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Abstract: Spacecrafts such as Stardust (NASA, 2006) are protected by an ablative Thermal
Protection System (TPS) for their hypersonic atmospheric entry. A new generation of TPS mate-
rial, called Phenolic Impregnated Carbon Ablator (PICA), has been introduced with the Stardust
mission. This new generation of low density carbon-phenolic composites is now widely used in the
aerospace industry. Complex heat and mass transfer phenomena coupled to phenolic pyrolysis and
pyrolysis gas chemistry occur in the material during atmospheric entry. Computer programs, as
the Porous material Analysis Toolbox based on OpenFoam (PATO) released open source by NASA,
allow to study the material response. In this study, a non-intrusive Anchored Analysis of Variance
(Anchored-ANOVA) method has been interfaced with PATO to perform low-cost sensitivity anal-
ysis on this problem featuring a large number of uncertain parameters. Then, a Polynomial-Chaos
method has been employed in order to compute the statistics of some quantities of interest for the
atmospheric entry of the Stardust capsule, by taking into account uncertainties on effective mate-
rial properties and pyrolysis gas composition. This first study including pyrolysis gas composition
uncertainties shows their key contribution to the variability of the quantities of interest.

Key-words: Sensitivity analysis, Uncertainty quantification, Porous media, Heat-shield ablation

∗ Inria Bordeaux Sud-Ouest - Team CARDAMOM
† ArianeGroup, Le Haillan
‡ C la Vie, University of New Caledonia, New Caledonia
§ DeFI - CMAP - Ecole Polytechnique, Inria Saclay - Ile de France, Polytechnique - X, CNRS



Système de protection thermique ablatif sous incertitudes
avec prise en compte des gazs de pyrolyse

Résumé : Les véhicules spaciaux tels que Stardust (NASA, 2006) sont protégés par un sys-
tème de protection thermique ablatif (TPS) lors de leur entrée atmosphérique hypersonique.
Une nouvelle génération de matériau de protection, appelé Phenolic Impregnated Carbon Abla-
tor (PICA), a été introduite pour la mission Stardust. Cette nouvelle génération de composites
carbone-phénolique à faible densité est maintenant couramment utilisée dans l’industrie aérospa-
tiale. Les phénomènes complexes de transfert de masse et de chaleur couplés à la pyrolyse de la
matrice phénolique et la chimie des gazs associés surviennent dans le matériau durant l’entrée
atmoshpérique. Différents codes de calcul, comme Porous material Analysis Toolbox based on
OpenFoam (PATO) mis en accès libre par la NASA, permettent d’étudier la réponse du matériau.
Dans notre étude, une méthode non-intrusive Anchored Analysis of Variance (Anchored-ANOVA)
a été interfacée avec PATO pour réaliser une analyse de sensibilité à faible coût sur ce problème
comportant un grand nombre de parmètres incertains. Ensuite, une méthode de chaos polyno-
mial a été mise en oeuvre afin de calculer les statistiques de différentes quantités d’intérêt lors de
l’entrée atmosphérique de la capsule Stardust, en considérant les incertitudes sur les propriétés
matériau et la composition des gazs de pyrolyse. Cette première étude prenant en compte les
incertitudes sur la composition des gazs de pyrolyse montre leur forte contribution à la variabilité
finale des quantités d’intérêt.

Mots-clés : Analyse de sensibilité, Quantification des incertitudes, Milieu poreux, Abalation
de bouclier thermique



Uncertainty propagation for heat and mass transfer in porous media 3

1 Introduction

Space exploration missions often include entering a planetary atmosphere at hypersonic speed. A
high enthalpy hypersonic shock forms around the spacecraft and kinetic energy is progressively
dissipated into heat [1]. Heat is transferred to the surface of the spacecraft by radiation and
convection. A suitable heat shield is needed to protect the payload. The level of heat �ux
increases with entry speed and atmospheric density. For fast hypersonic entries, typically faster
than 8km=s from earth orbit, ablative materials are used as Thermal Protection Systems (TPS).
These materials mitigate the incoming heat through phase changes, chemical reactions, and
material removal [2]. A low-density porous carbon/phenolic composite called PICA was used
for the Stardust comet-dust sample-return capsule, which reentered the Earth's atmosphere at
12:7km=s [3]. PICA is made of a carbon �ber preform partially impregnated with phenolic resin.

