linear model that can be solved efficiently

by MILP solvers, we need to linearize constraint 8 by eliminat-

ing the fraction and the multiplications between the decision

variables. We first multiply both sides of formula 8 by the

denominator of the fraction. Next, we simplify the parts where

the square function is applied to variables xq . Hence, we obtain

the linear form of our coverage formulation in formula 9 where

expressions expr1 and expr2 are detailed in formulas 10 and

11 respectively. Finally, real variables vq1q2 correspond to the

linear form of the product of decision variables xq1 and xq2
thanks to constraints 12.

(V ar(mp)− E) · expr1

+
∑

q∈P W2
pq · xq · (V ar(mq) + V ar(sq))

−2 · expr2

+
∑

q1 6=p

∑
q2 6=p,q1

Wpq1 · Wpq2 · vq1q2 · Cov(mq1 ,mq2)

≤ 0, p ∈ P (9)

expr1 =
∑

q1∈P

∑
q2∈P Wpq1 · Wpq2 · vq1q2 (10)

expr2 =
∑

q1∈P

∑
q2∈P Wpq1Wpq2vq1q2Cov(mp,mq1) (11)

vq1q2 ≤ xq1 , q1, q2 ∈ P

vq1q2 ≤ xq2 , q1, q2 ∈ P

vq1q2 ≥ xq1 + xq2 − 1, q1, q2 ∈ P (12)

C. Network connectivity

We formulate the connectivity constraint as a network flow

problem. We consider the same potential positions set P for

both sensors and sinks. We first denote by Γ(p), p ∈ P , the

set of neighbors of a node deployed at the potential position

p. This set can be determined using sophisticated path loss

models. It can also be determined using the binary disc model,

in which case Γ(p) = {q ∈ P where q ∈ Disc(p,R)} where

R is the communication range of sensors. Then, we define

the decision variables gpq as the flow quantity transmitted

from a node located at potential position p to another node

located at potential position q. We suppose that each sensor

of the resulting WSN generates a flow unit in the network, and

verify if these units can be recovered by sinks. The following



constraints ensure that the deployed sensors and sinks form

a connected wireless sensor network; i.e. each sensor can

communicate with at least one sink.

∑
q∈Γ(p) gpq −

∑
q∈Γ(p) gqp ≥ xp − (N + 1) · yp, p ∈ P (13)

∑
q∈Γ(p) gpq −

∑
q∈Γ(p) gqp ≤ xp, p ∈ P (14)

∑
q∈Γ(p) gpq ≤ N · xp, p ∈ P (15)

∑
p∈P

∑
q∈Γ(p) gpq =

∑
p∈P

∑
q∈Γ(p) gqp (16)

∑
p∈P yp ≤ I (17)

Constraints 13 and 14 are designed to ensure that each

deployed sensor, i.e. such that xp = 1, generates a flow unit in

the network. These constraints are equivalent to the following:

∑

q∈Γ(p)

gpq −
∑

q∈Γ(p)

gqp






= 1 if xp = 1, yp = 0

= 0 if xp = yp = 0

≤ 0, ≥ −N if xp = 1, yp = 1

The first case corresponds to deployed sensors that should

generate, each one of them, a flow unit. The second case,

combined with constraint 15, ensures that absent nodes, i.e.

xp = yp = 0, do not participate in the communication. The

third case concerns deployed sinks, and ensures that each sink

cannot receive more than N units. Constraint 16 means that the

overall flow is conservative, i.e. the flow sent by the deployed

sensors has to be received by the deployed sinks. Finally,

constraint 17 allows to fix the maximum number of sinks I
of the resulting network.

D. Deployment model

Without loss of generality, we present in what follows the

optimization model where we minimize the overall deploy-

ment cost subject to coverage and connectivity constraints.

Indeed, we can also consider the dual problem where we

optimize coverage quality by minimizing the assimilation

variance subject to a given deployment budget which should

not be exceeded.

Objective: (7)

Pollution coverage constraints: (3), (9), (10), (11), (12)

Connectivity constraints: (13), (14), (15), (16), (17)

Decision variables: xp, yp ∈ {0, 1}

Auxiliary variables: vq1q2 ∈ [0, 1], gpq ∈ R
+

V. RESOLUTION OF THE MODEL

The proposed optimization model is based on integer linear

programming that can be solved using exact MILP solvers. In

terms of complexity, the execution time of the MILP solvers

increases exponentially with the size of the problem. The

complexity of MILP models is mainly due to the number of

binary variables which causes an exponential increase in the

number of iterations when using the exact MILP solvers. In our

assimilation-based deployment model, the number of binary

variables is equal to 2 ∗ |P|, which means that the complexity

of our model is mainly due to the number of points.

