M. Arjovsky, S. Chintala, and L. Bottou, Wasserstein generative adversarial networks, Proceedings of the 34th International Conference on Machine Learning, pp.6-11, 2017.

G. Cybenko, Approximation by superpositions of a sigmoidal function, Mathematics of Control, Signals, and Systems, vol.27, issue.4, pp.303-314, 1989.
DOI : 10.1090/pspum/028.2/0507425

L. Dinh, J. Sohl-dickstein, and S. Bengio, Density estimation using real NVP, 2017.

G. K. Dziugaite, D. M. Roy, and Z. Ghahramani, Training generative neural networks via maximum mean discrepancy optimization, 2015.

I. Goodfellow, J. Pouget-abadie, M. Mirza, B. Xu, D. Warde-farley et al., Generative adversarial nets, Advances in neural information processing systems, pp.2672-2680, 2014.

I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville, Improved training of wasserstein gans

N. Guttenberg, N. Virgo, O. Witkowski, H. Aoki, and R. Kanai, Permutation-equivariant neural networks applied to dynamics prediction

M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, G. Klambauer et al., Gans trained by a two time-scale update rule converge to a nash equilibrium

T. Karras, T. Aila, A. J. Lehtinen, and S. L. , Progressive growing of GANs for improved quality, stability, and variation, ICLR, 2018.

D. Kingma and J. Ba, Adam: A method for stochastic optimization, iclr, 2015.

D. Kingma and M. Welling, Auto-encoding variational Bayes, ICLR, 2014.

Y. Li, K. Swersky, and R. S. Zemel, Generative moment matching networks

S. Mcgregor, Neural Network Processing for Multiset Data, Proceedings of the 17th International Conference on Artificial Neural Networks, ICANN'07, pp.460-470, 2007.
DOI : 10.1007/978-3-540-74690-4_47

S. Mcgregor, Further results in multiset processing with neural networks, Neural Networks, vol.21, issue.6, pp.830-837, 2008.
DOI : 10.1016/j.neunet.2008.06.020

T. Miyato, T. Kataoka, M. Koyama, Y. , and Y. , Spectral normalization for generative adversarial networks URL https://openreview.net/forum? id=B1QRgziT-. accepted as oral presentation, International Conference on Learning Representations, 2018.

S. Nowozin, B. Cseke, and R. Tomioka, Training generative neural samplers using variational divergence minimization, Advances in Neural Information Processing Systems, pp.271-279, 2016.

C. R. Qi, H. Su, K. Mo, and L. J. Guibas, Pointnet: Deep learning on point sets for 3d classification and segmentation

A. Radford, L. Metz, C. , and S. , Unsupervised representation learning with deep convolutional generative adversarial networks, 2015.

D. Rezende, S. Mohamed, and D. Wierstra, Stochastic backpropagation and approximate inference in deep generative models, ICML, 2014.

T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford et al., Improved techniques for training GANs, NIPS, 2016.

J. Sohl-dickstein, E. A. Weiss, N. Maheswaranathan, and S. Ganguli, Deep unsupervised learning using nonequilibrium thermodynamics, 2015.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones et al., Attention is all you need, Advances in Neural Information Processing Systems 30, pp.6000-6010, 2017.

M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Póczos, R. Salakhutdinov et al.,