B. Molyneaux, P. Arlotta, J. Menezes, and J. Macklis, Neuronal subtype specification in the cerebral cortex, Nat Rev Neurosci, vol.8, pp.427-464, 2007.

M. N. Manuel, M. D. Mason, J. O. Price, and D. J. , Regulation of cerebral cortical neurogenesis by the pax6 transcription factor, Front Cell Neurosci, vol.9, p.70, 2015.

L. C. Greig, M. B. Woodworth, M. J. Galazo, H. Padmanabhan, and J. D. Macklis, Molecular logic of neocortical projection neuron specification, development and diversity, Nat Rev Neurosci, vol.14, issue.11, pp.755-69, 2013.

S. C. Noctor, V. Martínez-cerdeõ, L. Ivic, and A. R. Kriegstein, Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases, Nat Neurosci, vol.7, issue.2, pp.136-180, 2004.

T. Miyata, A. Kawaguchi, K. Saito, M. Kawano, T. Muto et al., Asymmetric production of surface-dividing and non-surface-dividing cortical progenitor cells, Development, vol.131, pp.3133-3178, 2004.

Y. Arai, J. N. Pulvers, C. Haffner, B. Schilling, I. Nusslein et al., Neural stem and progenitor cells shorten S-phase on commitment to neuron production, Nat Commun, vol.2, issue.154, 2011.

W. Haubensak, A. Attardo, W. Denk, and W. B. Huttner, Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: A major site of neurogenesis, Proc Natl Acad Sci U S A, vol.101, issue.9, pp.3196-201, 2004.

A. Attardo, F. Calegari, W. Haubensak, M. Wilsch-braüninger, and W. B. Huttner, Live imaging at the onset of cortical neurogenesis reveals differential appearance of the neuronal phenotype in apical versus basal progenitor progeny, PLoS ONE, vol.3, issue.6, p.2388, 2015.

N. A. Vasistha, F. García-moreno, S. Arora, A. F. Cheung, S. J. Arnold et al., Cortical and clonal contribution of tbr2 expressing progenitors in the developing mouse brain, Cereb Cortex, vol.25, issue.10, pp.3290-302, 2014.

D. G. Míguez, A branching process to characterize the dynamics of stem cell differentiation, Sci Rep, vol.19, issue.5, p.13265, 2015.

H. R. Macmillan and M. J. Mcconnell, Seeing beyond the average cell: branching process models of cell proliferation, differentiation, and death during mouse brain development, Theory Biosci, vol.130, issue.1, pp.31-43, 2011.

J. L. Slater, K. A. Landman, B. D. Hughes, Q. Shen, and S. Temple, Cell lineage tree models of neurogenesis, J Theor Biol, vol.256, issue.2, pp.164-79, 2009.

J. M. Gohlke, W. C. Griffith, and E. M. Faustman, Computational models of neocortical neuronogenesis and programmed cell death in the developing mouse, monkey, and human, Cereb Cortex, vol.17, issue.10, pp.2433-2475, 2007.

M. Florio and W. B. Huttner, Neural progenitors, neurogenesis and the evolution of the neocortex, Development, vol.141, issue.11, pp.2182-94, 2014.

B. G. Leroux, W. M. Leisenring, S. H. Moolgavkar, and E. M. Faustman, A biologicallybased dose response model for developmental toxicology, Risk Anal, vol.16, issue.4, pp.449-58, 1996.

B. Freret-hodara, Y. Cui, A. Griveau, L. Vigier, Y. Arai et al., Enhanced abventricular proliferation compensates cell death in the embryonic cerebral cortex, Cereb Cortex, pp.20161-20179
URL : https://hal.archives-ouvertes.fr/hal-01412093

N. J. Savill, Mathematical models of hierarchically structured cell populations under equilibrium with application to the epidermis, Cell Prolif, vol.36, issue.1, pp.1-26, 2003.

S. R. Leffler, E. Legué, O. Aristizábal, A. L. Joyner, C. S. Peskin et al., A mathematical model of granule cell generation during mouse cerebellum development, Bull Math Biol, vol.78, issue.5, pp.859-78, 2016.

B. Li, A. Sierra, J. J. Deudero, F. Semerci, M. Laitman et al., Multitype bellman-harris branching model provides biological predictors of early stages of adult hippocampal neurogenesis, BMC Syst Biol, vol.11, issue.5, p.90, 2017.

F. Ziebell, A. Martin-villalba, and A. Marciniak-czochra, Mathematical modelling of adult hippocampal neurogenesis: effects of altered stem cell dynamics on cell counts and bromodeoxyuridine-labelled cells, J R Soc Interface, vol.11, issue.94, 2014.

F. Ziebell, S. Dehler, A. Martin-villalba, and A. Marciniak-czochra, Revealing agerelated changes of adult hippocampal neurogenesis using mathematical models, Development, vol.145, issue.1, 2018.