Figure 1: Phenomenology of porous carbon/phenolic ablative materials

During atmospheric entry, carbon/phenolic materials undergo thermal degradation and ulti-
mately recession captured by the following physico-chemical phenomena (Figure 1). The pheno-
lic polymer thermally decomposes and progressively carbonizes into a low density carbon form,
losing mass while releasing pyrolysis gases. The pyrolysis gases percolate and di�use to the
surface through the network of pores. Reactions within the pyrolysis-gas mixture (homogeneous
reactions) and between pyrolysis gases and the char take place with possible coking e�ects (het-
erogeneous reactions). Mixing and reaction of the pyrolysis gases with boundary layer gases into
the pores of the material occur when boundary layer gases penetrate in the material by forced
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4 Rivier, Lachaud, Congedo

convection or due to fast di�usion at low pressures [4]. At the surface, the material is removed by
ablation and the outer surface recedes. Depending on entry conditions, ablation may be caused
by heterogeneous chemical reactions (oxidation, nitridation), phase change (sublimation), and
possibly mechanical erosion (often called spallation).

A detailed heat and mass transfer model is required to estimate the performance of the
porous material and design the thermal protection system. Two important design criteria are
the expected level of recession and the maximum back wall temperature. The key parameter
uncertainties are propagated to obtain the design uncertainties to be used in the margin policy
[5]. A Monte Carlo approach has been developed and used to propagate uncertainties on material
properties and areoheating conditions for the design of the NASA Mars Science Laboratory [6]
and Orion [7] spacecrafts. In these study however, no uncertainty is attributed to the pyrolysis
gas composition. Recent publications have shown that the pyrolysis gas composition strongly
varies depending on temperature and heating rate [8, 9, 10]. The pyrolysis gases are composed
of carbon, oxygen and hydrogen elements. The pyrolysis gas composition in�uences the pyroly-
sis gas enthalpy - which impacts heat transfer in the porous material - and the boundary layer
chemistry - which controls the ablation rates and the surface temperature. For this �rst analysis
we will allow an uncertainty of 10% on these elements. The composition in term of species is
then computed in each cell of the mesh and at each time step using an equilibrium chemistry
solver [4]. This makes the computation very costly and requires the use of the low-cost un-
certainty quanti�cation methods. In the literature, low-cost uncertainty propagation has been
already performed alongside Global Sensitivity Analysis for problems of natural convection in
[11]. Uncertainty analyses have also been performed on surface ablation rates and their e�ect on
aeroheating predictions for Mars entry in [12], and on ablation problems in plasma wind tunnel
[13, 14].

In section 2, we present the problem studied and the physical hypotheses. In section 3, we
present the inverse analysis method implemented in the study. The results of the uncertainty
quanti�cation analysis are presented in section 4. Finally, section 5 draws some conclusions and
perspectives.

2 De�nition of the uncertainty analysis problem and hy-
potheses

For this �rst analysis, we chose to study the entry of Stardust, that was the �rst mission using
a low-density carbon-phenolic ablator in 2006. The thermal response of the TPS has been be
studied at the stagnation point during the whole reentry, from entry interface to cool down. As in
the state-of-the-art design approach we assumed that the problem is locally mono-dimensional.
The actual thickness of the ablative material was two inches [3], therefore we used this value.
Adiabatic conditions are used at the bondline. A convective boundary condition is used at the
surface of the ablative material. Surface total pressure and heat �ux were taken from reference
[15].

Figure 2 illustrates the temperature evolution during the atmospheric entry at the stagnation
point and in-depth under the stagnation point with nominal TACOT properties.

The analysis is performed using the properties of the Theoretical Ablative Composite for Open
Testing (TACOT). Its composition and properties are comparable to PICA. Nominal TACOT
properties are available in the open literature [16]. Volume-wise, TACOT is made of10% of
carbon �bers, 10% of phenolic resin, and is80% porous.

Inria



Uncertainty propagation for heat and mass transfer in porous media 5

Figure 2: Surface and in-depth temperatures obtained with nominal material and pyrolysis gas
composition parameters.

2.1 Model

A generic heat and mass transfer model for porous media has been recently developed and doc-
umented [17]. It is suitable to model ablative heat shields. For the sake of conciseness, we only
present a short summary in this section. The model was developed for porous materials con-
taining several solid phases and a single gas phase. The detailed chemical interactions occurring
between the solid phases and the gas phase are modeled at the pore scale assuming local thermal
equilibrium. Homogenized models were obtained for solid pyrolysis, pyrolysis species injection
in the gas phase, heterogeneous reactions between the solid phases and the gas phase, and ho-
mogeneous reactions in the gas phase. The chemistry models were integrated in a macroscopic
model making use of volume-averaged governing equations for the conservation of solid mass,
gas mass, species (�nite-rate chemistry) or elements (equilibrium chemistry), momentum, and
energy. The model is implemented in the Porous material Analysis Toolbox (PATO), distributed
Open Source by NASA. First-order implicit �nite-volume schemes in time and space [18, 19],
which have been shown to provide excellent convergence and accuracy [20, 4], were used for the
simulations presented in Section 4. In this study, we used an equilibrium chemistry model that
is equivalent to the reference NASA TPS design model [21]. The current approach is to assume
that the elemental pyrolysis gas composition is �xed. To save on computational time, precom-
puted tables are used to obtain the gas composition (species) and properties (enthalpy, viscosity,
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6 Rivier, Lachaud, Congedo

molar mass). In the current study, we wish to vary the elemental pyrolysis gas composition. The
pyrolysis gas composition in term of species is therefore computed from pyrolysis gas elemental
composition in each cell of the mesh and at each time step using an equilibrium chemistry solver,
as described in [4]. The surface ablation rate is computed using the thin �lm coe�cient approach,
also known as B' approach, accounting for the change in pyrolysis gas composition injected in
the boundary layer [4].

2.2 Uncertain parameters and associated uncertainties

In previous studies, uncertain material property parameters have been identi�ed for PICA [6,
5, 22]. We decided to include the same uncertain parameters in our study. We also added
a set of new parameters to assess the e�ect of the pyrolysis gas composition on the material
response as described in the introduction. The nominal elemental composition of the pyrolysis
gases for TACOT are, in mole fractions, C (0.206), H (0.679), O (0.115). In total, we have used
twenty-seven uncertain parameters in the TACOT material model. We have attributed 5 to 10
% uncertainty to each of them as follows (the number in brackets is the label used to identify
each uncertainty in the following of this paper):

ˆ Density (1) and volume fraction (2) of the �brous preform (5% uncertainty),

ˆ Density (3) and volume fraction (4) of the phenolic matrix (5% uncertainty),

ˆ Virgin's (5) and char's (6) permeability (5% uncertainty),

ˆ Pyrolysis model (10% uncertainty):

� Elementary composition of the pyrolysis gases in Carbon (7) , Hydrogen (8) and
Oxygen (9),

� Pyrolysis reaction 1: pre-exponential factor (10), activation energy (11), pyrolysis
enthalpy (12),

� Pyrolysis reaction 2: pre-exponential factor (13), activation energy (14), pyrolysis
enthalpy (15),

ˆ Thermal properties of virgin material (5% uncertainty): heat capacity (16), orthogonal
conductivity (17), radial conductivities (18, 19), emissivity (20), re�ectivity (21),

ˆ Thermal properties of charred material (5% uncertainty): heat capacity (22), orthogonal
conductivity (23), radial conductivities (24, 25), emissivity (26), re�ectivity (27).

We chose to simplify the constraint of elementary fractions summing to one through maintain-
ing the relative ratios and normalizing the elementary composition. Practically, given a random
draw of the mass fractionsyi within the � 10% interval, normalized mass fractions eyi =

yiP

k
yk

will actually be given to PATO.
Moreover, with � 1 and � 2 the uncertain volume fraction of the �brous preform and the virgin

matrix respectively, the virgin and charred porosities " v and " c are computed as follows:

" v = 1 � � 1 � � 2

" c = 1 � � 1 �
� 2

2

Finally, one may note the presence of 3D conductivities in the list of uncertain parameters,
which clashes with the mono-dimensional assumption made earlier. Such parameters are left in

Inria



Uncertainty propagation for heat and mass transfer in porous media 7

the study to arti�cially increase the input dimension and verify the capability of the proposed
approach to detect their null impact and discard them.

3 Sensitivity and uncertainty analysis theory and tools

Let us consider a stochastic di�erential equation of the form:

L (x ; � ; � ) = f (x ; � ) (1)

whereL is a non-linear spatial di�erential operator (for instance, the steady Navier-Stokes oper-
ator) depending on a set of uncertainties, designated with the random vector� (of dimension the
number of uncertain parameters in the problem) and wheref (x ; � ) is a source term depending
on x and � . In the following, we drop the dependence onx in order to simplify the notation.
The solution of the stochastic equation (1) is � (� ), which is a function of the space variable
x 2 R

d
and of � 2 � = � 1 � � � � � � N (� � RN ) and � 2 � 7�! � (� ) 2 L 2(� ; p(� )) , where

p(� ) =
Q N

i =1 p(� i ) is the probability density function of � .
One of the objective of Uncertainty Quanti�cation is to compute the statistics of the quantity

of interest, i.e. � (� ).
We can de�ne the central statistical moment of � of order n as

� n (f ) =
Z

�
(� (� ) � E (� ))n p(� )d�; (2)

where E(� ) indicates the expected value of�

E (� ) =
Z

�
� (� )p(� )d�: (3)

In the following, we indicate with � 2, the variance (second-order moment). We illustrate the
main concepts of the ANOVA-decomposition in Section 3.1. Then, to clearly present the context
of uncertainty analysis theory and provide a comprehensive understanding of the approach fol-
lowed in this work, we will use as illustration a mono-dimensional heat transfer problem presented
in Section 3.2. The UQ methods are then described in Section 3.3.

3.1 ANOVA-based decomposition

Let us suppose that the response of a given system of interest can be represented by aN � dimensional
function:

y = � (� ) = � (� 1; � 2; � � � ; � N ) (4)

We consider Eq. (4) in its functional expansion form as follows

y = � 0 +
NX

16 i 6 N

� i (� i ) +
NX

16 i<j 6 N

� ij (� i ; � j ) + � � � + � 1;2;��� ;N (� 1; � 2; � � � ; � N )

or in compact form using a multi index system:

y = � s0 +
2N � 1X

j =1

� sj (� sj ) (5)
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8 Rivier, Lachaud, Congedo

The multi indices sj are de�ned such as

s0 = (0 ; 0; 0; � � � ; 0)
s1 = (1 ; 0; 0; � � � ; 0)
s2 = (0 ; 1; 0; � � � ; 0)

...
sN = (0 ; 0; 0; � � � ; 1)

sN +1 = (1 ; 1; 0; � � � ; 0)
sN +2 = (1 ; 0; 1; � � � ; 0)

...
sN = (1 ; 1; 1; � � � ; 1)

(6)

where N = 2 N � 1. The representation of Eq. (5) is called ANOVA (Analysis Of Variance)
decomposition [23] of� (� ), if for any j 2 f 1; � � � ; N g,

Z

R
� sj (� sj )p(� i ) d� i = 0 for � i 2 f � sj g (7)

It follows from Eq. (7) the orthogonality of ANOVA component terms, namely

E(� sj � sk ) = 0 for j 6= k (8)

ANOVA allows identifying the contribution of a given stochastic parameter to the total variance
of an output quantity. Meanwhile, we obviously have

E(� sj ) = 0 for j = 1 ; � � � ; N

Note that the terms in the ANOVA decomposition can be expressed as integrals of� (� ). Indeed,
we have

E(Y ) = � 0

E(Y j� i ) = � 0 + � i (� i )
E (Y j� i ; � j ) = � 0 + � i (� i ) + � j (� j ) + � ij (� i ; � j )

(9)

and so on, whereE(Y j�) denotes the conditional expectation.

3.2 Analytical solution for transient heat transfer

3.2.1 Deterministic problem

E�ective heat transfer is the main mode of energy transport in most porous materials. Let us
consider a homogeneous semi-in�nite unidimensional medium. Under the assumption of constant
material properties, the transient heat transfer equation is given by

@t T = � @2
x T (10)

where � = k=(� � cp) is the di�usivity. We will consider a medium initially at the room temper-
ature T(x; t = 0) = T0 = 300 K. Its surface temperature is held at T(x = 0 ; t) = Tw = 1646 K
during the experiment. Laplace transform is used for its resolution as presented in Appendix A.
The temperature pro�le as a function of time and space is given by

T(x; t ) = T0 + ( Tw � T0) erfc
�

x

2
p

�t

�
(11)

Inria



Uncertainty propagation for heat and mass transfer in porous media 9

where erfc is the complementary error function. The temperature pro�les computed for times
of 1, 10 and 60 seconds are plotted in Fig. 3 for a representative medium of di�usivity of10� 7

m2/s. We will only consider in the illustrations that follow the �rst centimeter of the medium.
We see here that the hypothesis that the medium is semi-in�nite does not play a role on the
result, as the heat wave hasn't reached the one centimeter mark after one minute of heating.

Figure 3: Analytical solution for unidimensional transient heat transfer with �xed surface tem-
perature, for a semi-in�nite medium of thermal di�usivity 10� 7 m2/s. Initial temperature of the
body: 300 K; surface temperature: 1646 K. Left: temperature pro�les for 1, 10, and 60 seconds.
Right: error bars in terms of standard deviation when considering two uncertainties.

3.2.2 Formulation under uncertainty

Let us now formulate the problem presented in Eq. 10 under an uncertainty quanti�cation
perspective. In particular, let assume that two parameters are a�ected by some variability
and/or are not well-known: a 5% of variation in terms of min/max is then imposed on Tw and
� considering a uniform distribution (with respect to the deterministic values previously used,
denoted in the following asTwm and � m , respectively). The problem is now formulated as follows:

@t T = � @2
x T = � m � (0:95 + (1:05� 0:95) � � 2) @2

x T (12)

where Tw = Twm � (0:95 + (1:05� 0:95) � � 1), and � 1; � 2 vary in [0; 1].
Several methods can be used in order to solve the problem de�ned in Eq. 12. In this work,

we use systematically the so-called non-intrusive methods: this means that a single deterministic
computation (used to solve for example the di�erential operator de�ned in Eq. 10) is replaced
with a whole set of such computations, each one of those being run for speci�c values of the
uncertain conditions. The �nal solution can be then written as follows:

T(x; t; � 1; � 2) = T0 + ( Twm (0:95 + 0:1� 1) � T0) erfc

 
x

2
p

� m (0:95 + 0:1� 2)t

!

: (13)
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10 Rivier, Lachaud, Congedo

Now, let us show how the computation of the variance and the computation of the contribution
of each source of uncertainty can be reduced only to the computation of some integrals on the
analytical solution shown in Eq. 13 for some �xed values ofx and t:

The ANOVA functional expansion (more details are provided in the next subsection) is a
unique tool for assessing the contribution of each uncertainty (and of the interactions) to the
global variance. This is computed as follows (variables x and t are dropped since this does not
change the following developments)

T(� ) = T0 + T� 1 + T� 2 + T� 1 � 2 ; (14)

where

T0 =
Z

� 2
T(� )p(� )d� ;

T� 1 =
Z

�
T(� )p(� 2)d� 2 � T0;

T� 2 =
Z

�
T(� )p(� 1)d� 1 � T0;

T� 1 � 2 = T(� ) � T� 1 � T� 2 � T0:

(15)

The overall variance � 2 can be computed by means of the ANOVA expansion as

� 2 = � 2
� 1

+ � 2
� 2

+ � 2
� 1 � 2

; (16)

where

� 2
� 1

=
Z

�
T2

� 1
p(� 1)d� 1;

� 2
� 2

=
Z

�
T2

� 2
p(� 2)d� 2;

� 2
� 1 � 2

=
Z

� 2
T2

� 1 � 2
p(� )d�:

(17)

Note that � 2
� 1

, � 2
� 2

represent the unique contribution of � 1 and � 2 to the global variance � 2,
respectively. Moreover, � 2

� 1 � 2
represents the contribution given by the interaction between � 1

and � 2.
Note that only integrals of the expression de�ned in Eq. 13 are required, in order to compute

the contributions to the variance for �xed values of (x; t ). In Figure 3 (on the right), the solution
is then represented in terms of mean and the associated error bars (square root of the variance,
i.e. standard deviation). Figure 4 illustrates the variance of the temperature t = 60 s, induced
by each uncertainty. Note that the contribution Tw is predominant and explains most of the
global variability of the temperature. This simple example illustrates the interest in propagating
some physical input uncertainties through numerical models.

