S. Benzekry, C. Lamont, A. Beheshti, A. Tracz, J. M. Ebos et al., Classical Mathematical Models for Description and Prediction of Experimental Tumor Growth, PLoS Computational Biology, vol.90, issue.8, pp.1-19, 2014.
DOI : 10.1371/journal.pcbi.1003800.s010

F. Billy, B. Ribba, O. Saut, H. Morre-trouilhet, T. Colin et al., A pharmacologically based multiscale mathematical model of angiogenesis and its use in investigating the efficacy of a new cancer treatment strategy, Journal of Theoretical Biology, vol.260, issue.4, pp.545-562, 2009.
DOI : 10.1016/j.jtbi.2009.06.026

URL : https://hal.archives-ouvertes.fr/inria-00440447

A. Blumlein, N. Williams, and J. J. Mcmanus, The mechanical properties of individual cell spheroids, Scientific Reports, 2017.
DOI : 10.1039/C5TB00131E

D. Bresch, T. Colin, E. Grenier, B. Ribba, and O. Saut, A viscoelastic model for avascular tumor growth, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00267292

D. Bresch, T. Colin, E. Grenier, B. Ribba, and O. Saut, Computational Modeling of Solid Tumor Growth: The Avascular Stage, SIAM Journal on Scientific Computing, vol.32, issue.4, pp.2321-2344, 2010.
DOI : 10.1137/070708895

URL : https://hal.archives-ouvertes.fr/inria-00148610

H. Byrne, J. King, D. Mcelwain, and L. Preziosi, A two-phase model of solid tumour growth, Applied Mathematics Letters, vol.16, issue.4, pp.567-573, 2003.
DOI : 10.1016/S0893-9659(03)00038-7

F. Cornelis, O. Saut, P. Cumsille, D. Lombardi, A. Iollo et al., In vivo mathematical modeling of tumor growth from imaging data: Soon to come in the future? Diagnostic and Interventional Imaging, pp.94593-600, 2013.

A. Desmaison, C. Frongia, K. Grenier, B. Ducommun, and V. Lobjois, Mechanical Stress Impairs Mitosis Progression in Multi-Cellular Tumor Spheroids, PLoS ONE, vol.11, issue.12, pp.1-10
DOI : 10.1371/journal.pone.0080447.s002

URL : https://doi.org/10.1371/journal.pone.0080447

S. Douezan and F. Brochard-wyart, Active diffusion-limited aggregation of cells, Soft Matter, vol.98, issue.3, pp.784-788, 2012.
DOI : 10.1073/pnas.071615398

P. A. Fleming, W. S. Argraves, C. Gentile, A. Neagu, G. Forgacs et al., Fusion of uniluminal vascular spheroids: a model for assembly of blood vessels. Developmental dynamics : an official publication of the, pp.398-406, 2010.

E. Flenner, F. Marga, A. Neagu, I. Kosztin, and G. Forgacs, Relating Biophysical Properties Across Scales, Multiscale Modeling of Developmental Systems, pp.461-483, 2008.
DOI : 10.1016/S0070-2153(07)81016-7

URL : http://arxiv.org/pdf/0706.3693

G. Forgacs, R. A. Foty, Y. Shafrir, and M. S. Steinberg, Viscoelastic Properties of Living Embryonic Tissues: a Quantitative Study, Biophysical Journal, vol.74, issue.5, pp.2227-2234, 1998.
DOI : 10.1016/S0006-3495(98)77932-9

R. Foty, C. Pfleger, G. Forgacs, and M. Steinberg, Surface tensions of embryonic tissues predict their mutual envelopment behavior, Development, vol.122, issue.5, pp.1611-1620, 1996.