C. Vsjr, T. Goto, T. Tarui, T. Takahashi, P. G. Bhide et al., Cell output, cell cycle duration and neuronal specification: a model of integrated mechanisms of the neocortical proliferative process, Cereb Cortex, vol.13, issue.6, pp.592-600, 2003.

D. J. Cahalane, C. J. Charvet, and B. L. Finlay, Modeling local and cross-species neuron number variations in the cerebral cortex as arising from a common mechanism, Proc Natl Acad Sci, vol.111, issue.49, pp.17642-17649, 2014.

J. Laussu, A. Khuong, J. Gautrais, and A. Davy, Beyond boundaries -Eph:ephrin signaling in neurogenesis, Cell Adh Migr, vol.8, issue.4, pp.349-59, 2014.

N. Picco and T. E. Woolley, Time to change your mind? modelling transient properties of cortex formation highlights the importance of evolving cell division strategies, J Theor Biol, 2018.

C. C. Homem, M. Repic, and J. A. Knoblich, Proliferation control in neural stem and progenitor cells, Nat Rev Neurosci, vol.16, issue.11, pp.647-59, 2015.

J. Hasenauer, D. Schittler, and F. Allgöwer, Analysis and simulation of division-and label-structured population models, Bull Math biol, vol.74, issue.11, pp.2692-732, 2012.

I. M. Van-leeuwen, G. Mirams, A. Walter, A. Fletcher, P. Murray et al., An integrative computational model for intestinal tissue renewal, Cell Prolif, vol.42, issue.5, pp.617-653, 2009.

J. Vierkotten, R. Dildrop, T. Peters, B. Wang, and U. Rüther, Ftm is a novel basal body protein of cilia involved in Shh signalling, Development, vol.134, issue.14, pp.2569-77, 2007.

M. Delous, L. Baala, R. Salomon, C. Laclef, J. Vierkotten et al., The ciliary gene RPGRIP1L is mutated in cerebello-oculo-renal syndrome (Joubert syndrome type B) and Meckel syndrome, Nat Genet, vol.39, issue.7, p.875, 2007.

L. Besse, M. Neti, I. Anselme, C. Gerhardt, U. Rüther et al., Primary cilia control telencephalic patterning and morphogenesis via Gli3 proteolytic processing, Development, vol.138, issue.10, pp.2079-88, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02267486

K. Baker and P. Beales, Making sense of cilia in disease: the human ciliopathies, Am J Med Genet C Semin Med Genet, vol.151, pp.281-95, 2009.

J. Lee and J. Gleeson, Cilia in the nervous system: linking cilia function and neurodevelopmental disorders, Curr Opin Neurol, vol.24, issue.2, pp.98-105, 2011.

F. D. Miller and A. S. Gauthier, Timing is everything: making neurons versus glia in the developing cortex, Neuron, vol.54, pp.357-69, 2007.

H. Tabata, Diverse subtypes of astrocytes and their development during corticogenesis, Front Neurosci, vol.9, issue.114, pp.1-7, 2015.

B. Aymard, F. Clément, D. Monniaux, and M. Postel, Cell-kinetics based calibration of a multiscale model of structured cell populations in ovarian follicles, SIAM J Appl Math, vol.76, issue.4, pp.1471-91, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01186381

C. Englund, A. Fink, C. Lau, D. Pham, R. A. Daza et al., Pax6, tbr2, and tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex, J Neurosci, vol.25, issue.1, pp.247-51, 2005.

P. Arlotta, B. J. Molyneaux, J. Chen, J. Inoue, R. Kominami et al., Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo, Neuron, vol.45, issue.2, pp.207-228, 2004.

O. Britanova, C. De-juan-romero, A. Cheung, K. Y. Kwan, A. Schwark et al., Satb2 is a postmitotic determinant for upper-layer neuron specification in the neocortex, Neuron, vol.57, issue.3, pp.378-92, 2008.

F. K. Wong, J. Fei, F. Mora-bermúdez, E. Taverna, C. Haffner et al., Sustained Pax6 expression generates primate-like basal radial glia in developing mouse neocortex, PLoS Biol, vol.13, issue.8, p.1002217, 2015.

M. Okamoto, T. Namba, T. Shinoda, T. Kondo, T. Watanabe et al., TAG-1-assisted progenitor elongation streamlines nuclear migration to optimize subapical crowding, Nat Neurosci, vol.16, issue.11, pp.1556-66, 2013.

J. T. Paridaen and W. B. Huttner, Neurogenesis during development of the vertebrate central nervous system, EMBO Rep, vol.15, issue.4, pp.351-64, 2014.

M. Betizeau, V. Cortay, D. Patti, S. Pfister, E. Gautier et al., Precursor diversity and complexity of lineage relationships in the outer subventricular zone of the primate, Neuron, vol.80, issue.2, pp.442-57, 2013.

R. T. Marler and J. S. Arora, Survey of multi-objective optimization methods for engineering, Struct Multidiscipl Optim, vol.26, issue.6, pp.369-95, 2004.