3.3 Non-intrusive formulations for expensive computer codes

Unfortunately, generally, it is not possible to compute an analytical solution of the problem
de�ned in Eq. 1. This could require the resolution of a complex system of equation, relying on a
numerical approximation of the solution on some discretized grid of the numerical domain. Note
then that computing the integrals of Eq. 17 can be very costly. Moreover, some additional issues

Inria



Uncertainty propagation for heat and mass transfer in porous media 11

Figure 4: Variance of the temperature (including the contribution of each uncertainty) at a time
of 60 seconds.

could arise in the presence of a large number of uncertainties or if the quantity of interest features
some discontinuities. The real challenge is then to formulate an e�cient numerical algorithm
permitting to build an accurate representation of the quantity of interest as a function of input
uncertainties.

As previously mentioned, only non-intrusive strategy are targeted in this work. In particular,
here, we tackle a problem featuring a large number of uncertainties, that can be very challenging
to solve, due to the so-called Curse of Dimensionality. It refers to the loss of convergence and the
infeasible number of calculations needed when the number of parameters increases, for any chosen
method. We have partially cured this problem with a two-steps approach. First, we applied an
anchored-ANOVA approach on the complete problem. This analysis permits to compute the
hierarchy and detect the most important uncertainties. Note that this approach only needs
a very reduced number of deterministic simulations to perform uncertainty propagation and
sensitivity analysis. In a second step, we applied a Polynomial-Chaos approach for treating the
subspace including only the predominant parameters, in order to provide a good representation
of the quantity of interest in the reduced stochastic space.

As mentioned before, due to the non-intrusivity of the stochastic methods considered here,
the coupling with PATO, or any other heat and mass transfer computational model, is very
straightforward: it reduces to the creation of a small interface for building automatically PATO
input parameters �les for each set of uncertain conditions.

Both methods are described brie�y in the following. For more details, refer to [24] for the
Polynomial-based method and to [25] for the anchored-ANOVA approach.

RR n ° 9175



12 Rivier, Lachaud, Congedo

3.3.1 Anchored-ANOVA approach: De�nitions and basic notions

In order to introduce the less expensiveanchored ANOVA, the Dirac measure is used for the
integrals of Eq. (9):

p(� i ) d� i = � (� i � ci ) d� i for i = 1 ; � � � ; N (18)

Thus, p(� ) d� = � (� � c) d� . The point c = ( c1; � � � ; cN ) is called �anchor point�. Hence, the
ANOVA component terms in Eq. (9) can be expressed as follows:

� (c) = � 0

� (cj� i ) = � 0 + � i (� i )
� (cj� i ; � j ) = � 0 + � i (� i ) + � j (� j ) + � ij (� i ; � j )
...

(19)

The formulae in Eq. (19) are used to quantify the expectation and variance of the compo-
nent functions, by simply evaluating the model outputs at chosen sampling points. For more
details, see [25]. This permits a strong reduction of the computational cost, since this avoids the
computation of several integrals. Moreover, a variance-based adaptive criterion (see for more
details [26]) is used in order to compute the so-called e�ective dimension and to evaluate high-
order interactions with a reduced computational cost. The order at which the ANOVA model is
truncated, is called e�ective dimension, beyond which the di�erence between the ANOVA model
and the truncated expansion in a certain measure is very small. This implies that we will ignore
terms in the ANOVA model corresponding to interactions exceeding the �xed threshold.

In this work, a covariance decomposition of the output variance has been considered, as
proposed in [25], in order to accurately compute the statistics using the anchored-ANOVA ex-
pansion. The covariance decomposition makes the result less sensitive to the choice of the anchor
point if a full expansion of the anchored ANOVA is employed.