R. A. Foty, G. Forgacs, C. M. Pfleger, and M. S. Steinberg, Liquid properties of embryonic tissues: Measurement of interfacial tensions, Physical Review Letters, vol.24, issue.14, pp.2298-2301, 1994.
DOI : 10.1093/icb/24.3.649

A. Gomes, L. Guillaume, D. R. Grimes, J. Fehrenbach, V. Lobjois et al., Oxygen Partial Pressure Is a Rate-Limiting Parameter for Cell Proliferation in 3D Spheroids Grown in Physioxic Culture Condition, PLOS ONE, vol.1, issue.4, pp.11-0161239, 2016.
DOI : 10.1371/journal.pone.0161239.g004

B. Gompertz, On the Nature of the Function Expressive of the Law of Human Mortality, and on a New Mode of Determining the Value of Life Contingencies, Philosophical Transactions of the Royal Society of London, vol.115, issue.0, pp.513-583
DOI : 10.1098/rstl.1825.0026

H. Greenspan, On the growth and stability of cell cultures and solid tumors, Journal of Theoretical Biology, vol.56, issue.1, pp.229-242, 1976.
DOI : 10.1016/S0022-5193(76)80054-9

P. Grinfeld, Hamiltonian Dynamic Equations for Fluid Films, Studies in Applied Mathematics, vol.29, issue.2, pp.223-264, 2010.
DOI : 10.1090/S0033-569X-06-01001-2

F. Hirschhaeuser, H. Menne, C. Dittfeld, J. West, W. Mueller-klieser et al., Multicellular tumor spheroids: An underestimated tool is catching up again, Organotypic Tissue Culture for Substance Testing, pp.3-15, 2010.
DOI : 10.1016/j.jbiotec.2010.01.012

S. Hoehme and D. Drasdo, A cell-based simulation software for multi-cellular systems, Bioinformatics, vol.18, issue.20, pp.2641-2642, 2010.
DOI : 10.1093/bioinformatics/18.6.864

URL : https://academic.oup.com/bioinformatics/article-pdf/26/20/2641/16895015/btq437.pdf

K. Jakab, B. Damon, F. Marga, O. Doaga, V. Mironov et al., Relating cell and tissue mechanics: Implications and applications, Developmental Dynamics, vol.120, issue.9, pp.2438-2449, 2008.
DOI : 10.1152/physiolgenomics.00033.2003

URL : http://onlinelibrary.wiley.com/doi/10.1002/dvdy.21684/pdf

K. Jakab, A. Neagu, V. Mironov, R. R. Markwald, and G. Forgacs, Engineering biological structures of prescribed shape using self-assembling multicellular systems, Proceedings of the National Academy of Sciences, vol.100, issue.9, pp.2864-2869, 2004.
DOI : 10.1073/pnas.0737381100

K. Jakab, C. Norotte, F. Marga, K. Murphy, G. Vunjak-novakovic et al., Tissue engineering by self-assembly and bio-printing of living cells, Biofabrication, vol.2, issue.2, p.22001, 2010.
DOI : 10.1088/1758-5082/2/2/022001

E. Jones, T. Oliphant, and P. Peterson, SciPy: Open source scientific tools for Python, ?. [Online, vol.accessed ¡today¿], 2001.

A. Laird, Dynamics of Tumour Growth: Comparison of Growth Rates and Extrapolation of Growth Curve to One Cell, British Journal of Cancer, vol.19, issue.2, pp.278-291, 1965.
DOI : 10.1038/bjc.1965.32

J. Laurent, C. Frongia, M. Cazales, O. Mondesert, B. Ducommun et al., Multicellular tumor spheroid models to explore cell cycle checkpoints in 3D, BMC Cancer, vol.313, issue.3, p.73, 2013.
DOI : 10.1016/j.yexcr.2006.10.026

T. Michel, Mathematical analysis and model calibration for tumor growth models. Theses, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01419843

V. Mironov, R. P. Visconti, V. Kasyanov, G. Forgacs, C. J. Drake et al., Organ printing: Tissue spheroids as building blocks, Biomaterials, vol.30, issue.12, pp.302164-2174, 2009.
DOI : 10.1016/j.biomaterials.2008.12.084