L. Wang, S. Hou, and Y. G. , Hedgehog signaling promotes basal progenitor expansion and the growth and folding of the neocortex, Nat Neurosci, vol.19, issue.7, pp.888-96, 2016.

T. Kowalczyk, A. Pontious, C. Englund, R. Daza, F. Bedogni et al., Intermediate neuronal progenitors (basal progenitors) produce pyramidal projection neurons for all layers of cerebral cortex, Cereb Cortex, vol.19, issue.10, pp.2439-50, 2009.

B. Martynoga, H. Morrison, D. J. Price, and J. O. Mason, Foxg1 is required for specification of ventral telencephalon and region-specific regulation of dorsal telencephalic precursor proliferation and apoptosis, Dev Biol, vol.283, issue.1, pp.113-140, 2005.

C. Laclef, I. Anselme, L. Besse, M. Catala, A. Palmyre et al., The role of primary cilia in corpus callosum formation is mediated by production of the Gli3 repressor, Hum Mol Genet, vol.24, issue.17, pp.4997-5014, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01537450

A. Andreu-cervera, I. Anselme, A. Karam, M. Catala, and S. Schneider-maunoury, The ciliopathy gene Ftm/Rpgrip1l controls mouse forebrain patterning via region-specific modulation of hedgehog/Gli signaling, J Neurosci, vol.39, issue.13, pp.2398-415, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02095563

S. Baloch, R. Verma, H. Huang, P. Khurd, S. Clark et al., Quantification of brain maturation and growth patterns in c57bl/6j mice via computational neuroanatomy of diffusion tensor images, Cereb Cortex, vol.19, issue.3, pp.675-87, 2008.

E. Calabrese, A. Badea, C. Watson, and G. A. Johnson, A quantitative magnetic resonance histology atlas of postnatal rat brain development with regional estimates of growth and variability, Neuroimage, vol.71, pp.196-206, 2013.

C. Gaser, S. Schmidt, M. Metzler, K. Herrmann, I. Krumbein et al., Deformation-based brain morphometry in rats, Neuroimage, vol.63, issue.1, pp.47-53, 2012.

D. Stenzel, M. Wilsch-bräuninger, F. K. Wong, H. Heuer, and W. B. Huttner, Integrin ?v?3 and thyroid hormones promote expansion of progenitors in embryonic neocortex, Development, vol.141, issue.4, pp.795-806, 2014.

R. Bellman and K. Åström, On structural identifiability, Math Biosci, vol.7, pp.329-368, 1970.

N. Picco, F. García-moreno, P. K. Maini, T. E. Woolley, and Z. Molnár, Mathematical modeling of cortical neurogenesis reveals that the founder population does not necessarily scale with neurogenic output, Cereb Cortex, vol.28, issue.7, pp.2540-50, 2018.

N. Hansen, . In, J. A. Lozano, P. Larrañaga, and I. Inza, Bengoetxea E, editors. The CMA Evolution Strategy: A Comparing Review, pp.75-102, 2006.

A. Tosenberger, D. Gonze, S. Bessonard, M. Cohen-tannoudji, C. Chazayd et al., A multiscale model of early cell lineage specification including cell division, NPJ Syst Biol Appl, vol.3, issue.16, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01923146

A. Cárdenas, A. Villalba, C. De-juan-romero, E. Picó, C. Kyrousi et al., Evolution of cortical neurogenesis in amniotes controlled by robo signaling levels, Cell, vol.174, issue.3, pp.590-60621, 2018.

W. Wang, G. Y. Jossin, L. Chai, F. Tissir, and A. M. Goffinet, Feedback regulation of apical progenitor fate by immature neurons through Wnt7-Celsr3-Fzd3 signalling, Nat Commun, vol.7, p.10936, 2016.

J. T. Paridaen and W. B. Huttner, Neurogenesis during development of the vertebrate central nervous system, EMBO Rep, vol.15, issue.4, pp.351-64, 2014.

P. Foerster, M. Daclin, S. Asm, M. Faucourt, A. Boletta et al., mtorc1 signaling and primary cilia are required for brain ventricle morphogenesis, Development, 2016.

S. Kunche, H. Yan, A. L. Calof, J. S. Lowengrub, and A. D. Lander, Feedback, lineages and self-organizing morphogenesis, PLoS Comput Biol, vol.12, issue.3, pp.1-34, 2016.

G. E. Elsen, F. Bedogni, R. D. Hodge, T. K. Bammler, J. W. Macdonald et al., The epigenetic factor landscape of developing neocortex is regulated by transcription factors Pax6?Tbr2? Tbr1, Front Neurosci, vol.12, p.571, 2018.

L. Tiberi, P. Vanderhaeghen, and J. Van-den-ameele, Cortical neurogenesis and morphogens: diversity of cues, sources and functions, Curr Opin Cell Biol, vol.24, issue.2, pp.269-76, 2012.

C. Dehay and H. Kennedy, Cell-cycle control and cortical development, Nat Rev Neurosci, vol.8, issue.6, p.438, 2007.

, Publisher's Note

, Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations