R. Agrawal, T. Imielinski, and A. N. Swami, Mining association rules between sets of items in large databases, Proc. of the Int. Conf. on Management of Data, pp.207-216, 1993.

F. Baader, D. Calvanese, D. L. Mcguinness, and D. Nardi, The Description Logic Handbook: Theory, Implementation, and Applications, 2003.
DOI : 10.1017/CBO9780511711787

T. Berners-lee, J. Hendler, and O. Lassila, The Semantic Web, Scientific American, vol.284, issue.5, 2001.
DOI : 10.1038/scientificamerican0501-34

L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and regression trees, 1984.

S. Brin, R. Motwani, J. D. Ullman, and S. Tsur, Dynamic itemset counting and implication rules for market basket data, Proc. of 1997 ACM SIGMOD International Conference on Management of Data, pp.255-264, 1997.
DOI : 10.1145/253262.253325

URL : http://www.cs.ucla.edu/~czdemo/tsur/Papers/dic-final.ps

P. Clark and R. Boswell, Rule induction with CN2: Some recent improvements, Proc. of the Fifth European Conference, pp.151-163, 1991.
DOI : 10.1007/BFb0017011

URL : http://www.cs.utexas.edu/users/pclark/papers/newcn.ps.Z

C. Amato, S. Staab, A. Tettamanzi, D. M. Tran, and F. Gandon, Ontology enrichment by discovering multi-relational association rules from ontological knowledge bases, Proc. of SAC 2016, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01322947

C. Amato, A. Tettamanzi, and D. M. Tran, Evolutionary discovery of multirelational association rules from ontological knowledge bases, pp.113-128, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01400830

F. Divina, Genetic Relational Search for Inductive Concept Learning: A Memetic Algorithm for ILP, 2010.

N. Fanizzi, C. Amato, and F. Esposito, Learning with Kernels in Description Logics, pp.210-225, 2008.
DOI : 10.1007/978-3-540-85928-4_18

URL : http://www.di.uniba.it/~cdamato/ILP2008-cameraReady.pdf

L. M. Fu and E. H. Shortliffe, The application of certainty factors to neural computing for rule discovery, IEEE TRANS. On Neural Networks, pp.647-657, 2000.

L. Galárraga, C. Teflioudi, K. Hose, and F. Suchanek, AMIE, Proceedings of the 22nd international conference on World Wide Web, WWW '13, pp.413-422, 2013.
DOI : 10.1007/978-3-642-21034-1_9

I. Horrocks, P. F. Patel-schneider, H. Boley, S. Tabet, B. Grosof et al., SWRL: A semantic web rule language combining OWL and RuleML, 2004.

J. Józefowska, A. Lawrynowicz, and T. Lukaszewski, Abstract, Theory and Practice of Logic Programming, vol.65, issue.03, pp.251-289, 2010.
DOI : 10.1023/B:MACH.0000023151.65011.a3

F. A. Lisi, AL-QuIn: An onto-relational learning system for semantic web mining, Int. J. of Semantic Web and Information Systems, 2011.

B. Motik, U. Sattler, and R. Studer, Query Answering for OWL-DL with Rules, Web Semantics, vol.3, issue.1, pp.41-60, 2005.
DOI : 10.1007/978-3-540-30475-3_38

URL : http://web.comlab.ox.ac.uk/oucl/work/boris.motik/publications/mss05query-journal.pdf

S. Muggleton and A. Tamaddoni-nezhad, QG/GA: a stochastic search for Progol, Machine Learning, vol.38, issue.1, pp.121-133, 2008.
DOI : 10.1007/978-3-540-30109-7_25

P. Reiser and P. Riddle, Scaling up inductive logic programming: An evolutionary wrapper approach, Applied Intelligence, vol.15, issue.3, pp.181-197, 2001.
DOI : 10.1023/A:1011239013893

S. Sahar and Y. Mansour, An empirical evaluation of objective interestingness criteria, SPIE Conference on Data mining and Knowledge Discovery, pp.63-74, 1999.

P. Smyth and R. Goodman, Rule induction using information theory, 1991.

M. D. Tran, C. Amato, B. T. Nguyen, and A. G. Tettamanzi, An evolutionary algorithm for discovering multi-relational association rules in the semantic web, Proceedings of the Genetic and Evolutionary Computation Conference on , GECCO '17, pp.513-520, 2017.
DOI : 10.1007/978-3-642-21034-1_9

URL : https://hal.archives-ouvertes.fr/hal-01567794

J. Völker and M. Niepert, Statistical Schema Induction, ESWC'11 Proc. LNCS, pp.124-138, 2011.
DOI : 10.1016/j.websem.2006.02.001