URL : http://europepmc.org/articles/pmc3773699?pdf=render

. Rieu, Rounding of aggregates of biological cells: Experiments and simulations. Physica A: Statistical Mechanics and its Applications, pp.525-534, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00003348

O. Pokluda, C. T. Bellehumeur, and J. Vlachopoulos, Modification of Frenkel's model for sintering, AIChE Journal, vol.43, issue.12, pp.3253-3256, 1997.
DOI : 10.1002/aic.690431213

J. M. Pérez-pomares and R. A. Foty, Tissue fusion and cell sorting in embryonic development and disease: biomedical implications, BioEssays, vol.48, issue.8, pp.809-821, 2006.
DOI : 10.1177/002215549904701101

E. K. Rofstad, K. Galappathi, and B. S. Mathiesen, Tumor Interstitial Fluid Pressure???A Link between Tumor Hypoxia, Microvascular Density, and Lymph Node Metastasis, Neoplasia, vol.16, issue.7, pp.586-594, 2014.
DOI : 10.1016/j.neo.2014.07.003

URL : https://doi.org/10.1016/j.neo.2014.07.003

G. Sciumè, R. Santagiuliana, M. Ferrari, P. Decuzzi, and B. A. Schrefler, A tumor growth model with deformable ECM, Physical Biology, vol.11, issue.6, p.65004, 2014.
DOI : 10.1088/1478-3975/11/6/065004

A. J. Shaler, Seminar on the kinetics of sintering, JOM, vol.29, issue.11, pp.796-813, 1949.
DOI : 10.1002/andp.19374210205

J. Spratt, D. Von-fournier, J. Spratt, and E. Weber, Decelerating growth and human breast cancer, Cancer, vol.45, issue.6, pp.2013-2019, 1993.
DOI : 10.1016/B978-0-12-287460-4.50007-2

URL : http://onlinelibrary.wiley.com/doi/10.1002/1097-0142(19930315)71:6<2013::AID-CNCR2820710615>3.0.CO;2-V/pdf

M. S. Steinberg, Reconstruction of Tissues by Dissociated Cells, Science, vol.141, issue.3579, pp.401-408, 1963.
DOI : 10.1126/science.141.3579.401

T. V. Stirbat, A. Mgharbel, S. Bodennec, K. Ferri, H. C. Mertani et al., Fine Tuning of Tissues' Viscosity and Surface Tension through Contractility Suggests a New Role for ??-Catenin, PLoS ONE, vol.43, issue.2, pp.1-10, 2013.
DOI : 10.1371/journal.pone.0052554.s003

Y. Sun and Q. Wang, Modeling and simulations of multicellular aggregate self-assembly in biofabrication using kinetic Monte Carlo methods, Soft Matter, vol.239, issue.7, pp.2172-2186, 2013.
DOI : 10.1002/dvdy.22161

G. L. Thomas, V. Mironov, A. Nagy-mehez, and J. C. Mombach, Dynamics of cell aggregates fusion: Experiments and simulations. Physica A: Statistical Mechanics and its Applications, pp.247-254, 2014.

L. and V. Bertalanffy, Quantitative Laws in Metabolism and Growth, The Quarterly Review of Biology, vol.32, issue.3, pp.217-231, 1957.
DOI : 10.1086/401873

A. Wessels and D. Sedmera, Developmental anatomy of the heart: a tale of mice and man, Physiological Genomics, vol.15, issue.3, pp.165-176, 2003.
DOI : 10.1161/01.RES.83.10.986

S. Wilson, M. Tod, A. Ouerdani, A. Emde, Y. Yarden et al., Modeling and predicting optimal treatment scheduling between the antiangiogenic drug sunitinib and irinotecan in preclinical settings, CPT: Pharmacometrics & Systems Pharmacology, pp.720-727, 2015.
DOI : 10.1007/s00280-013-2208-8