B. Wohlmuth, Variationally consistent discretization schemes and numerical algorithms for contact problems, Acta Numerica, vol.6, pp.569-734, 2011.
DOI : 10.1016/j.cma.2005.06.003

URL : https://hal.archives-ouvertes.fr/hal-01382364

S. Knauf, S. Frei, T. Richter, and R. Rannacher, Towards a complete numerical description of lubricant film dynamics in ball bearings, Computational Mechanics, vol.95, issue.3???5, pp.239-255, 2014.
DOI : 10.1016/0045-7825(92)90141-6

V. Bruyere, N. Fillot, G. E. Morales-espejel, and P. Vergne, Computational fluid dynamics and full elasticity model for sliding line thermal elastohydrodynamic contacts, Tribology International, vol.46, issue.1, pp.3-13, 2012.
DOI : 10.1016/j.triboint.2011.04.013

URL : https://hal.archives-ouvertes.fr/hal-00655930

T. E. Tezduyar and S. Sathe, Modelling of fluid???structure interactions with the space???time finite elements: Solution techniques, International Journal for Numerical Methods in Fluids, vol.195, issue.6-8, pp.855-900, 2007.
DOI : 10.1002/nme.788

U. M. Mayer, A. Popp, A. Gerstenberger, and W. A. , 3D fluid???structure-contact interaction based on a combined XFEM FSI and dual mortar contact approach, Computational Mechanics, vol.62, issue.9, pp.53-67, 2010.
DOI : 10.1007/978-3-642-56767-4

N. D. Santos, J. Gerbeau, and J. Bourgat, A partitioned fluid???structure algorithm for elastic thin valves with contact, Computer Methods in Applied Mechanics and Engineering, vol.197, issue.19-20, pp.1750-1761, 2008.
DOI : 10.1016/j.cma.2007.03.019

URL : https://hal.archives-ouvertes.fr/inria-00111991

M. Astorino, J. Gerbeau, O. Pantz, and K. Traoré, Fluid-structure interaction and multibody contact: Application to aortic valves, Computer Methods in Applied Mechanics and Engineering, vol.198, pp.45-46, 2009.
DOI : 10.1016/j.cma.2008.09.012

URL : https://hal.archives-ouvertes.fr/inria-00300770

S. Frei and T. Richter, 3. An accurate Eulerian approach for fluid-structure interactions, Fluid-Structure Interaction: Modeling, Adaptive Discretization and Solvers, Radon Series on Computational and Applied Mathematics, 2017.
DOI : 10.1515/9783110494259-003

URL : https://hal.archives-ouvertes.fr/in2p3-00020007

J. A. Nitsche, ??ber ein Variationsprinzip zur L??sung von Dirichlet-Problemen bei Verwendung von Teilr??umen, die keinen Randbedingungen unterworfen sind, Abhandlungen aus dem Mathematischen Seminar der Universit??t Hamburg, vol.12, issue.1, pp.9-15, 1970.
DOI : 10.1007/BF02161362

F. Chouly and P. Hild, A Nitsche-Based Method for Unilateral Contact Problems: Numerical Analysis, SIAM Journal on Numerical Analysis, vol.51, issue.2, pp.1295-1307, 2013.
DOI : 10.1137/12088344X

URL : https://hal.archives-ouvertes.fr/hal-00717711

F. Chouly, P. Hild, and Y. Renard, Symmetric and non-symmetric variants of Nitsche???s method for contact problems in elasticity: theory and numerical experiments, Mathematics of Computation, vol.84, issue.293, pp.1089-1112, 2015.
DOI : 10.1090/S0025-5718-2014-02913-X

F. Chouly, P. Hild, and Y. Renard, A Nitsche finite element method for dynamic contact: 1. Space semi-discretization and time-marching schemes, ESAIM: Mathematical Modelling and Numerical Analysis, vol.49, issue.2, pp.481-502, 2015.
DOI : 10.1007/s00466-007-0196-4