3.3.2 Polynomial-chaos based approach

Under speci�c conditions, a stochastic process can be expressed as a spectral expansion based
on suitable orthogonal polynomials, with weights associated to a particular probability density
function. The �rst study in this �eld is the Wiener (1938) process. The basic idea is to project
the variables of the problem onto a stochastic space spanned by a complete set of orthogonal
polynomials 	 that are functions of random variables � . For example, the unknown variable �
has the following spectral representation:

� (� ) =
1X

i =0

� i 	 i (� )) : (20)

In practice, the series in Eq. (20) has to be truncated in terms of the polynomial degreep0,
where the total number of terms of the seriesM is determined by:

M + 1 =
(N + p0)!

N ! p0!
; (21)

whereN is the dimensionality of the uncertainty vector � . Each polynomial 	 i (� ) is a multivari-
ate polynomial form which involves tensorization of 1D polynomial forms. The polynomial basis
is chosen accordingly to the Wiener-Askey scheme [27] in order to select orthogonal polynomials
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Uncertainty propagation for heat and mass transfer in porous media 13

with respect to the probability density function p(� ) of the input. The orthogonality can be ad-
vantageously used to compute the coe�cients of the expansion in a non-intrusive PC framework

� i =
h� (� ); 	 i (� )i
h	 i (� ); 	 i (� )i

; 8i: (22)

Several approaches can be used to estimate PC coe�cients. The approach used in this study
is based on quadrature formula. As a consequence, the solution of a deterministic problem for
each quadrature point is required.

For further details, see Congedoet al.[24]. In both cases, once the chaos polynomials and the
associated� i coe�cients are computed, the expected value and the variance of the stochastic
solution � i (� ) are obtained from:

EP C = � 0 (23)

V arP C =
NX

i =1

� 2
i



	 2

i

�
(24)

Another interesting property of PC expansion is to make easier sensitivity analysis based on
the analysis of variance decomposition (ANOVA). It can be easily computed by using some
interesting properties of the previous development [28]. Let us recall here that the contribution
to the variance of a given random variables with indexk, i.e. the �rst order Sobol's index, can
be obtained by:

Sk =

P
i 2 � � 2

i h	 2
i (� )i

V arP C
(25)

where � represent the set of indexes associated to a given uncertainty k. For more details, Ref.
[28] is strongly recommended.

4 Results

The Anchored-ANOVA method is applied to the problem presented in section 2. We present �rst
the convergence analysis with respect to the number of samples considered to get well-converged
statistics of all the quantities of interest. In Anchored-ANOVA, the �rst-order analysis is based
on a chosen number of points per direction. We have reported in Table 1 the outcome of this
analysis for the temperature computed at a depth of1:5 cm at a time equal to 80s, in terms
of decreasing contributions to the variance, for eight and sixteen points along each direction,
respectively (which makes a total number of runs of the solver of 216 and 432, respectively).
As it can be observed, errors are quite small, indicating that quantities are converged with only
eight points per direction. Same conclusions can be drawn for all the other quantities of interest
considered in this work, i.e. temperatures at di�erent depths, the virgin front and the char front.
Results shown in the following rely then on this analysis.

Let us now analyse the results from a quantitative and qualitative point of view. Figure 5
presents the transformation of the ablative material with error bars, which represent the spread-
ing of the quantities of interest in terms of standard deviation. The plotted results are the
surface recession - due to ablation - and the propagation of the pyrolysis front. The char 2% and
virgin 98% are used in the ablation community to identify almost completely charred material
(2% left of virgin matrix) and almost pristine virgin material (98% left of virgin matrix). The
charring zone is considered to be between these two accepted limits [16]. Note that, since the
heating is quite soft at the beginning of the simulation, the material is fully pyrolysed before
being ablated. This explains why the char 2% and the wall curves are clearly separated in this
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Table 1: Contribution to the variance of each uncertainty and error analysis with respect to the
number of points per direction. Absolute and relative di�erences are also given.