Tuning the exact MILP solvers while using an input in-

tegrality gap value is a common technique to get feasible

solutions of the MILP models within a reasonable execution

time. This integrality gap value defines the quality gap between

the theoretical optimal solution and the current solution of

the MILP solver during its execution time. In this paper, we

propose to use instead the concept of linear relaxation in

order to design a heuristic algorithm that is adequate to our

deployment model. This allows us at the end to solve our

optimization model on large instances in a reasonable time

while getting near-optimal solutions.

We first define the linear programming model LP while

considering the same objective function and constraints as

our initial assimilation-based deployment model and relaxing

all the binary variables xp and yp. Note that since binary

variables are considered in the range of [0, 1], the solutions

of the LP model are not necessarily binary. Note also that

in a given solution of LP where deployment variables xp
and yp are fractional, the variable having the maximum value

(i.e. the closest binary variable to 1) corresponds to the most

important node in the satisfaction of coverage and connectivity

constraints. Based on this fact, we propose in each iteration

of our heuristic presented in Algorithm 1 to set a sensor at

point p0 where xp0
is the closet variable to 1 or to set a

sink at point p0 if yp0
is the closest variable to 1. The loop,

which performs iterative rounding, stops once the deployment

variables are equal to either 0 or 1 and all the coverage and

connectivity constraints are ensured.

Algorithm 1 Heuristic algorithm

Inputs: P
Outputs: {xp}, {yp}

repeat

Solve the assimilation-based LP deployment model

Let f be the maximum fractional variable among xp and

yp variables

Add constraint f = 1 to the LP model

until all the variables are binary

The number of iterations in the relaxation loop is at most

equal to the number of points P , which is the case when a

node has to be deployed at each point. Since solving the LP

model by the exact solvers runs in polynomial time, Algorithm

1 also runs in polynomial time.

VI. SIMULATION RESULTS

In this section, we present the simulations that we have per-

formed in order to evaluate our proposal. We first present the

data set that we used and the common simulation parameters.

Then, we provide a proof-of-concept to show how we execute

our models on a real dataset. Next, we compare our proposal



(a) Deployment region (b) NO2 concentrations (µg/m3) (c) Simulation errors’ variance (µg2/m6)

Fig. 2: Deployment region, simulation of 2008 annual concentrations of NO2 and simulation errors corresponding to the

district of La-part-dieu, Lyon, France.

to interpolation-based deployment. After that, we evaluate the

coverage results. Finally, we assess the impact of pollution

estimation requirements on the network connectivity.

A. Dataset

In order to consider the real dispersion of air pollutants in

the simulated pollution concentrations, we perform the evalua-

tion of our proposal on monthly pollution data corresponding

to the 2008 Nitrogen Dioxide (NO2) concentrations in the

Lyon district of La-Part-Dieu, which is the heart of the Lyon

City. To illustrate the pollution data set, we depict in Fig. 2b

a pollution map that corresponds to the annual mean of 2008.

This pollution data set has been generated by an enhanced

atmospheric dispersion simulator called SIRANE [21], which

is designed for urban areas and takes into account the impact

of street canyons on pollution dispersion. The dataset has been

provided by LMFA, which is a research lab specialized in fluid

mechanics in the Lyon city, France.

The deployment region has a spatial resolution of 50 meters

and is depicted in Fig. 2a. We consider as potential positions

of nodes all the grid points (225 in total). We calculate

the correlation coefficients Wpq using an exponential decay

function. That is, the correlation between points decrease

exponentially with the euclidean distance.

We recall that the main input of our deployment approach

is the variance of the errors of the physical model. In this

evaluation part, we assume that the errors of the model are

linearly correlated with its concentrations. Let γ express the

linear relationship between the model concentrations and the

model errors. Thus, we first calculate the variance of the

concentrations of the physical model based on the 12 monthly

pollution maps and then we multiply these variances by γ2

to get the variance of the physical model errors. We calculate

the γ parameter by evaluating the linear regression between

the concentrations of the dataset of the physical model and

the real data of the few monitoring stations which are already

deployed in the Lyon city. The resulting variance map of the

physical model errors is depicted in Fig. 2c. Default simulation

parameters are summarized in TABLE II. We fix the maximum

number of sinks to 1 in order to get mono-sink networks since

the deployment region is relatively small.

Parameter Notation Value

Number of discrete points (deployment region) N 225
Communication range of sensor nodes R 100m
The maximum number of sinks I 1
The cost of deploying a sensor at point p δp 1
The cost of deploying a sink at point p ψp 10

TABLE II: Default values of main simulation parameters.

B. Proof-of-concept

In order to provide a proof of concept of our assimilation-

based coverage formulation, we consider 3 different values

for the deployment budget and evaluate the assimilation error

provided by the sensor network that is generated by our model.