URL : https://hal.archives-ouvertes.fr/hal-00958695

]. P. Alart and A. Curnier, A mixed formulation for frictional contact problems prone to Newton like solution methods, Computer Methods in Applied Mechanics and Engineering, vol.92, issue.3, pp.353-375, 1991.
DOI : 10.1016/0045-7825(91)90022-X

F. Chouly, An adaptation of Nitsche??s method to the Tresca friction problem, Journal of Mathematical Analysis and Applications, vol.411, issue.1, pp.329-339, 2014.
DOI : 10.1016/j.jmaa.2013.09.019

F. Chouly, P. Hild, V. Lleras, and Y. Renard, Nitsche-based finite element method for contact with Coulomb friction, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01654487

E. Burman, P. Hansbo, M. G. Larson, and R. Stenberg, Galerkin least squares finite element method for the obstacle problem, Computer Methods in Applied Mechanics and Engineering, vol.313, pp.362-374, 2017.
DOI : 10.1016/j.cma.2016.09.025

M. Hillairet, Lack of Collision Between Solid Bodies in a 2D Incompressible Viscous Flow, Communications in Partial Differential Equations, vol.336, issue.9, pp.1345-1371, 2007.
DOI : 10.1142/S0218202506001303

T. I. Hesla, Collisions of smooth bodies in viscous fluids: A mathematical investigation, University of Minnesota, 2004.

M. Hillairet and T. Takahashi, Collisions in Three-Dimensional Fluid Structure Interaction Problems, SIAM Journal on Mathematical Analysis, vol.40, issue.6, pp.2451-2477, 2009.
DOI : 10.1137/080716074

D. Gerard-varet, M. Hillairet, and C. Wang, The influence of boundary conditions on the contact problem in a 3D Navier???Stokes flow, Journal de Math??matiques Pures et Appliqu??es, vol.103, issue.1, pp.1-38, 2015.
DOI : 10.1016/j.matpur.2014.03.005

URL : https://hal.archives-ouvertes.fr/hal-00795366

D. Gérard-varet and M. Hillairet, Regularity Issues in the Problem of Fluid Structure Interaction, Archive for Rational Mechanics and Analysis, vol.421, issue.5, pp.375-407, 2010.
DOI : 10.1017/S0022112000001695

C. Wang, Strong solutions for the fluid?solid systems in a 2-d domain, Asymptotic Analysis, vol.89, pp.3-4

C. Grandmont and M. Hillairet, Existence of Global Strong Solutions to a Beam???Fluid Interaction System, Archive for Rational Mechanics and Analysis, vol.8, issue.12, pp.1283-1333, 2016.
DOI : 10.1007/s00021-003-0083-4

URL : https://hal.archives-ouvertes.fr/hal-01138736

C. Grandmont, M. Luká?ová-medvidóvá, and ?. S. Ne?asová, Mathematical and Numerical Analysis of Some FSI Problems, pp.1-77, 2014.
DOI : 10.1007/978-3-0348-0822-4_1

]. B. Muha and S. Cani´ccani´c, Existence of a weak solution to a fluid???elastic structure interaction problem with the Navier slip boundary condition, Journal of Differential Equations, vol.260, issue.12, pp.8550-8589, 2016.
DOI : 10.1016/j.jde.2016.02.029

M. A. Puso, A 3D mortar method for solid mechanics, International Journal for Numerical Methods in Engineering, vol.59, issue.3, pp.315-336, 2004.
DOI : 10.1002/nme.865

B. Yang, T. A. Laursen, and X. Meng, Two dimensional mortar contact methods for large deformation frictional sliding, International Journal for Numerical Methods in Engineering, vol.50, issue.9, pp.1183-1225, 2005.
DOI : 10.1017/CBO9781139171731

T. Dunne and R. Rannacher, Adaptive finite element approximation of fluid-structure interaction based on an Eulerian variational formulation Fluid-Structure Interaction: Modeling, Simulation, Optimization, Lecture Notes in Computational Science and Engineering, pp.110-145, 2006.

G. Cottet, E. Maitre, and T. Milcent, Eulerian formulation and level set models for incompressible fluid-structure interaction, ESAIM: Mathematical Modelling and Numerical Analysis, vol.8, issue.3, pp.471-492, 2008.
DOI : 10.1007/BF01084616

URL : https://hal.archives-ouvertes.fr/hal-00297711

T. Richter, A Fully Eulerian formulation for fluid???structure-interaction problems, Journal of Computational Physics, vol.233, pp.227-240, 2013.
DOI : 10.1016/j.jcp.2012.08.047

F. Hecht and O. Pironneau, An energy stable monolithic Eulerian fluid-structure finite element method, International Journal for Numerical Methods in Fluids, vol.116, issue.C, pp.430-446, 2017.
DOI : 10.1016/S0045-7825(94)80025-1

URL : https://hal.archives-ouvertes.fr/hal-01326785

C. S. Peskin, Flow patterns around heart valves: A numerical method, Journal of Computational Physics, vol.10, issue.2, pp.252-271, 1972.
DOI : 10.1016/0021-9991(72)90065-4

D. Boffi and L. Gastaldi, A finite element approach for the immersed boundary method, Computers & Structures, vol.81, issue.8-11, pp.491-501, 2003.
DOI : 10.1016/S0045-7949(02)00404-2

L. Zhang, A. Gerstenberger, X. Wang, and W. K. Liu, Immersed finite element method, Computer Methods in Applied Mechanics and Engineering, vol.193, issue.21-22, pp.2051-2067, 2004.
DOI : 10.1016/j.cma.2003.12.044

A. Legay, J. Chessa, and T. Belytschko, An Eulerian???Lagrangian method for fluid???structure interaction based on level sets, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.17-18, pp.2070-2087, 2006.
DOI : 10.1016/j.cma.2005.02.025

A. Gerstenberger and W. A. Wall, An eXtended Finite Element Method/Lagrange multiplier based approach for fluid???structure interaction, Computer Methods in Applied Mechanics and Engineering, vol.197, issue.19-20, pp.1699-1714, 2008.
DOI : 10.1016/j.cma.2007.07.002

E. Burman and M. A. Fernández, An unfitted Nitsche method for incompressible fluid???structure interaction using overlapping meshes, Computer Methods in Applied Mechanics and Engineering, vol.279, pp.497-514, 2014.
DOI : 10.1016/j.cma.2014.07.007

URL : https://hal.archives-ouvertes.fr/hal-00918272

F. Alauzet, B. Fabréges, M. A. Fernández, and M. Landajuela, Nitsche-XFEM for the coupling of an incompressible fluid with immersed thin-walled structures, Computer Methods in Applied Mechanics and Engineering, vol.301, pp.300-335, 2016.
DOI : 10.1016/j.cma.2015.12.015

URL : https://hal.archives-ouvertes.fr/hal-01149225

A. Massing, M. Larson, A. Logg, and M. Rognes, A Nitsche-based cut finite element method for a fluid-structure interaction problem, Communications in Applied Mathematics and Computational Science, vol.96, issue.2, pp.97-120, 2015.
DOI : 10.1016/j.cma.2003.12.044

P. Hansbo, J. Hermansson, and T. Svedberg, Nitsche's method combined with space???time finite elements for ALE fluid???structure interaction problems, Computer Methods in Applied Mechanics and Engineering, vol.193, issue.39-41, pp.39-41, 2004.
DOI : 10.1016/j.cma.2003.09.029

D. Kamensky, M. C. Hsu, D. Schillinger, J. A. Evans, A. Aggarwal et al., An immersogeometric variational framework for fluid???structure interaction: Application to bioprosthetic heart valves, Computer Methods in Applied Mechanics and Engineering, vol.284, pp.1005-1053, 2015.
DOI : 10.1016/j.cma.2014.10.040

M. A. Fernández and J. Gerbeau, Numerical methods for immersed FSI with thin-walled structures, 2018.

T. Dunne, Adaptive finite element approximation of fluid-structure interaction based on Eulerian and arbitrary lagrangian-Eulerian variational formulations, 2007.

S. Frei and T. Richter, A Locally Modified Parametric Finite Element Method for Interface Problems, SIAM Journal on Numerical Analysis, vol.52, issue.5, pp.2315-2334, 2014.
DOI : 10.1137/130919489

S. Frei and T. Richter, A second order time-stepping scheme for parabolic interface problems with moving interfaces, ESAIM: Mathematical Modelling and Numerical Analysis, vol.258, issue.4, pp.1539-1560, 2017.
DOI : 10.1016/j.cma.2013.02.010

E. Burman, Ghost penalty, Comptes Rendus Mathematique, vol.348, issue.21-22, pp.21-22, 2010.
DOI : 10.1016/j.crma.2010.10.006

URL : https://hal.archives-ouvertes.fr/inria-00543248

T. Richter, Finite Elements for Fluid-Structure Interactions. Models, Analysis and Finite Elements, Lecture Notes in Computational Science and Engineering, vol.118, 2017.
DOI : 10.1007/978-3-642-33134-3_7

S. Frei, Eulerian finite element methods for interface problems and fluid-structure interactions, p.21590, 2016.

F. Brezzi and J. Pitkäranta, On the Stabilization of Finite Element Approximations of the Stokes Equations, pp.11-19, 1984.
DOI : 10.1007/978-3-663-14169-3_2

R. Becker and M. Braack, A finite element pressure gradient stabilization??for the Stokes equations based on local projections, Calcolo, vol.38, issue.4, pp.173-199, 2001.
DOI : 10.1007/s10092-001-8180-4

URL : https://hal.archives-ouvertes.fr/inria-00343043

T. J. Hughes, L. P. Franca, and M. Balestra, A new finite element formulation for computational fluid dynamics: V. Circumventing the babu??ka-brezzi condition: a stable Petrov-Galerkin formulation of the stokes problem accommodating equal-order interpolations, Computer Methods in Applied Mechanics and Engineering, vol.59, issue.1, pp.85-99, 1986.
DOI : 10.1016/0045-7825(86)90025-3

E. Burman and P. Hansbo, Edge stabilization for the generalized Stokes problem: A continuous interior penalty method, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.19-22, pp.2393-2410, 2006.
DOI : 10.1016/j.cma.2005.05.009

E. Burman and P. Hansbo, Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method, Applied Numerical Mathematics, vol.62, issue.4, pp.328-341, 2012.
DOI : 10.1016/j.apnum.2011.01.008

S. Mandal, A. Ouazzi, and S. Turek, Modified Newton Solver for Yield Stress Fluids, Numerical Mathematics and Advanced Applications ENUMATH 2015, pp.481-490, 2016.
DOI : 10.1016/j.powtec.2009.09.001

S. Frei, An edge-based pressure stabilisation technique for finite elements on arbitrarily anisotropic meshes, 2017.

M. Besier and W. Wollner, On the pressure approximation in nonstationary incompressible flow simulations on dynamically varying spatial meshes, International Journal for Numerical Methods in Fluids, vol.44, issue.7, pp.1045-1064, 2012.
DOI : 10.1002/fld.679

R. Becker, M. Braack, D. Meidner, T. Richter, and B. Vexler, The finite element toolkit Gas- coigne3d

K. Poulios and Y. Renard, An unconstrained integral approximation of large sliding frictional contact between deformable solids, Computers & Structures, vol.153, pp.75-90, 2015.
DOI : 10.1016/j.compstruc.2015.02.027

URL : https://hal.archives-ouvertes.fr/hal-00937569

R. Mlika, Y. Renard, and F. Chouly, An unbiased Nitsche???s formulation of large deformation frictional contact and self-contact, Computer Methods in Applied Mechanics and Engineering, vol.325, pp.265-288, 2017.
DOI : 10.1016/j.cma.2017.07.015