Unc. Contrib. q16 (%) Contrib. q8 (%) � abs � rel

24 16.9 16.9 0.0 0.0
3 14.8 14.8 0.0 0.0
4 14.7 14.8 0.1 6.8�10� 3

26 9.03 9.01 0.02 2.2�10� 3

1 8.31 8.32 0.01 1.2�10� 3

2 8.29 8.3 0.01 1.2�10� 3

9 7.63 7.64 0.01 1.3�10� 3

11 5.13 5.13 0.0 0.0
22 4.05 4.05 0.0 0.0
8 2.88 2.88 0.0 0.0

14 2.88 2.88 0.0 0.0
12 2.48 2.48 0.0 0.0
15 1.48 1.48 0.0 0.0
7 1.15 1.15 0.0 0.0

16 0.166 0.166 0.0 0.0
18 5.05�10� 2 5.03�10� 2 0.2�10� 3 4.0�10� 3

10 3.78�10� 2 3.78�10� 2 0.0 0.0
13 5.81�10� 3 5.81�10� 3 0.0 0.0
20 6.68�10� 4 6.7�10� 4 0.2�10� 5 3.0�10� 3

6 7.22�10� 5 7.21�10� 5 0.1�10� 6 1.4�10� 3

5 1.01�10� 5 1.04�10� 5 0.3�10� 6 3.0�10� 2

17 0.0 0.0 0.0 0.0
19 0.0 0.0 0.0 0.0
21 0.0 0.0 0.0 0.0
23 0.0 0.0 0.0 0.0
25 0.0 0.0 0.0 0.0
27 0.0 0.0 0.0 0.0

case. The observed variability is very small for the three curves. In fact, for the virgin 98%,
which is the worst case, the Coe�cient of Variation (standard deviation to mean ratio) is of the
order of 3%.

A physical analysis of the results is now presented in terms of the contribution of each
uncertainty to several quantities, namely the recession, the virgin front, the char front and
the surface temperature, as a function of time. The results are presented in Figure 6. The
uncertainties propagated on the material properties are in agreements with previous studies
[6, 5, 22]. Concerning the recession and the location of the Char 2%, the maximal standard
deviation is of the order of 0.03-0.04 cm. As it can be observed in Figure 6a and b, the location
of the recession and char 2% mostly depend on both the parameters in�uencing the heat transfer
in the charred material and the pyrolysis parameters. The virgin 98% is predominantly in�uenced
by the uncertainty on the Activation energy 1, which controls the initiation of pyrolysis. Finally,
the surface temperature is mostly driven by the char's emissivity except at the start of the
pyrolysis reaction, where the activation energies and gas composition are predominant.

We would like to point out a new result. The uncertainty on the elemental pyrolysis gas com-
position (Carbon, Hydrogen and Oxygen) clearly induces variability on the studied quantities.
The e�ect of the these uncertainties is observed on the in-depth temperature evolution as well,
as shown in Figure 7, where the contributions of each uncertainty to the variance of the tem-
perature is computed over the time at di�erent depths in the material. The standard deviation
of the temperature takes the highest value at a depth of 0.7 cm (100 K), while it remains quite
small for the other depths considered here.

With the advancement of the ablation front, contributions of the virgin's parameters are
quickly overtaken by char's ones. Parameters of the pyrolysis reaction and material composition
also show decreasing contributions as the pyrolysis reaction comes to an end.
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Figure 5: Recession, char at 2% and virgin at 98% with the� standard deviation envelope.

In order to make more evident the di�erent contributions, Figure 8 illustrates the di�er-
ent contributions gathered in terms of di�erent groups of uncertainty, i.e. �bers and matrices
properties, TACOT's composition, pyrolysis parameters, etc.

By using the low-cost sensitivity analysis technique, the hierarchy of the most important
uncertain parameters contributing to the variance of the temperature can be computed as a
function of the depths at a �xed time. For example, in Figure 9 we show the hierarchy at a time
of 80 s. As it can be observed, the trend is highly non linear, and this could be particularly
useful to build reliable design margin policies and to guide material model development e�orts.

4.1 Construction of the Polynomial-Chaos based surrogate

As explained in Section 3.3.2, the interest of low-cost sensitivity analysis technique is twofold.
More than only identifying a ranking of main uncertainties, it can be used in order to build a
surrogate model (a Polynomial-Chaos based one in this case) on a reduced set of uncertainties,
i.e. the predominant ones. This is applied here to the temperature computed at a depth of1:6
cm for di�erent times. Note that this can be easily applied to a whatever quantity of interest,
but the surrogate will be not the same since the most important uncertainties can be di�erent
with respect to the time, the depth and the quantity of interest.

In the case under consideration, �rst the uncertainties contributing the most to the variance
of the temperature at di�erent times are computed (Figure 10 illustrates the ranking for a time
t = 80 s where the variance is maximal).
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