We first consider only the coverage constraints to get the

positions of sensor nodes and then we add the connectivity

constraints to obtain the positions of the sink and relay nodes

which are used only for connectivity. We depict in Fig. 3

the positions of sensors, relay nodes and sinks for the three

simulation cases. Sensors are placed near streets because these

are heavily polluted areas and therefore have the most of

uncertainty in physical models.

We also evaluate at each point of the map the corresponding

assimilation error. We notice that the assimilation error is

reduced when providing higher deployment budget. This is

expected since better deployment precision requires more

sensor nodes. In addition, Fig. 3 shows that the obtained nodes

form a connected network as formulated in our connectivity

constraint.

C. Comparison to interpolation-based deployment

In this simulation case, we compare our optimization model

to the most related work where authors propose a deployment

model allowing to minimize the estimation error of pollution

concentration based only on sensor measurements [3]. In the

work of Boubrima et al. [3], authors optimize the deployment

by considering the model as a reference without taking into



Fig. 3: Proof-of-concept: optimal WSN topology and the corresponding estimation errors’ variance (µg2/m6) while considering

different values of the deployment budget (from left to right: respectively 68, 75 and 155 monetary units). Sensors (respectively

relay nodes and sinks) are depicted in blue circles (respectively red squares and green triangles). Note that the scale in these

3 figures is different than the scale of Fig. 2c.

accounts the model errors. Their estimation of pollution is

based only on the measurements of sensors in contrary to our

work where both the physical model and the measurements

are used in the estimation process.

In order to compare our work to [3], we vary the deployment

budget and then execute our model based on the variance

of the errors and the correlation between the points. We

then execute the model of [3] by taking the physical model

concentrations as a reference. Once we get the deployment

result for each approach, we evaluate the estimation error by

running 100 simulations, in each simulation the model errors

are considered Gaussian. We then calculate based on these

100 simulations the estimation error’ variance maps. Finally,

we plot the average of the estimation error variance over all

the points for each value of the deployment budget in Fig. 4.

Results show that the assimilation approach gives better

estimation compared to the interpolation approach. This is

mainly due to minimizing the variance of the estimation

errors in the optimization process rather than trying to get

interpolation results that resemble the model as in the work

of [3]. Moreover, the difference between the two approaches

decreases as the deployment budget increases since the esti-

mation is less used when more sensors are available.

Fig. 4: Comparison results.

D. Evaluation of the coverage results

We now evaluate the optimal coverage results of our de-

ployment model while analyzing the impact of sensing errors.

Results are depicted in Fig. 5 where the overall deployment

cost is evaluated in function of both the assimilation error

and the sensing error of sensors. We notice that the maximum

improvement of the assimilation depends on the quality of

sensors. Indeed, when sensors are not perfect, the least assim-

ilation error that we can get is equal to 1µg2/m6. We also

notice that a minimum number of sensors is required in order

to be able to use the assimilation technique. This minimum

number is equal to 50 sensors in our simulations. This means

that in order to reduce the error of the physical model, we need

50 sensors or more. Finally, Fig. 5 shows that the more the

tolerated assimilation error, the less the impact of the quality

of sensors.

Fig. 5: Coverage results.

E. Evaluation of the connectivity results

Finally, we evaluate the impact of the connectivity technol-

ogy on the use of the deployment budget and the quality of

data assimilation. We consider two different types of nodes

depending on their communication capabilities: nodes with

a communication range equal to 100m that we consider as

short range communication nodes (like 802.15.4 for instance);

and nodes with a communication range equal to 500m that

we consider as long-range communication nodes (like LoRa

for instance). We vary the deployment budget and depict

the resulting assimilation error in Fig. 6. Results show that

using long range communications leads to less assimilation



error when compared to short range communications with

respect to the same value of the deployment budget. This is

explained by the relay nodes added just to ensure connectivity

in the case of short range communications, which means

that the deployment optimization of some nodes is performed

to improve connectivity but not necessarily coverage. Fig.

6 also shows that when the deployment budget increases,

the difference between the two communication technologies

decreases because the deployment of coverage nodes becomes

so dense that the network is usually already connected even

when using short range communications.

Fig. 6: Impact of the communication technology.

VII. CONCLUSION AND FUTURE WORK

In this paper, we tackle the deployment issue of sensor

networks and propose a mixed integer programming model

and a heuristic algorithm allowing to ensure an effective

data assimilation of air pollution measurements in order to

correct physical model simulations. Our main contribution is

to define an appropriate coverage formulation for pollution

data assimilation and then derive a deployment approach using

integer linear programming and linear relaxation. We applied

our approach on a dataset of the Lyon City, France and

showed that the assimilation-based deployment outperforms

the interpolation-based one. We have also assessed by sim-

ulation the impact of the input parameters of our approach,

mainly the quality of sensors and their communication range,

on the deployment results. As a perspective, we plan to

evaluate our approach using other datasets with different urban

characteristics.
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